TW201507154A - Trench gate MOSFET - Google Patents
Trench gate MOSFET Download PDFInfo
- Publication number
- TW201507154A TW201507154A TW103137402A TW103137402A TW201507154A TW 201507154 A TW201507154 A TW 201507154A TW 103137402 A TW103137402 A TW 103137402A TW 103137402 A TW103137402 A TW 103137402A TW 201507154 A TW201507154 A TW 201507154A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- trench
- conductor
- conductor layer
- disposed
- Prior art date
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
Description
本發明是有關於一種半導體元件,且特別是有關於一種溝渠式閘極金氧半場效電晶體(trench gate metal-oxide-semiconductor field effect transistor,trench gate MOSFET)。 The present invention relates to a semiconductor device, and more particularly to a trench gate metal-oxide-semiconductor field effect transistor (trench gate MOSFET).
溝渠式金氧半導體場效電晶體被廣泛地應用在電力開關(power switch)元件上,例如是電源供應器、整流器或低壓馬達控制器等等。一般而言,溝渠式金氧半導體場效電晶體多採取垂直結構的設計,以提升元件密度。其利用晶片之背面作為汲極,而於晶片之正面製作多個電晶體之源極以及閘極。由於多個電晶體之汲極是並聯在一起的,因此其所耐受之電流大小可以相當大。 Ditch-type MOS field effect transistors are widely used in power switch components such as power supplies, rectifiers or low voltage motor controllers. In general, trench-type MOS field-effect transistors are designed with vertical structures to increase component density. It uses the back side of the wafer as a drain, and the source and gate of a plurality of transistors are fabricated on the front side of the wafer. Since the drains of multiple transistors are connected in parallel, the current they can withstand can be quite large.
溝渠式金氧半導體場效電晶體的工作損失可分成切換損失(switching loss)及導通損失(conducting loss)兩大類,其中因輸入電容Ciss所造成的切換損失會因操作頻率的提高而增加。輸入電容Ciss包括閘極對源極之電容Cgs以及閘極對汲極之電容Cgd。 Work loss trench metal-oxide semiconductor field effect transistors may be divided into the switching loss (switching loss) and the conduction loss (conducting loss) two categories, the switching loss which due to the input capacitance C iss caused due to increase the operating frequency increases. The input capacitor C iss includes a gate-to-source capacitance C gs and a gate-to-drain capacitance C gd .
習知的一種作法是於溝渠內形成閘極與遮蔽閘極 (shielded gate)。遮蔽閘極位於閘極下方,絕緣層將閘極與遮蔽閘極相隔開,且遮蔽閘極連接至源極。此種作法雖然可以減少閘極對汲極之電容Cgd,但另一方面卻會增加閘極對源極之電容Cgs,因而無法有效地降低切換損失。 One conventional practice is to form a gate and a shielded gate in the trench. The shielding gate is located below the gate, the insulating layer separates the gate from the shielding gate, and the shielding gate is connected to the source. Although this method can reduce the capacitance of the gate to the drain C gd , on the other hand, it increases the capacitance of the gate to the source C gs , and thus cannot effectively reduce the switching loss.
有鑑於此,本發明提供一種溝渠式閘極金氧半場效電晶體,可以同時減少閘極對汲極之電容Cgd及閘極對源極之電容Cgs,以有效地降低切換損失,提升元件效能。 In view of the above, the present invention provides a trench gate MOS field effect transistor, which can simultaneously reduce the capacitance of the gate to the drain C gd and the capacitance of the gate to the source C gs to effectively reduce the switching loss and improve Component performance.
本發明提供一種溝渠式閘極金氧半場效電晶體。具有第一導電型之磊晶層配置於具有第一導電型之基底上。具有第二導電型之主體層配置於磊晶層中,其中磊晶層中具有第一溝渠,主體層中具有第二溝渠,第一溝渠配置於第二溝渠下方,且第一溝渠的寬度小於第二溝渠的寬度。第一絕緣層配置於第一溝渠的表面上。第一導體層填滿第一溝渠且延伸至第二溝渠中。第二導體層填滿第二溝渠。第二絕緣層配置於第二導體層與主體層之間以及第二導體層與第一導體層之間。介電層配置於磊晶層上且覆蓋第二導體層。具有第一導電型的二摻雜區分別配置於第二溝渠之兩側的主體層中。 The invention provides a trench gate galvanic half field effect transistor. The epitaxial layer having the first conductivity type is disposed on the substrate having the first conductivity type. The main layer having the second conductivity type is disposed in the epitaxial layer, wherein the epitaxial layer has a first trench, the main layer has a second trench, and the first trench is disposed under the second trench, and the width of the first trench is less than The width of the second ditch. The first insulating layer is disposed on a surface of the first trench. The first conductor layer fills the first trench and extends into the second trench. The second conductor layer fills the second trench. The second insulating layer is disposed between the second conductor layer and the body layer and between the second conductor layer and the first conductor layer. The dielectric layer is disposed on the epitaxial layer and covers the second conductor layer. The two doped regions having the first conductivity type are respectively disposed in the body layers on both sides of the second trench.
