TW393769B - A DRAM cell structure and method serving the function of charging bipolar amplification - Google Patents
A DRAM cell structure and method serving the function of charging bipolar amplification Download PDFInfo
- Publication number
- TW393769B TW393769B TW087100530A TW87100530A TW393769B TW 393769 B TW393769 B TW 393769B TW 087100530 A TW087100530 A TW 087100530A TW 87100530 A TW87100530 A TW 87100530A TW 393769 B TW393769 B TW 393769B
- Authority
- TW
- Taiwan
- Prior art keywords
- aforementioned
- access memory
- random access
- dynamic random
- gate
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 19
- 230000003321 amplification Effects 0.000 title abstract description 9
- 238000003199 nucleic acid amplification method Methods 0.000 title abstract description 9
- 239000003990 capacitor Substances 0.000 claims abstract description 75
- 239000004065 semiconductor Substances 0.000 claims abstract description 56
- 238000003860 storage Methods 0.000 claims abstract description 52
- 239000000463 material Substances 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 230000000873 masking effect Effects 0.000 claims abstract 3
- 210000004027 cell Anatomy 0.000 claims description 84
- 229910044991 metal oxide Inorganic materials 0.000 claims description 34
- 150000004706 metal oxides Chemical class 0.000 claims description 34
- 238000005468 ion implantation Methods 0.000 claims description 18
- 230000006870 function Effects 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 11
- 230000002079 cooperative effect Effects 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 6
- 229910015900 BF3 Inorganic materials 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000007943 implant Substances 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 3
- 235000015067 sauces Nutrition 0.000 claims 5
- 238000002955 isolation Methods 0.000 claims 4
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 claims 3
- 239000004744 fabric Substances 0.000 claims 3
- KZNMRPQBBZBTSW-UHFFFAOYSA-N [Au]=O Chemical compound [Au]=O KZNMRPQBBZBTSW-UHFFFAOYSA-N 0.000 claims 2
- 238000000151 deposition Methods 0.000 claims 2
- 230000005611 electricity Effects 0.000 claims 2
- 230000032683 aging Effects 0.000 claims 1
- 230000004888 barrier function Effects 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 125000004437 phosphorous atom Chemical group 0.000 claims 1
- 229920002120 photoresistant polymer Polymers 0.000 claims 1
- 238000003307 slaughter Methods 0.000 claims 1
- 230000005669 field effect Effects 0.000 description 22
- 238000005516 engineering process Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 230000003071 parasitic effect Effects 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 206010011878 Deafness Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical group [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000000352 storage cell Anatomy 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
Landscapes
- Dram (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
A7 B7 五、發明説明(/) 發明背景 發明領域 本發明是關於一種動態隨機存取記憶體(DRAM),更精 確的說是有關動態隨機存取記憶體(DRAM)的電荷放大功能 之結構與製造方法。 相關技術描述 在本項技術中,動態隨機存取記憶體(DRAM)單元和動 態隨機存取記憶體(DRAM)陣列的結構與製造方法是眾所皆 知的。在先前技術中,高密度動態隨機存取記憶體(DRAM) 典型的單元結構,如圖la所示,是由一個用來切換電荷的 電晶體Ml 10及一個用來儲存電荷的儲存電容器C 15所組 成。如圖lb所示,電晶體Ml 10是製造於三重井區的n型金 氧半場效電晶體(n-MOSFET)。在ρ型基材30中形成一個深的 N型井(deep N-wel 1)35。藉由矽基材局部氧化(LOCOS)所 形成絕緣的開端來形成深η型井35的區域。在深η型井35中 將形成一個較淺的Ρ型井40。η型金氧半場效電晶體Ml 10之 閘極60將用導電材料,例如多晶矽,堆叠於絕緣閘極氧化 層55來形成,並用以定義出位於η型金氧半場效電晶體Ml 10之汲極50與源極80之間的通道區域。電容器C 15是藉由 在疊於電晶體Ml 10之n+汲極80上的介電質70上方,放置 一導電金屬並連接至基材偏壓電壓源Vs s 75。電容器C 15 如圖所示。電容器C 15的特殊結構是眾所皆知的,並描述 於B.El-Kareh等人所著,"動態隨機存取記憶體之發展 ’’("The Evolution Of DRAM Cell Technology",Solid 本紙張尺度適用中國國家揉準(CNS〉A4規格(21〇><29似釐) (請先聞讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 -n >^1 ^ (·. -a-il^i n·*——— tm i — HI 1^1 In --- - mhs_l 1^1 —-It m ^^1 1^1 經濟部智慧財產局員工消費合作社印製 A7 _B7 五、發明説明(> )A7 B7 V. Description of the Invention (/) Background of the Invention The present invention relates to a dynamic random access memory (DRAM). More specifically, it relates to the structure and function of the charge amplification function of the dynamic random access memory (DRAM). Production method. Description of Related Art In this technology, the structures and manufacturing methods of dynamic random access memory (DRAM) cells and dynamic random access memory (DRAM) arrays are well known. In the prior art, a typical cell structure of a high-density dynamic random access memory (DRAM), as shown in FIG. 1a, is a transistor M11 for switching charge and a storage capacitor C15 for storing charge. Composed of. As shown in FIG. 1b, the transistor M110 is an n-type metal-oxide-semiconductor field-effect transistor (n-MOSFET) manufactured in a triple-well region. A deep N-wel 1 35 is formed in the p-type substrate 30. The region of the deep n-type well 35 is formed by the opening of insulation formed by local oxidation of silicon substrate (LOCOS). In the deep n-type well 35, a shallower P-type well 40 will be formed. The gate 60 of the n-type metal-oxide-semiconductor half-field-effect transistor Ml 10 will be formed using a conductive material, such as polycrystalline silicon, stacked on the insulating gate oxide layer 55, and is used to define the drain of the n-type metal-oxide-semiconductor half-field effect transistor Ml 10 The channel area between the electrode 50 and the source electrode 80. The capacitor C 15 is formed by placing a conductive metal on the dielectric 70 stacked on the n + drain 80 of the transistor M10 and connected to the substrate bias voltage source Vs s 75. Capacitor C 15 is shown. The special structure of capacitor C 15 is well known and described by B. El-Kareh et al., "The Evolution Of DRAM Cell Technology", Solid This paper size applies to the Chinese national standard (CNS> A4 size (21〇 > < 29)) (Please read the precautions on the back before filling out this page) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs -n > ^ 1 ^ (·. -a-il ^ in · * ———— tm i — HI 1 ^ 1 In ----mhs_l 1 ^ 1 —-It m ^^ 1 1 ^ 1 Intellectual Property Bureau, Ministry of Economic Affairs Printed by employee consumer cooperative A7 _B7 V. Description of invention (>)