在本發明之一實施例中,上述第二絕緣層的厚度小於第一絕緣層的厚度。 In an embodiment of the invention, the thickness of the second insulating layer is smaller than the thickness of the first insulating layer.
在本發明之一實施例中,上述第一導體層的頂部為非平坦的。 In an embodiment of the invention, the top of the first conductor layer is non-flat.
在本發明之一實施例中,上述第一導體層的材料包括摻 雜多晶矽。 In an embodiment of the invention, the material of the first conductor layer comprises a blend Heteropolycrystalline germanium.
在本發明之一實施例中,上述第二導體層的材料包括摻雜多晶矽。 In an embodiment of the invention, the material of the second conductor layer comprises doped polysilicon.
在本發明之一實施例中,上述溝渠式閘極金氧半場效電晶體更包括配置於介電層上的第三導體層,其中第三導體層透過二導體插塞與主體層電性連接。 In one embodiment of the present invention, the trench gate MOS field oxide transistor further includes a third conductor layer disposed on the dielectric layer, wherein the third conductor layer is electrically connected to the body layer through the two conductor plug .
在本發明之一實施例中,上述第三導體層的材料包括金屬。 In an embodiment of the invention, the material of the third conductor layer comprises a metal.
在本發明之一實施例中,上述第一導電型為N型,第二導電型為P型;或第一導電型為P型,第二導電型為N型。 In an embodiment of the invention, the first conductivity type is an N type, the second conductivity type is a P type; or the first conductivity type is a P type, and the second conductivity type is an N type.
本發明另提供一種溝渠式閘極金氧半場效電晶體。具有第一導電型之磊晶層配置於具有第一導電型之基底上。具有第二導電型之主體層配置於磊晶層中,其中磊晶層中具有第一溝渠,主體層中具有第二溝渠,且第一溝渠配置於第二溝渠下方。第一導體層至少配置於第一溝渠中。第二導體層配置於第二溝渠中且環繞第一導體層的上部,其中第二導體層與第一導體層電性絕緣。介電層配置於磊晶層上且覆蓋第二導體層。具有第一導電型的二摻雜區分別配置於第二溝渠之兩側的主體層中。 The invention further provides a trench-type gate MOS field effect transistor. The epitaxial layer having the first conductivity type is disposed on the substrate having the first conductivity type. The body layer having the second conductivity type is disposed in the epitaxial layer, wherein the epitaxial layer has a first trench, the main layer has a second trench, and the first trench is disposed under the second trench. The first conductor layer is disposed at least in the first trench. The second conductor layer is disposed in the second trench and surrounds an upper portion of the first conductor layer, wherein the second conductor layer is electrically insulated from the first conductor layer. The dielectric layer is disposed on the epitaxial layer and covers the second conductor layer. The two doped regions having the first conductivity type are respectively disposed in the body layers on both sides of the second trench.
在本發明之一實施例中,上述第一導體層與磊晶層電性絕緣。 In an embodiment of the invention, the first conductor layer is electrically insulated from the epitaxial layer.
在本發明之一實施例中,上述第二導體層與主體層電性絕緣。 In an embodiment of the invention, the second conductor layer is electrically insulated from the body layer.
在本發明之一實施例中,上述第一導體層更延伸至第二溝渠中。 In an embodiment of the invention, the first conductor layer extends into the second trench.
在本發明之一實施例中,上述第一導體層的材料包括摻雜多晶矽。 In an embodiment of the invention, the material of the first conductor layer comprises doped polysilicon.
在本發明之一實施例中,上述第二導體層的材料包括摻雜多晶矽。 In an embodiment of the invention, the material of the second conductor layer comprises doped polysilicon.
在本發明之一實施例中,上述溝渠式閘極金氧半場效電晶體更包括配置於介電層上的第三導體層,其中第三導體層透過二導體插塞與主體層電性連接。 In one embodiment of the present invention, the trench gate MOS field oxide transistor further includes a third conductor layer disposed on the dielectric layer, wherein the third conductor layer is electrically connected to the body layer through the two conductor plug .
在本發明之一實施例中,上述第三導體層的材料包括金屬。 In an embodiment of the invention, the material of the third conductor layer comprises a metal.
在本發明之一實施例中,上述第一導電型為N型,第二導電型為P型;或第一導電型為P型,第二導電型為N型。 In an embodiment of the invention, the first conductivity type is an N type, the second conductivity type is a P type; or the first conductivity type is a P type, and the second conductivity type is an N type.
基於上述,在本發明之溝渠式閘極金氧半場效電晶體中,將遮蔽閘極配置於閘極下方,可減少閘極對汲極之電容Cgd並提高電晶體之崩潰電壓。此外,絕緣層(或介電層)配置於閘極中可減少閘極與遮蔽閘極之間的耦合效應,因而降低閘極對源極之電容Cgs。換言之,本發明之結構可以同時減少閘極對汲極之電容Cgd及閘極對源極之電容Cgs,以有效地降低切換損失,提升元件效能。 Based on the above, in the trench gate MOS field effect transistor of the present invention, the shielding gate is disposed under the gate, which can reduce the capacitance C gd of the gate to the drain and increase the breakdown voltage of the transistor. In addition, the arrangement of the insulating layer (or dielectric layer) in the gate reduces the coupling effect between the gate and the shadow gate, thereby reducing the gate-to-source capacitance C gs . In other words, the structure of the present invention can simultaneously reduce the gate-to-drain capacitance C gd and the gate-to-source capacitance C gs to effectively reduce switching losses and improve component performance.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.
100、200、300、400‧‧‧溝渠式閘極金氧半場效電晶體 100, 200, 300, 400‧‧‧ Ditch-type gate MOS solar field half-effect transistor
102、202、302、402‧‧‧基底 102, 202, 302, 402‧‧‧ base
104、204、304、404‧‧‧磊晶層 104, 204, 304, 404‧‧‧ epitaxial layer
105、305‧‧‧罩幕層 105, 305‧‧ ‧ cover layer
107、109、111、207、209、211、307、309、311、407、409、411‧‧‧溝渠 107, 109, 111, 207, 209, 211, 307, 309, 311, 407, 409, 411 ‧ ‧ ditches
108、108a、112a、112b、114、208、208a、212、310、310a、314a、316、408、408a、412、414‧‧‧絕緣層 108, 108a, 112a, 112b, 114, 208, 208a, 212, 310, 310a, 314a, 316, 408, 408a, 412, 414 ‧ ‧ insulation
110、110a、116、128、210a、214、214a、228、312、312a、318、328、410a、410b、416、428‧‧‧導體層 110, 110a, 116, 128, 210a, 214, 214a, 228, 312, 312a, 318, 328, 410a, 410b, 416, 428‧‧‧ conductor layer
112、314‧‧‧絕緣材料層 112, 314‧‧‧Insulation material layer
120、220、320、420‧‧‧主體層 120, 220, 320, 420‧‧‧ main body
122、222、322、422‧‧‧摻雜區 122, 222, 322, 422‧‧‧ doped areas
124、224、324、424‧‧‧介電層 124, 224, 324, 424‧‧ dielectric layers
126、215、226、326、426‧‧‧開口 126, 215, 226, 326, 426‧‧
127、227、327、427‧‧‧導體插塞 127, 227, 327, 427‧‧‧ conductor plugs
210、410‧‧‧導體材料層 210, 410‧‧‧ conductor material layer
308‧‧‧間隙壁材料層 308‧‧‧ spacer material layer
308a‧‧‧間隙壁 308a‧‧‧ spacer
圖1A至1G為依據本發明之第一實施例所繪示的一種溝渠式 閘極金氧半場效電晶體的製造方法之剖面示意圖。 1A to 1G illustrate a trench type according to a first embodiment of the present invention. A schematic cross-sectional view of a method for fabricating a gated metal oxide half field effect transistor.
圖2A至2F為依據本發明之第二實施例所繪示的一種溝渠式閘極金氧半場效電晶體的製造方法之剖面示意圖。 2A to 2F are schematic cross-sectional views showing a method of fabricating a trench gate MOS field effect transistor according to a second embodiment of the present invention.
圖3A至3H為依據本發明之第三實施例所繪示的一種溝渠式閘極金氧半場效電晶體的製造方法之剖面示意圖。 3A to 3H are schematic cross-sectional views showing a method of fabricating a trench gate MOS field effect transistor according to a third embodiment of the present invention.
圖4A至4F為依據本發明之第四實施例所繪示的一種溝渠式閘極金氧半場效電晶體的製造方法之剖面示意圖。 4A to 4F are schematic cross-sectional views showing a method of fabricating a trench gate MOS field effect transistor according to a fourth embodiment of the present invention.
圖1A至1G為依據本發明之第一實施例所繪示的一種溝渠式閘極金氧半場效電晶體的製造方法之剖面示意圖。 1A to 1G are schematic cross-sectional views showing a method of fabricating a trench gate MOS field effect transistor according to a first embodiment of the present invention.