State Technology,Mayl997,ρρ·89-101.)—文中。爲了 維持一個單元的最小儲存電容値3〇-40fF,動態隨機存取記 憶體單元結構導致了複雜的半導體製程以發展這些結構。 在將相關的極性與操作偏壓反相後,當然可以使用p型 金氧半場效電晶體(P-MOS)之一致的動態隨機存取記憶體單 元。深η型井35通常偏壓於電源電壓Vcc(意即晶片上的最高 電位),而P型井40偏壓於基材的偏壓電源Vss 75(意即晶片 上的最低電位)。基材的偏壓電源Vs s 75可以偏壓在接地點 以下(意極負電位),如此可使得通過傳輸電晶體Ml 10的漏 電流降低。在儲存電容器C 15中存在電荷時代表著邏輯上 的"1",而缺乏電荷代表著邏輯上的"0"。儲存電容器C 15 連接到電晶體Ml 10的n+汲極80上,而電晶體Ml 10的另一 個n+源極50連接到控制動態隨機存取記憶體單元讀寫的位 元線(bit-line)Vbit 25上。M0S電晶體Ml 10之閘極連接 到控制動態隨機存取記憶體單元選擇的字線(word line)Vword 上0 如圖2所示,動態隨機存取記憶體單元Cell 11 200, Cell 12 205,Cell 21 210,Cell 22 215,排列成列(字 線WL0,WL1,WL2,和WL3)與行(位元線BL0和BL1)的陣 列。受歡迎的動態隨機存取記憶體陣列是摺疊式位元線結 構。每對位元線BL0和BL1連接到一個感測放大器220上,其 中一條位元線BL0或BL1作爲參考偏壓而另一條位元線BL1或 BL0在做讀取運作時作爲位元線感測。在寫入運作時,位元 線BL0和BL1於寫入邏輯"Γ時被充電至Vcc而寫入邏輯"0"時 本紙張凡度適用中國國家標準(CNS ) A4規格(210x29k釐) ^^ - -1.----C 裝-------訂-----《眯 -. (請先聞讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(}) 被充電至Vss。被選擇的字線WLO,WL1,WL2,或WL3被充電 至Vcc,如此使得連接到相同列的所有電晶體導通且每個單 元的電容器分別被充電至Vc c或是Vs s以分別代表"Γ或” " 的資訊。在讀取運作開始之前,位元線BLO和BL1被先行充 電至Vcc/2之電壓。在開始讀取一單元時,被選擇的字線 WLO,WL1,WL2,或WL3電壓上升至Vcc以使得所有連接到字 線WLO,WL1,WL2,或WL3的電晶體導通《每一個感測放大 器220偵測儲存在電容器C的電荷相對於相關位元線BLO與 BL1電壓的極性(意即Vcc/2)。因爲記憶單元電容値比起位 元線電容値小(<10%),所以呈現在感測放大器220輸入端的 訊號非常小(〜100-00mV)。在所有的動態隨機存取記憶體世 代中,最小的儲存電容如上所述必須爲30-40fF以達到維持 讀取運作的特性。傳統單一電晶體單元對於大儲存電容的 需求導致了高且多層之堆疊式或是深壕渠式的電容器,而 成爲動態隨機存取記憶體技術中主要的尺寸限制之一。因 此,必須改革以降低動態隨機存取記憶體單元中儲存電容 値的需求。先前技術中的單一動態隨機存取記憶體單元加 入一個雙極性電晶體,如圖3a所示,用來作爲動態隨機存 取記憶體單元之電荷放大。具有電荷放大功能的動態隨機 存取記憶體單元,如圖3a和3b所示,爲美國專利4677589號 (Haskell等人)以及美國專利5363325號(Sunouchi等人)所 發表的。此單元結構類似於圖la和lb所示。η型金氧半場效 電晶體Ml 300作爲切換電荷進入或流出電容器C 305。然 而,電晶體Q1 310作爲放大於電容器上所呈現的電荷發展 --V ·聋 4口 (請先閱讀背面之注項再填寫本頁)State Technology, Mayl997, ρ · 89-101.) — In the text. In order to maintain a minimum storage capacitance of 30-40fF for a cell, dynamic random access memory cell structures have led to complex semiconductor processes to develop these structures. After inverting the relevant polarity and operating bias, it is of course possible to use the consistent dynamic random access memory cell of the p-type metal-oxide-semiconductor field-effect transistor (P-MOS). The deep n-type well 35 is normally biased to the power supply voltage Vcc (meaning the highest potential on the wafer), and the P-type well 40 is biased to the substrate's bias power source Vss 75 (meaning the lowest potential on the wafer). The bias power source Vs s 75 of the substrate can be biased below the ground point (minus potential), so that the leakage current through the transmission transistor M10 can be reduced. The presence of a charge in the storage capacitor C 15 represents a logical " 1 ", and the lack of charge represents a logical " 0 ". The storage capacitor C 15 is connected to the n + drain 80 of the transistor M10, and the other n + source 50 of the transistor M10 is connected to a bit-line that controls reading and writing of the dynamic random access memory cell. Vbit 25. The gate of the M0S transistor Ml 10 is connected to the word line Vword which controls the selection of the dynamic random access memory cell. As shown in FIG. 2, the dynamic random access memory cells Cell 11 200, Cell 12 205, Cell 21 210, Cell 22 215, are arranged in an array of columns (word lines WL0, WL1, WL2, and WL3) and rows (bit lines BL0 and BL1). A popular dynamic random access memory array is a folded bit line structure. Each pair of bit lines BL0 and BL1 is connected to a sense amplifier 220. One of the bit lines BL0 or BL1 is used as a reference bias, and the other bit line BL1 or BL0 is used as a bit line to sense when performing a read operation. . During the writing operation, the bit lines BL0 and BL1 are charged to Vcc while writing logic " 0 " when writing logic " 0 ". When this paper is compliant, the Chinese National Standard (CNS) A4 specification (210x29k centimeters) ^^--1 .---- C Pack ------- Order ----- 《眯-. (Please read the notes on the back before filling out this page) Staff Consumption of Intellectual Property Bureau of the Ministry of Economic Affairs Cooperative printed A7 B7 V. Description of the invention (}) Charged to Vss. The selected word line WLO, WL1, WL2, or WL3 is charged to Vcc, so that all transistors connected to the same column are turned on and the capacitors of each cell are charged to Vc c or Vs s respectively to represent " Γ or "" information. Before the read operation starts, the bit lines BLO and BL1 are first charged to a voltage of Vcc / 2. When a cell is read, the selected word lines WLO, WL1, WL2, Or the voltage of WL3 rises to Vcc so that all transistors connected to word line WLO, WL1, WL2, or WL3 are turned on. "Each sense amplifier 220 detects the charge stored in capacitor C with respect to the relevant bit line BLO and BL1 voltages. (Meaning Vcc / 2). Because the memory cell capacitance 値 is smaller than the bit line capacitance 値 (<10%), the signal present at the input of the sense amplifier 220 is very small (~ 100-00mV). In all DRAM generations, the minimum storage capacitor must be 30-40fF as described above to maintain the characteristics of read operation. The demand for large storage capacitors in traditional single transistor cells has led to high and multilayer stacking Deep or deep Containers have become one of the main size limitations in dynamic random access memory technology. Therefore, reforms must be made to reduce the need for storage capacitors in dynamic random access memory cells. Single dynamic random access memory in the prior art A bipolar transistor is added to the cell, as shown in Figure 3a, which is used as a charge amplification of the dynamic random access memory cell. A dynamic random access memory cell with a charge amplification function, as shown in Figures 3a and 3b, is Published in U.S. Patent No. 4,677,589 (Haskell et al.) And U.S. Patent No. 5,363,325 (Sunouchi et al.). The structure of this unit is similar to that shown in Figures 1a and 1b. The n-type metal-oxide half field effect transistor Ml 300 enters or switches as a charge. The capacitor C 305 flows out. However, the transistor Q1 310 develops as a charge amplified by the capacitor-V · deaf 4 (please read the note on the back before filling this page)
本紙張尺度適用中國國家標準(CNS > A4規格(210X29名公釐> A7 B7 五、發明説明(+) 之訊號,並允許較少電荷呈現而仍可偵測出邏輯"Γ或是邏 輯"0"。當位元線Vbit 320被接到Vcc電壓位準時,發生邏 輯"Γ的寫入動作。這將允許雙極性電晶體Q1 310之射極-基極所形成的p/n接面350導通,因而對電容器C 305充電直 到電壓接近電源供應電壓Vcc。當單元要被寫入邏輯"0" 時,雙極性電晶體Q1 310將不被導通且任何電容器C 305所 呈現的電荷必須要藉由寄生路徑從電容器C 315漏放。這將 導致邏輯"0"的寫入動作非常緩慢。 雙極性電晶體Q1 310的結構是在形成η型金氧半場效電 晶體Ml 300之Ν型源極區域內,藉由擴散ρ+型的射極352而 -形成。雙極性電晶體Q1 310因此是以η型金氧半場效電晶體 Ml 300作爲ρ+型射極352,Ν型基極350(同時爲η型金氧半場 效電晶體Ml 300之源極,以及ρ型井340作爲集極之融合電 晶體。"次lv電源之動態隨機存取記憶體互補增益單元技術 H("A Complementary Gain Cell Technology For Sub-lv Supply Dram’s", Shukuuri et al., Digest of IEDM,p. 1006,1992 )以及"超低電壓操作之半靜態互補增 益動態隨機存取記憶體單元"("Super-Low-Voltage Operation Of Semi-Static Complementary Gain DRAM Memory Cell", Shukuri et al·, Digest of VLSI Technology Symposium, p.23,1993 )文章中描述了結合 有電荷放大功能的動態隨機存取記憶體單元。互補式單元 具有一個η型金氧半場效電晶體以及一個擁有浮動閘極結構 作爲儲存節點之ρ型金氧半場效電晶體。浮動閘極儲存著代 (請先閲讀背面之注意事項再填寫本頁) 裝. 訂 ί猓 經濟部智慧財產局員工消費合作社印製 本紙張尺度逋用中國國家榡準(〇奶)八4規格(210父29方公釐) A7 _B7____ 五、發明説明(夂) 表邏輯"Γ或是邏輯"0"的電荷,並導致P型金氧半場效電晶 體臨界電壓偏移以允許從儲存單元中做邏輯"Γ或是邏輯 "0"的讀取。"超高密度動態隨機存取記憶體之環繞式閘極 電晶體(SGT)增益單元"("A Surrounding Gate Transistor (SGT) Gain Cell For Ultra High Density Dram's", M.Terauchi et. A1., Digest of VLSI Technology Symposium, p.21,1993)—文中發表了環繞式 閘極電晶體增益單元。環繞式閘極電晶體單元具有一個n型 金氧半場效電晶體,一個接面場效電晶體(JFET),以及一 個電荷儲存電容器β電荷儲存電容器是由接面場效電晶體 的閘極所形成。"邏輯相容高密度動態隨機存取記憶體之新 的融合式增益單元"("A Novel Merged Gain Cell For Logic Compatible High Density DRAM's", M. Mukai et. al., Digest of VLSI Technology Symposium, P.155,1997)—文中描述了具有一個p型金氧半場效電晶 體,一個η型金氧半場效電晶體,一個η型接面場效電晶 體,和一個作爲寫入運作之第二位元線的融合式動態隨機 存取記憶體單元。Ρ型金氧半場效電晶體控制電荷的傳輸, η型金氧半場效電晶體被用來做電荷儲存與讀取電晶體,而 η型接面場效電晶體用來控制讀出電流。電荷儲存發生在η 型金氧半場效電晶體的通道區域。This paper size applies the Chinese national standard (CNS > A4 specification (210X29 mm) & A7 B7. 5. The signal of invention description (+), and allows less charge to be presented while still detecting logic < Γ or Logic " 0 ". When the bit line Vbit 320 is connected to the Vcc voltage level, a logic ' write operation occurs. This will allow the p / formed by the emitter-base of the bipolar transistor Q1 310 The n junction 350 is turned on, so the capacitor C 305 is charged until the voltage is close to the power supply voltage Vcc. When the cell is to be written into logic " 0 ", the bipolar transistor Q1 310 will not be turned on and any capacitor C 305 will present The charge must be discharged from the capacitor C 315 through a parasitic path. This will cause the logic "0" write operation to be very slow. The structure of the bipolar transistor Q1 310 is to form an n-type metal-oxygen half field-effect transistor Ml In the N-type source region of 300,-is formed by diffusing the ρ + -type emitter 352. The bipolar transistor Q1 310 is therefore η-type metal-oxygen half field effect transistor Ml 300 as the ρ + -type emitter 352, N-type base 350 (also n-type metal-oxide half field-effect transistor) The source of the bulk Ml 300, and the fused well of the p-well 340 as the collector. &Quot; A Complementary Gain Cell Technology For Sub-lv Supply Dram's ", Shukuuri et al., Digest of IEDM, p. 1006, 1992) and " Semi-static complementary gain dynamic random access memory cell for ultra-low voltage operation " (" Super-Low-Voltage Operation Of Semi -Static Complementary Gain DRAM Memory Cell ", Shukuri et al., Digest of VLSI Technology Symposium, p.23, 1993) describes a dynamic random access memory cell incorporating a charge amplification function. The complementary cell has an η Type metal oxide half field effect transistor and a rho type metal oxide half field effect transistor with a floating gate structure as a storage node. The floating gate stores the generation (please read the precautions on the back before filling this page). Order纸张 Printed paper size by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, using the Chinese National Standard (0 milk) 8 4 size (210 father 29 mm) A7 _B7____ V. Description of the invention (夂) The charge of table logic "Γ" or logic "0 &"; and causes the threshold voltage of P-type metal-oxide-semiconductor half-effect transistor to shift to allow logic "Γ" or logic " 0 " reading. " SGT Gain Cell for Ultra High Density Dynamic Random Access Memory " (" A Surrounding Gate Transistor (SGT) Gain Cell For Ultra High Density Dram's ", M. Terauchi et. A1 ., Digest of VLSI Technology Symposium, p.21, 1993)-This article published a wrap-around gate transistor gain unit. The wrap-around gate transistor unit has an n-type metal-oxide-semiconductor field-effect transistor, a junction field-effect transistor (JFET), and a charge storage capacitor. The beta charge storage capacitor is controlled by the gate of the junction field-effect transistor. form. " A Novel Merged Gain Cell For Logic Compatible High Density DRAM's ", M. Mukai et. al., Digest of VLSI Technology Symposium, P.155, 1997) —This article describes a p-type metal-oxide-semiconductor half-field-effect transistor, an n-type metal-oxide-semiconductor half-field-effect transistor, an n-type junction field-effect transistor, and a The second bit line is a fused dynamic random access memory cell. P-type metal-oxide-semiconductor half-field-effect transistors control charge transfer. Η-type metal-oxide-semiconductor half-field-effect transistors are used for charge storage and reading transistors, and n-type junction field-effect transistors are used to control read current. Charge storage occurs in the channel region of the n-type metal-oxide-semiconductor field-effect transistor.
Shukuri等人,Μ. Terauchi等人,以及M. Mukai等人 的動態隨機存取記憶體單元之讀取與寫入運作是由分開的 電晶體與位元線操作,以避免如上述圖3a和3b中雙極性/金 本紙張尺度適用中國國家標準(CNS >八4規格(210Χ29·^釐) (請先閲讀背面之注意事項再填寫本頁) .裝· 訂 經濟部智慧財產局員工消費合作社印製 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(t) 氧半電晶體增益單元較慢的放電速度。美國專利5066607號 (Banerj ee)提出一個雙電晶體增益型動態隨機存取記憶體 單元。雙電晶體動態隨機存取記憶體單元具有一個高品質 傳輸電晶體和一個大電容儲存單元。增益電晶體的閘極連 接於儲存單元和傳輸電晶體之間以在讀取運作過程中放大 儲存單元之電荷。美國專利4791611號(Eldin等人)發表了 包含一個雙極性電晶體,一個接面場效電晶體,以及一個 電容器之記憶體單元。電容器包括一個操作於累積模式的 金氧半場效電晶體。雙極性電晶體控制電容器的寫入,而 接面場效電晶體控制資料從電容器讀出。 發明的簡要說明 本發明的目的在於提供一個具有電荷放大功能的動態 隨機存取記憶體單元結構。 本發明的另一目的爲提供有快速寫入運作之動態隨 機存取記憶體單元結構。爲了完成這些與其他目的,動態 隨機存取記憶體單元被製造於半導體基材上動態隨機存取 記憶體單元陣列內。動態隨機存取記憶體單元具有一個電 荷儲存電容器以儲存可代表數位資料之位元的電荷》電荷 儲存電容器具有第一電極板與連接到基材偏壓電壓源的第 二電極板。動態隨機存取記憶體單元擁有一個金氧半場效 電晶體。金氧半場效電晶體的閘極連接到可控制此金氧半 場效電晶體動作與不動作之字線。金氧半場效電晶體之汲 極連接到電荷儲存電容器之第一電極板。在井區與局部二 氧化矽(LOCOS)隔離物之眾所皆知的形成方法之後,在半導 {請先閲讀背面之注意事項再填寫本頁) 裝. 訂 球 本紙張尺度適用中國國家標準(CNS > Λ4規格(2丨0X29^·釐) A7 _ B7_ 五、發明説明(γ) 體基材上成長一層薄二氧化砂以形成閘極氧化物。然後在 閘極氧化物上沉積光罩並蝕刻一導電材料,例如多晶矽, 以形成閘極。 動態隨機存取記憶體單元具有一雙極性電晶體以放大 電荷儲存電容器中所儲存的電荷。此雙極性電晶體擁有與 金氧半場效電晶體之源極相同功用的基極β藉由安排第一 離子佈植光罩以形成雙極性電晶體的基極,並在閘極氧化 物附近佈植第一導電型態的第一種材料以形成基極。基極 的離子佈植具有高能量與大角度,以提供雙極性電晶體大 的電流增益。雙極性電晶體的集極是以半導體基材的基礎 材料形成,並連接到基材偏壓電壓源。雙極性電晶體的射 極在可動作時連接到位元線用以控制由雙極性電晶體放大 之電荷感測。射極是在第一導電型態的第一種材料和閘極 附近區域內安排第二離子佈植光罩並佈植第二導電型態的 第二種材料所形成。第二導電型態的第二種材料之離子佈 植具有高劑量和高傾斜角度以確保射極大幅重疊覆蓋於閘 極上。