首先,請參照圖1A,於具有第一導電型之基底102上依序形成具有第一導電型之磊晶層104及罩幕層105。基底102例如是N型重摻雜之矽基底。磊晶層104例如是N型輕摻雜之磊晶層,且其形成方法包括進行選擇性磊晶生長(selective epitaxy growth,SEG)製程。罩幕層105的材料例如是氮化矽,且其形成方法包括進行化學氣相沉積製程。接著,以罩幕層105為罩幕,進行蝕刻製程,以於磊晶層104中形成溝渠107。之後,移除罩幕層105。 First, referring to FIG. 1A, an epitaxial layer 104 having a first conductivity type and a mask layer 105 are sequentially formed on a substrate 102 having a first conductivity type. Substrate 102 is, for example, an N-type heavily doped germanium substrate. The epitaxial layer 104 is, for example, an N-type lightly doped epitaxial layer, and the formation method thereof includes performing a selective epitaxy growth (SEG) process. The material of the mask layer 105 is, for example, tantalum nitride, and the method of forming the same includes performing a chemical vapor deposition process. Next, an etching process is performed using the mask layer 105 as a mask to form the trench 107 in the epitaxial layer 104. Thereafter, the mask layer 105 is removed.
請參照圖1B,於磊晶層104及溝渠107的表面上順應性地形成絕緣層108及導體層110。絕緣層108的材料例如為氧化矽,且其形成方法包括進行熱氧化法或化學氣相沉積製程。導體層110的材料例如是摻雜多晶矽,且其形成方法包括進行化學氣 相沉積製程。繼之,於導體層110上形成絕緣材料層112,且絕緣材料層112填滿溝渠107。絕緣材料層112的材料例如為四乙氧基矽烷(tetraethosiloxane,TEOS)氧化矽,且其形成方法包括進行化學氣相沉積製程。 Referring to FIG. 1B, the insulating layer 108 and the conductor layer 110 are conformally formed on the surfaces of the epitaxial layer 104 and the trench 107. The material of the insulating layer 108 is, for example, ruthenium oxide, and the method of forming the same includes performing a thermal oxidation process or a chemical vapor deposition process. The material of the conductor layer 110 is, for example, doped polysilicon, and the method of forming the same includes performing a chemical vapor deposition process. Next, an insulating material layer 112 is formed on the conductor layer 110, and the insulating material layer 112 fills the trench 107. The material of the insulating material layer 112 is, for example, tetraethhosiloxane ( TEOS ) cerium oxide, and the method for forming the same includes performing a chemical vapor deposition process.
請參照圖1C,進行回蝕刻製程,移除部分絕緣材料層112,以形成填滿溝渠107之絕緣層112a。在一實施例中,回蝕刻製程裸露出導體層110的頂面,其可使用時間模式來控制絕緣層112a的厚度。 Referring to FIG. 1C, an etch back process is performed to remove a portion of the insulating material layer 112 to form an insulating layer 112a that fills the trench 107. In an embodiment, the etch back process exposes the top surface of the conductor layer 110, which can use a time mode to control the thickness of the insulating layer 112a.
請參照圖1D,移除部分導體層110,以形成裸露出絕緣層112a上部及絕緣層108頂面與部分側壁的導體層110a。具體言之,導體層110a呈碗形或U型,其經配置為環繞絕緣層112a的下部,且位於絕緣層112a與絕緣層108之間。形成導體層110a的方法例如是回蝕刻法,其可使用時間模式來控制導體層110a的頂面高度。在一實施例中,導體層110a裸露出絕緣層108,其高度需配合主體層(圖未示,相關說明,容後詳述)或溝渠107之深度,以此例為絕緣層112a之約1/2高。 Referring to FIG. 1D, a portion of the conductor layer 110 is removed to form a conductor layer 110a that exposes the upper portion of the insulating layer 112a and the top surface and a portion of the sidewalls of the insulating layer 108. In particular, the conductor layer 110a is in the shape of a bowl or a U, which is disposed to surround the lower portion of the insulating layer 112a and is located between the insulating layer 112a and the insulating layer 108. The method of forming the conductor layer 110a is, for example, an etch back method which can control the top surface height of the conductor layer 110a using a time mode. In one embodiment, the conductor layer 110a exposes the insulating layer 108, and its height needs to match the body layer (not shown, as described later, as detailed later) or the depth of the trench 107, as an example of the insulating layer 112a. /2 high.
請參照圖1E,移除部分絕緣層112a及部分絕緣層108,使得留下的絕緣層112b及絕緣層108a裸露出導體層110a的上部。具體言之,導體層110a凸出於絕緣層112b及絕緣層108a,導體層110a經配置為環繞絕緣層112b,且絕緣層108a經配置為環繞導體層110a。形成絕緣層112b及絕緣層108a的方法例如是回蝕刻法,其可使用時間模式來控制絕