射極大幅重疊覆蓋於閘極上是爲了確保在半導體晶 片表面上重疊覆蓋的區域中閘極引發汲極漏電流的發生, 如此可以在對儲存電容器寫入邏輯"0"時提供儲存電容器的 放電。 圖例的簡要說明 圖la和lb分別圖解式和剖面圖式顯示了先前技術中傳統動 態隨機存取記憶體單元。 圖2顯示了先前技術中摺疊式位元線動態隨機存取記憶體結 (請先閲讀背面之注意事項再填寫本頁) -装·The read and write operations of the dynamic random access memory cells of Shukuri et al., M. Terauchi et al., And M. Mukai et al. Are operated by separate transistors and bit lines in order to avoid the problems shown in Figures 3a and 3a above. 3b bipolar / gold paper size applies to Chinese national standards (CNS > 8 4 specifications (210 × 29 · ^ cent)) (Please read the precautions on the back before filling this page) Printed by the cooperative A7 B7 Printed by the employee's consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (t) The slow discharge rate of the oxygen semitransistor gain unit. US Patent No. 5066607 (Banerj ee) proposed a dual transistor gain type dynamics Random access memory unit. The dual transistor dynamic random access memory unit has a high-quality transmission transistor and a large capacitor storage unit. The gate of the gain transistor is connected between the storage unit and the transmission transistor for reading. The charge of the storage cell is amplified during operation. U.S. Patent No. 4,791,611 (Eldin et al.) Has published a device comprising a bipolar transistor, a junction field effect transistor, and a A capacitor memory unit. The capacitor includes a metal-oxide half field effect transistor operating in accumulation mode. The bipolar transistor controls the writing of the capacitor and the interface field effect transistor control data is read from the capacitor. Brief description of the invention The purpose of the present invention is to provide a dynamic random access memory cell structure with a charge amplification function. Another object of the present invention is to provide a dynamic random access memory cell structure with a fast write operation. In order to accomplish these and other purposes , DRAM cells are manufactured in a DRAM cell array on a semiconductor substrate. DRAM cells have a charge storage capacitor to store the charge of a bit that can represent digital data The storage capacitor has a first electrode plate and a second electrode plate connected to a bias voltage source of the substrate. The dynamic random access memory cell has a metal-oxide-semiconductor field-effect transistor. Control the action and non-action of this metal oxide half field effect transistor. Metal oxide half field effect The drain of the crystal is connected to the first electrode plate of the charge storage capacitor. After the well-known formation method of the well area and the local silicon dioxide (LOCOS) spacer, the semiconductor {Please read the precautions on the back before reading Fill in this page) Packing. The size of the paper is applicable to the Chinese national standard (CNS > Λ4 specification (2 丨 0X29 ^ · centi) A7 _ B7_ V. Description of the invention (γ) A thin layer of sand dioxide is grown on the substrate. A gate oxide is formed. A mask is then deposited on the gate oxide and a conductive material, such as polycrystalline silicon, is etched to form the gate. The dynamic random access memory cell has a bipolar transistor to amplify the charge storage capacitor. Stored charge. This bipolar transistor has a base β that has the same function as the source of the metal-oxide half field effect transistor. The first ion is implanted with a photomask to form the base of the bipolar transistor. A first material of a first conductivity type is planted near the oxide to form a base. The base ion implantation has high energy and large angle to provide large current gain of the bipolar transistor. The collector of the bipolar transistor is formed from the base material of the semiconductor substrate and is connected to the substrate bias voltage source. The emitter of the bipolar transistor is connected to the bit line when it is operable to control the charge sensing amplified by the bipolar transistor. The emitter is formed by arranging a second ion implantation mask and implanting a second material of the second conductivity type in the first material of the first conductivity type and a region near the gate. The ion implantation of the second material of the second conductivity type has a high dose and a high tilt angle to ensure that the emitters overlap and cover the gates. The large overlap of the emitters on the gate is to ensure that the gate causes the drain leakage current in the area of the semiconductor wafer's overlap and coverage. This can provide the storage capacitor discharge when writing logic " 0 " to the storage capacitor. . Brief description of the legends Figures 1a and 1b are diagrammatic and sectional views, respectively, showing a conventional dynamic random access memory cell in the prior art. Figure 2 shows the foldable bit line dynamic random access memory node in the prior art (please read the precautions on the back before filling this page)-
1T 線 經濟部智慧財產局員工消費合作社印製 [本紙張尺度適用中國國家標準(CNS > A4规格(210X2扑公釐) 經濟部智慧財產局員工消費合作社印製 15儲存電容器 35深η型井 55閘極氧化層 80汲極 75基材偏壓電壓源 45場氧化層 25字線 Α7 Β7 五、發明説明(?) 構之圖解圖。 圖3a和3b分別圖解式和剖面圖式顯示了先前技術中具有電 荷放大功能之傳統動態隨機存取記憶體單元。 圖4顯示了本發明中具有電荷放大功能之動態隨機存取記憶 體單元的剖面圖。 圖5顯示了本發明中具有電荷放大功能之動態隨機存取記憶 體單元陣列的圖解圖。 圖6a和6b顯示了本發明中具有電荷放大功能之動態隨機存 取記憶體單元位於讀取運作時之圖解圖。 圖7a和7b顯示了本發明中具有電荷放大功能之動態隨機存 取記憶體單元位於寫入運作時之圓解圖。 圖7c和7d顯示了本發明中具有電荷放大功能之動態隨機存 取記憶體單元在寫入0運作時之剖面圖與能量 圖8顯示了本發明中具有電荷放大功能之動態隨機存取記憶 體單元的製程流程圓。 圖號的簡要說明 10金氧半場效電晶體 30 p型基材 40 p型井 60閘極 50源極 70介電質 20位元線 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X2幻公董) •穿' (請先閱讀背面之注$項再填寫本頁)Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs of the 1T line [This paper size applies to the Chinese National Standard (CNS > A4 specification (210X2 flutter mm)) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 15 Storage capacitors 35 Deep n-type wells 55 Gate oxide layer 80 Drain 75 Substrate bias voltage source 45 Field oxide layer 25 Word line A7 B7 V. Schematic diagram of the description of the invention (Figures 3a and 3b) A conventional dynamic random access memory unit with a charge amplifying function in the technology. Fig. 4 shows a cross-sectional view of a dynamic random access memory unit with a charge amplifying function in the present invention. Fig. 5 shows a charge amplifying function in the present invention. Schematic diagram of a dynamic random access memory cell array. Figures 6a and 6b show a schematic diagram of a dynamic random access memory cell with a charge amplification function in the present invention during a read operation. Figures 7a and 7b show the present invention. A circular diagram of a dynamic random access memory cell with a charge amplifying function in the invention during the write operation. Figures 7c and 7d show the charge in the invention Cross-sectional view and energy of a dynamic random access memory unit with amplifying function when writing to 0 Figure 8 shows the process flow of a dynamic random access memory unit with a charge amplifying function in the present invention. 10 Metal Oxide Half Field Effect Transistor 30 p-type substrate 40 p-type well 60 gate electrode 50 source electrode 70 dielectric 20-bit line This paper size is applicable to Chinese National Standard (CNS) Α4 specification (210X2 magic male director) • Wear '(Please read the note on the back before filling this page)
A7 B7 五、發明説明(气)A7 B7 V. Description of Invention (Gas)
Ml η型金氧半場效電晶體 Q1雙極性ρηρ電晶體 200,205,210,215動態隨機存取記憶體單元 220 感測放大器 300金氧半場效電晶體 (請先閲讀背面之注意事項再填寫本頁) -裝. 訂 經濟部智慧財產局員工消費合作社印製 310雙極性電晶體305 315儲存電容器 330 ρ型基材 335深η型井 340 ρ型井/集極 355閘極氧化層 360閘極 380汲極 350源極/ Ν型基極 375基材偏壓電壓源 370介電質 345場氧化層 320位元線 325字線 350 ρ/η接面 352 ρ+型射極 400 ρ型基材 405深η型井 410 ρ型井/集極 440閘極氧化層 460閘極 435汲極 420源極/ Ν型基極 430絕緣間隔 455介電質 415場氧化層 452 Ρ+型射極 470 475重疊覆蓋 465通道 500 , 505 , 510 , 515動態隨機存取記憶體單元的陣列結 構 600 電流Ibit 700反向通道 605電壓Vc 710電場ε 750電子e- 755價電帶Εν 760導電帶Ec 本紙張尺度逍用中國國家標準(<:呢)八4规格(210父29^釐) 經濟部智慧財產局員工消費合作社印製 A7 B7_ 五、發明説明(π ) 發明的詳細說明 本發明之動態隨機存取記憶體單元的結構如圖4所示, 而其集總元件之圖解圖如圖3a所示。本發明之動態隨機存 取記憶體單元的結構具有一個"融合式"電晶體和一個如上 所述位於三重井區前端之儲存電容器。"融合式"電晶體除 了位元線Vbi t320連接到雙重離子佈植p+射極425/n型-基極 420之外,類似於典型n型金氧半電晶體,如此可以產生一 個寄生的雙極性pnP電晶體Q1 310。寄生雙極性pnp電晶體 Q1 310是以p+射極425,η型-基極420以及p型井集極410所 形成。寄生雙極性ρηρ電晶體Q1 310與η型金氧半電晶體Ml 300融合於一起(η型-基極420同時爲η型金氧半電晶體Ml 300之源極)。在做讀取與寫入運作時,η型-基極420爲浮動 狀態。儲存電容器C305連接到η型金氧半電晶體Ml 300汲 極。在讀取運作時,寄生雙極性ρηρ電晶體Q1 310被用來放 大電容器中所儲存的電荷,宛如將電荷增加寄生雙極性ρηρ 電晶體Q1 310之電流增益(β )倍。因此所需要的最小單元 電容器被大幅降低。這將降低上述的堆疊式電容器高度或 是壕渠式電容器深度。 由圖4與圖8將可以了解本發明之動態隨機存取記憶體 單元的結構與製造程序。而其集^元件之圖解圖再一次如 圖3a所示。本發明之動態隨機存取記憶體單元的結構擁有 一個單元區域,是在做基材局部氧化(LOCOS)隔離801時的 開口所定義的區域。三重井區的形成802起始於將η型材料 擴散進入單元區域中以形成深η型井區405。深η型井區405 (請先閲讀背面之注意事項再填寫本頁) 丨裝· 訂 Γ 本紙張尺度適用中國國家標準(CNS ) Α4規格(21〇Χ2好公釐) A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(") 在稍後的後段製程中連接到電源供應電壓源心^上,將深η 型井區405偏壓在縮小流到Ρ-型基材4〇〇之漏電流以及從週 邊電路至動態隨機存取記憶體單元的雜訊偶合。然後將Ρ型 材料擴散進入深η型井區405中以形成Ρ型井區410。ρ型井區 410在稍後的後段製程806中連接到接上基材偏壓電壓源 Vss375之金屬上。基材偏壓電壓源Vss375—般是記憶體陣 列中的最低電壓。將Ρ型井區410偏壓到基材偏壓電壓源 Vss375更進一步縮小位元線的電容値並作爲後續製程中將 形成的ρηρ雙極性電晶體之集極。額外的η型材料將被擴散 進入深η型井區405中以建構週邊電路中的Ρ型金氧半電晶 體。據此看來包含此步驟使得動態隨機存取記憶體單元陣 列之製程描述更加完整。單元區域中電晶體的形成803起始 於在區域中成長閘極氧化物440以作爲η型金氧半電晶體Ml 300之通道465 »並在閘極區域內通道465上方形成多晶矽閘 極460。融合式ρηρ電晶體Q1 310是藉由佈植η型材料以形成 η型基極420而達成。η型基極420的離子佈植是以磷(Ρ31)原 子於介於50KeV至lOOKeV的佈植能量植入,直到η型基極擁 有大約每立方公分10Ε13至10Ε14電子密度而形成。η型基極 的佈植能量必須夠高且植入傾斜角度必須夠大,以使得η型 基極比Ρ+射極深。這可以使得融合式ρηρ電晶體Q1 310具有 高電流增益(々)。接著繼續形成融合式ρηρ電晶體Q1 310的 Ρ+射極425,藉由在η型基極420區域上佈植ρ型材料以形 成。Ρ+射極425的佈植是以氟化硼(BF2)於lOKeV的佈植能 量植入,直到P+射極425擁有大約每立方公分10E15至10E16 (請先閲讀背面之注意事項再填寫本頁) 丨裝. 訂_ 線 本紙張尺度適用中國國家標準(€呢)八4規格(210父2姻公釐) 經濟部智慧財產局員工消費合作杜印製 A7 B7 五、發明説明(/>) 電洞密度而形成。P+射極425之離子佈植需有高劑量和大傾 斜角度以確保P+射極425及閛極區域460足夠大的重疊覆蓋 OV2 475。η型金氧半電晶體Ml 300與動態隨機存取記憶體 陣列週邊控制電路所有電晶體之汲極是藉由P型與η型低摻 雜濃度汲極(ldd)之光罩與離子佈植而形成。ldd間隔氧化 物是在閘極邊緣沉積並蝕刻而成。而n+型與p+型之光罩與 蝕刻完成了η型金氧半電晶體N+汲極的形成。著804形成位 元線Vbit320並連接至ρ+射極425。位元線的形成與連接製 程在本技術中是眾所皆知的。此外805形成儲存電容器 C305。如圖4所示,儲存電容器C305的結構具有一層覆蓋在 η型金氧半電晶體Ml 300汲極上的介電質層。在介電質層上 疊上一層金屬層並連接至基材400偏壓電壓源Vs s 375。此結 構將被舉例說明。儲存電容器C305被形成805爲堆叠式電容 器或是壕渠式電容器之形成過程在本技術中已眾所皆知。 以壕渠式電容器爲例,將於三重井區的形成802之後與電晶 體形成803之前被形成。最後,後段製程806將提供接觸點 和相互連接的金屬線,以供應動態隨機存取記憶體陣列內 部連線,週邊控制電路之內部連線,以及連接動態隨機存 取記憶體陣列至外部電路之接觸墊(bonding pad)之所需。 儲存電容器C305已被描述成標準的堆疊式或是壕渠式電容 器》然而,ρηρ電晶體的電荷放大功能允許將儲存電容器 C305簡化爲一個標準金氧半電晶體閘極至源極與閘極至汲 極的電容。這將使得製造過程簡化爲標準CMOS邏輯製程。 由圖5,本發明中動態隨機存取記憶體單元的陣列結構 (請先聞讀背面之注意事項再填寫本頁)Ml η-type metal-oxide-semiconductor half-effect transistor Q1 bipolar ρηρ transistor 200, 205, 210, 215 dynamic random access memory cell 220 sense amplifier 300 metal-oxide-semiconductor half-effect transistor (please read the precautions on the back before filling (This page)-Installation. Order Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Cooperatives, 310 Bipolar Transistors 305 315 Storage Capacitors 330 ρ Type Substrates 335 Deep η Type Wells 340 ρ Type Wells / Collector 355 Gate Oxide 360 Gates 380 drain 350 source / N-type base 375 substrate bias voltage source 370 dielectric 345 field oxide layer 320 bit line 325 word line 350 ρ / η junction 352 ρ + type emitter 400 ρ type base Material 405 deep η-type well 410 ρ-type well / collector 440 gate oxide layer 460 gate 435 drain electrode 420 source / N-type base 430 insulation interval 455 dielectric 415 field oxide layer 452 P + type emitter 470 475 overlapping covers 465 channels 500, 505, 510, 515 array structure of dynamic random access memory cells 600 current Ibit 700 reverse channel 605 voltage Vc 710 electric field ε 750 electron e- 755 valence band Ev 760 conductive band Ec paper Standards apply Chinese national standards (<:?) 8 4 Specifications (210 father 29 ^ cent) printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7_ V. Description of the invention (π) Detailed description of the invention The structure of the dynamic random access memory unit of the present invention is shown in Figure 4, and A schematic diagram of its lumped components is shown in Figure 3a. The structure of the dynamic random access memory cell of the present invention has a "fusion type" transistor and a storage capacitor located at the front end of the triple well region as described above. " Fusion type " The transistor is similar to a typical n-type metal-oxide semi-transistor except that the bit line Vbi t320 is connected to a dual ion implanted p + emitter 425 / n-base-420, which can generate a parasitic Bipolar pnP transistor Q1 310. The parasitic bipolar pnp transistor Q1 310 is formed of a p + emitter 425, an n-type base 420, and a p-type well collector 410. The parasitic bipolar ρηρ transistor Q1 310 is fused with the η-type metal-oxide semiconductor transistor Ml 300 (the η-base electrode 420 is also the source of the η-type metal-oxide semiconductor transistor Ml 300). During read and write operations, the n-type base 420 is in a floating state. The storage capacitor C305 is connected to the n-type metal-oxide semiconductor Ml 300 drain. During the reading operation, the parasitic bipolar ρηρ transistor Q1 310 is used to amplify the charge stored in the capacitor, as if the charge was increased by a current gain (β) of the parasitic bipolar ρηρ transistor Q1 310. Therefore, the minimum unit capacitor required is greatly reduced. This will reduce the height of the above-mentioned stacked capacitors or the depth of trench capacitors. The structure and manufacturing process of the dynamic random access memory cell of the present invention can be understood from FIG. 4 and FIG. 8. The schematic diagram of its collection elements is again shown in Figure 3a. The structure of the dynamic random access memory cell of the present invention has a cell area, which is an area defined by an opening when the substrate is locally oxidized (LOCOS) isolated 801. The formation of the triple well region 802 begins by diffusing n-type material into the cell region to form a deep n-well region 405. Deep η-type well area 405 (Please read the precautions on the back before filling in this page) 丨 Binding and ordering Γ This paper size applies to China National Standard (CNS) Α4 specification (21〇 × 2 good mm) A7 B7 Intellectual property of the Ministry of Economic Affairs Printed by the Consumer Cooperative of the Bureau of the People's Republic of China. 5. Description of the invention (") Connected to the power supply voltage source ^ in the later stage of the process, bias the deep η well area 405 to reduce the flow to the P-type substrate 4 〇〇 leakage current and noise coupling from peripheral circuits to dynamic random access memory cells. The P-type material is then diffused into the deep n-type well region 405 to form a P-type well region 410. The p-well area 410 is connected to the metal connected to the substrate bias voltage source Vss375 in a later process 806. The substrate bias voltage source Vss375 is generally the lowest voltage in the memory array. Biasing the P-type well region 410 to the substrate bias voltage source Vss375 further reduces the capacitance of the bit line and serves as the collector of the ρηρ bipolar transistor to be formed in the subsequent process. The additional n-type material will be diffused into the deep n-well region 405 to build a P-type metal-oxide semiconductor in the peripheral circuit. Accordingly, it seems that including this step makes the process description of the DRAM cell array more complete. The formation of the transistor 803 in the cell region starts by growing the gate oxide 440 in the region as the channel 465 of the n-type metal-oxide semiconductor transistor Ml 300 and forming a polycrystalline silicon gate 460 over the channel 465 in the gate region. The fusion-type ρηρ transistor Q1 310 is achieved by implanting an η-type material to form an η-type base 420. The ion implantation of the n-type base 420 is performed by implanting phosphorus (P31) atoms at a implantation energy between 50KeV and 10OKeV until the n-type base has an electron density of about 10E13 to 10E14 per cubic centimeter. The implantation energy of the η-type base must be high enough and the inclination angle of the implant must be large enough so that the η-type base is deeper than the P + emitter. This allows the fused ηp transistor Q1 310 to have a high current gain (々). Then, the P + emitter 425 of the fusion-type ρηρ transistor Q1 310 is continued to be formed by planting a ρ-type material on the η-type base 420 region. The implantation of the P + emitter 425 is implanted with the implantation energy of boron fluoride (BF2) in lOKeV until the P + emitter 425 has approximately 10E15 to 10E16 per cubic centimeter (please read the precautions on the back before filling this page) ) Binding. Order _ The size of the paper is applicable to the Chinese national standard (€?) 8 4 specifications (210 fathers and 2 marriages). The Intellectual Property Bureau of the Ministry of Economic Affairs, employee consumption cooperation Du printed A7 B7 V. Description of the invention (/ > ) Hole density. The ion implantation of the P + emitter 425 requires a high dose and a large inclination angle to ensure that the P + emitter 425 and the hafnium region 460 overlap sufficiently to cover OV2 475. The n-type metal-oxide semiconductor transistor Ml 300 and the dynamic random access memory array peripheral control circuit have all the drains of the transistors through the P-type and n-type low doping concentration (ldd) masks and ion implantation And formed. The ldd spacer oxide is deposited and etched on the edge of the gate. The n + and p + masks and etching complete the formation of the n + drain of the n-type metal-oxide semiconductor transistor. The bit 804 forms a bit line Vbit320 and is connected to the p + emitter 425. The process of forming and connecting bit lines is well known in the art. In addition, 805 forms a storage capacitor C305. As shown in FIG. 4, the structure of the storage capacitor C305 has a dielectric layer overlying the drain of the n-type metal-oxide semiconductor Ml300. A metal layer is stacked on the dielectric layer and connected to the substrate 400 bias voltage source Vs s 375. This structure will be exemplified. The formation of the storage capacitor C305 as a stacked capacitor or a trench capacitor is well known in the art. Taking the trench capacitor as an example, it will be formed after the formation of the triple well region 802 and before the formation of the electric crystal 803. Finally, the back-end process 806 will provide contact points and interconnected metal wires to provide internal connections to the DRAM array, internal connections to peripheral control circuits, and to connect the DRAM array to external circuits. Required for contact pads. The storage capacitor C305 has been described as a standard stacked or trench capacitor. However, the charge amplification function of the ρηρ transistor allows the storage capacitor C305 to be reduced to a standard metal-oxide semiconductor transistor gate-to-source and gate-to-gate. Capacitance of the drain. This will simplify the manufacturing process to a standard CMOS logic process. From FIG. 5, the array structure of the dynamic random access memory cell in the present invention (please read the precautions on the back before filling this page)
Is. 裝.Is. Installed.
.1T 線· 本紙張尺度適用中國國家揉準(CNS ) A4規格(210X297公釐) Ά7 B7 五、發明説明(丨〉).1T line · This paper size is applicable to China National Standard (CNS) A4 (210X297mm) Ά7 B7 V. Description of the invention (丨〉)
Cellll 500 , Celll2 505 , Cell21 510 ’ Cell22 515 ,可 以是本技術中眾所皆知的摺疊式位元線陣列。如圖4所示, 每個單元η型金氧半電晶體Ml 300之閘極均連接到字線 Vword。多重字線WL0,WL1,WL2,和WL3將連接到週邊的控 制電路以選擇動態隨機存取記憶體軍元Cellll 500, Celll2 505,Cell21 510,Cell22 515之列。雙極性pnp 電晶體Q1 310之p+射極425連接到如上述的位元線BL0與 BL1。位元線BL0與BL1將連接至週邊的控制電路以控制動態 隨機存取記憶體陣列中行WL0,WL1,WL2,和WL3的選取。 完整的動態隨機存取記憶體單元Cellll 500,Celll2 505,Cell21 510,Cell22 515將放置於深η型井區405 中。深η型井區405的偏壓將使得週邊控制電路所產生的雜 訊被隔絕在動態隨機存取記憶體單元之陣列之外 爲了瞭解在讀取運作時,本發明的動態隨機存取記憶 體單元之操作,現在參考圖6a與6b。如圖6a所示,在讀取 邏輯"Γ·時,儲存電容器C305被充電至接近電源供應電壓源 Vcc之Vc 605電壓位準。字線電壓Vword 325位於電源供應 電壓源Vcc之位準且位元線Vbit 320之電壓位準被先行充電 至電源供應電壓源位準的一半Vcc/2。當字線電壓Vword 325位於電源供應電壓源Vcc之位準時,η型金氧半電晶體Ml 300將位於導通狀態,因此將存在儲存電容器C305上的電壓 Vc605放置於pnp電晶體Q1 310之基極420上。pnp電晶體Q1 310將位於未導通狀態,且沒有電流Ibit 000會流過位元線 Vbit。這將由位於動態隨機存取記憶體陣列之週邊控制電 (請先閲讀背面之注$項再填寫本頁) 丨裝_Cellll 500, Celll2 505, Cell21 510 ' Cell22 515, may be folded bit line arrays known in the art. As shown in FIG. 4, the gate of each cell n-type metal-oxide semiconductor transistor Ml 300 is connected to the word line Vword. The multiple word lines WL0, WL1, WL2, and WL3 will be connected to peripheral control circuits to select the dynamic random access memory cells Cellll 500, Celll2 505, Cell21 510, Cell22 515. The p + emitter 425 of the bipolar pnp transistor Q1 310 is connected to the bit lines BL0 and BL1 as described above. Bit lines BL0 and BL1 will be connected to peripheral control circuits to control the selection of rows WL0, WL1, WL2, and WL3 in the dynamic random access memory array. The complete dynamic random access memory cells Cellll 500, Celll2 505, Cell21 510, Cell22 515 will be placed in the deep n-well area 405. The bias of the deep n-type well area 405 will isolate the noise generated by the peripheral control circuit from the array of dynamic random access memory cells. In order to understand the dynamic random access memory of the present invention during the read operation, For unit operation, reference is now made to Figures 6a and 6b. As shown in Fig. 6a, when the logic "?" Is read, the storage capacitor C305 is charged to a voltage level of Vc 605 close to the power supply voltage source Vcc. The word line voltage Vword 325 is at the level of the power supply voltage source Vcc and the voltage level of the bit line Vbit 320 is first charged to Vcc / 2, which is half of the power supply voltage source level. When the word line voltage Vword 325 is at the level of the power supply voltage source Vcc, the n-type metal-oxide-semiconductor Ml 300 will be in the on state, so the voltage Vc605 existing on the storage capacitor C305 is placed at the base of the pnp transistor Q1 310 420 on. The pnp transistor Q1 310 will be in the non-conducting state, and no current Ibit 000 will flow through the bit line Vbit. This will be controlled by the peripheral located in the dynamic random access memory array (please read the note on the back before filling this page) 丨 Installation_
’1T 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家樣準(CNS )八4規格(210Χ291公釐) A7 B7 五、發明説明(if) 路的感測放大器偵測爲邏輯"Γ。現參考圖6b以瞭解從動 態隨機存取記憶體單元讀取邏輯"〇"之運作。儲存電容器 C305上的電壓Vc605接近0V。再一次字線電壓Vword 325將 位於接近電源供應電壓源Vcc之位準。而位元線Vbit 320之 電壓位準也被先行充電至電源供應電壓源位準的一半 Vcc/2。η型金氧半電晶體Ml 300將位於導通狀態並使得儲 存電容器C305上的電壓Vc605放置於pnp電晶體Q1 310之基 極420上。pnp電晶體Q1 310將導通電流Ibit 600至最大可 獲得之電流位準Imax »這個位元線電流位準Ibit將代表感 測放大器偵測到邏輯"0" 〇 現在參考圖7a,7b,7c和7d以瞭解從動態隨機存取記 憶體單元的寫入運作。圖7a顯示了動態隨機存取記憶體單 元寫入邏輯"Γ的情形。字線電壓Vword 325將被設定爲電 源供應電壓源Vcc以使η型金氧半電晶體Ml 300導通。而位 元線Vbit 320之電壓也將被設定爲電源供應電壓源Vcc之位 準。如果儲存電容器C305已經被放電至接近0V位準時,pnp 電晶體Q1 310之射極-基極接面的p/n接面將變成順偏並將 儲存電容器C305充電至接近電源供應電壓源Vcc之位準。然 而’如果儲存電容器C305已經充電至電源供應電壓源Vcc之 位準,將不會對這改變有反應。 本發明之動態隨機存取記憶體單元的讀取邏輯M1 "和邏 輯"〇"以及寫入邏輯"Γ之運作,與先前技術中所顯示者並 無差異。而如下所述之邏輯"0"的寫入動作則是不同的。現 在參考圖7d以瞭解從動態隨機存取記憶體單元寫入邏輯"0" (請先閲讀背面之注意事項再填寫本頁) -裝- 訂 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210Χ29ΤΪΪ釐) A7 B7___ 五、發明説明((<) 之運作。字線電壓Vword 325將被設定爲電源供應電壓源 Vcc以使η型金氧半電晶體Ml 300導通。而位元線Vbit 320 之電壓被設定爲0V。在此偏壓下,pnp電晶體Q1 310將位於 未導通狀態。如果儲存電容器C305已經被放電至0V位準Vc 605時,則此單元已經被設定爲邏輯"〇"且無須作反應。然 而,如果儲存電容器C305被充電至接近電源供應電壓源Vcc 之電壓位準Vc 605時,pnp電晶體Q1 310將再次位於未導通 狀態。爲了克服如先前技術中因爲漏電流導致儲存電容器 C305之放電緩慢,一閘極引發汲極漏電(GIDL)電流將造成 儲存電容器C305之快速放電。現在參考圖7c和7d以瞭解閘 極引發汲極漏電(GIDL)效應。閘極在η型基極420與p+射極 425上的重疊覆蓋部分0V1 470和0V2 475將允許電子e-在 P+射極425的表面產生電流,經由通道465流至η型基極 420,以使儲存電容器C315放電。字線電壓Vword 325所產 生的電場ε 710將導致電子藉由能帶-能帶間之穿透產生於 Ρ+射極425的介面上。閘極氧化物440必須夠薄,使得垂直 電場ε 710夠大(>2MeV/cm)好造成能帶-能帶間穿透之觸 發。這將導致並增強接面漏電電流流過反偏的P+射極425和 η型基極420之二極體。或如同圖7d所示,藉由能帶-能帶間 穿透機制,從價電帶Εν 755至導電帶Ec 760產生的電子e-750通過位於P+射極425表面上的空乏層715,並將在η型基 極420區域中流動且經由反向通道700流到η型金氧半電晶體 Ml 300之汲極435以達成儲存電容器C315之放電。 熟悉本技術的人均可知,材料型態的反轉以使用P型金 (請先閲讀背面之注意事項再填寫本頁) - - - I f y, • ( ^^^1 ^^^1 In if a^^i· —l· _ HI ^^^1 .n 裝'1T Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Cooperatives. The paper size is applicable to China National Standard (CNS) 8-4 specifications (210 × 291 mm) A7 B7 V. Description of the invention (if) The sense amplifier of the circuit is detected as logic & quot Γ. Reference is now made to Figure 6b to understand the operation of the slave RAM read logic " 0 ". The voltage Vc605 on the storage capacitor C305 is close to 0V. Once again the word line voltage Vword 325 will be at a level close to the power supply voltage source Vcc. The voltage level of the bit line Vbit 320 is also charged to Vcc / 2, which is half of the power supply voltage source level. The n-type metal-oxide-semiconductor Ml 300 will be in an on state and the voltage Vc605 on the storage capacitor C305 will be placed on the base 420 of the pnp transistor Q1 310. pnp transistor Q1 310 will turn on the current Ibit 600 to the maximum achievable current level Imax »This bit line current level Ibit will represent the logic detected by the sense amplifier " 0 " 〇 Now refer to Figures 7a, 7b, 7c And 7d to understand the write operation from the dynamic random access memory cell. Fig. 7a shows the situation of the dynamic random access memory cell write logic " Γ. The word line voltage Vword 325 will be set as the power supply voltage source Vcc to turn on the n-type metal-oxide semiconductor transistor Ml300. The voltage of the bit line Vbit 320 will also be set to the level of the power supply voltage source Vcc. If the storage capacitor C305 has been discharged close to the 0V level, the p / n interface of the emitter-base interface of the pnp transistor Q1 310 will become forward biased and charge the storage capacitor C305 close to the power supply voltage source Vcc. Level. However, 'if the storage capacitor C305 has been charged to the level of the power supply voltage source Vcc, it will not respond to this change. The operation of the read logic M1 " logic " 〇 " and the write logic " Γ of the dynamic random access memory cell of the present invention is not different from that shown in the prior art. The logic " 0 " writing action described below is different. Now refer to Figure 7d to understand the writing logic from the dynamic random access memory unit " 0 " (Please read the precautions on the back before filling out this page)-Binding-Order the paper printed by the Intellectual Property Bureau employee consumer cooperative of the Ministry of Economic Affairs Standards are applicable to Chinese National Standard (CNS) A4 specifications (210 × 29ΤΪΪ) A7 B7___ V. Operation of the invention (<). The word line voltage Vword 325 will be set as the power supply voltage source Vcc to make the n-type metal-oxide half-electricity The crystal Ml 300 is turned on. The voltage of the bit line Vbit 320 is set to 0V. Under this bias, the pnp transistor Q1 310 will be in the non-conducting state. If the storage capacitor C305 has been discharged to the 0V level Vc 605, This unit has been set to logic " 〇 " and no response is required. However, if the storage capacitor C305 is charged to a voltage level Vc 605 close to the power supply voltage source Vcc, the pnp transistor Q1 310 will be located at On state. In order to overcome the slow discharge of storage capacitor C305 due to leakage current in the prior art, a gate-induced drain leakage (GIDL) current will cause 7c and 7d to understand the gate-induced drain leakage (GIDL) effect. The overlapping portions of the gate on the n-type base 420 and p + emitter 425, 0V1 470 and 0V2 475, will allow electrons e- A current is generated on the surface of the P + emitter 425 and flows to the n-type base 420 through the channel 465 to discharge the storage capacitor C315. The electric field ε 710 generated by the word line voltage Vword 325 will cause the electrons to pass between the band and the band The penetration occurs at the interface of the P + emitter 425. The gate oxide 440 must be thin enough so that the vertical electric field ε 710 is large enough (> 2 MeV / cm) to trigger the band-to-band penetration. This will cause and increase the junction leakage current to flow through the reversed biased P + emitter 425 and n-type base 420 diodes. Or as shown in Figure 7d, through the energy band-to-energy band penetration mechanism, ad valorem The electron e-750 generated by the electric band Εν 755 to the conductive band Ec 760 passes through the empty layer 715 on the surface of the P + emitter 425 and will flow in the region of the n-type base 420 and flow to the n-type gold through the reverse channel 700 Oxygen semi-transistor Ml 300 has a drain 435 to achieve the discharge of storage capacitor C315. Anyone familiar with the technology knows that the material Invert the type to use P-type gold (please read the precautions on the back before filling this page)---I fy, • (^^^ 1 ^^^ 1 In if a ^^ i · —l · _ HI ^^^ 1 .n equipment
-、1T 線- 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS > A4規格(210X291^釐) A7 B7 五、發明説明(A) 氧半電晶體和npn電晶體並適當地改變偏壓電源可以保持本 發明的結構與操作。雖然本發明特別展示並描述了所選的 實施例,熟悉本技術的人均可明瞭任何形式或是細節上可 能的變化均未脫離本發明的精神與範圍。 (請先閣讀背面之注意事項再填寫本頁) -裝. 訂 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X2«%•釐)-, 1T line-Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs This paper is printed in accordance with Chinese national standards (CNS > A4 size (210X291 ^ cent) A7 B7 V. Description of the invention (A) Oxygen semi-transistors and npn transistors The structure and operation of the present invention can be maintained by appropriately changing the bias power supply. Although the present invention specifically shows and describes the selected embodiment, those skilled in the art can understand that any form or details of possible changes can be made without departing from the present invention. The spirit and scope of the invention. (Please read the precautions on the back before filling out this page.)-Binding. Order printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Cooperatives. This paper is printed in accordance with China National Standard (CNS) A4 specifications (210X2 «% • cents)
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW087100530A TW393769B (en) | 1998-01-16 | 1998-01-16 | A DRAM cell structure and method serving the function of charging bipolar amplification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW087100530A TW393769B (en) | 1998-01-16 | 1998-01-16 | A DRAM cell structure and method serving the function of charging bipolar amplification |
Publications (1)
Publication Number | Publication Date |
---|---|
TW393769B true TW393769B (en) | 2000-06-11 |
Family
ID=21629354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW087100530A TW393769B (en) | 1998-01-16 | 1998-01-16 | A DRAM cell structure and method serving the function of charging bipolar amplification |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW393769B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104518012A (en) * | 2013-09-30 | 2015-04-15 | 天钰科技股份有限公司 | Triode |
US9472657B2 (en) | 2013-09-30 | 2016-10-18 | Fitipower Integrated Technology, Inc. | Triode |
-
1998
- 1998-01-16 TW TW087100530A patent/TW393769B/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104518012A (en) * | 2013-09-30 | 2015-04-15 | 天钰科技股份有限公司 | Triode |
US9472657B2 (en) | 2013-09-30 | 2016-10-18 | Fitipower Integrated Technology, Inc. | Triode |
TWI567982B (en) * | 2013-09-30 | 2017-01-21 | 天鈺科技股份有限公司 | Triode |
CN104518012B (en) * | 2013-09-30 | 2017-12-12 | 天钰科技股份有限公司 | Triode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5872032A (en) | Fabrication method for a DRAM cell with bipolar charge amplification | |
JP3808763B2 (en) | Semiconductor memory device and manufacturing method thereof | |
US6964895B2 (en) | Method of fabricating vertical one-transistor floating-body DRAM cell in bulk CMOS process with electrically isolated charge storage region | |
US6661042B2 (en) | One-transistor floating-body DRAM cell in bulk CMOS process with electrically isolated charge storage region | |
US5463234A (en) | High-speed semiconductor gain memory cell with minimal area occupancy | |
US6329240B1 (en) | Non-volatile memory cell and methods of fabricating and operating same | |
KR100299344B1 (en) | Three device bicmos gain cell | |
US7889553B2 (en) | Single-poly non-volatile memory cell | |
JP2008536336A (en) | High density trench based non-volatile random access SONOS memory cell structure for SOC applications and method of manufacturing the same | |
JPH11191596A (en) | Semiconductor memory cell and its manufacture method | |
US6600186B1 (en) | Process technology architecture of embedded DRAM | |
US8233312B2 (en) | DRAM cell utilizing floating body effect and manufacturing method thereof | |
US6025625A (en) | Single-poly EEPROM cell structure operations and array architecture | |
US5604150A (en) | Channel-stop process for use with thick-field isolation regions in triple-well structures | |
US10170597B2 (en) | Method for forming flash memory unit | |
US5909619A (en) | Method for forming a DRAM cell and array to store two-bit data | |
US6184548B1 (en) | DRAM cell and array to store two-bit data having merged stack capacitor and trench capacitor | |
US5945715A (en) | Semiconductor memory device having a memory cell region and a peripheral circuit region and method of manufacturing the same | |
US7894255B1 (en) | Thyristor based memory cell | |
US8422288B2 (en) | DRAM cell utilizing floating body effect and manufacturing method thereof | |
JP5132120B2 (en) | GAIN CELL AND METHOD FOR MANUFACTURING AND USING THE SAME | |
TW393769B (en) | A DRAM cell structure and method serving the function of charging bipolar amplification | |
US7894256B1 (en) | Thyristor based memory cell | |
US6262447B1 (en) | Single polysilicon DRAM cell and array with current gain | |
JP4104836B2 (en) | Semiconductor memory device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |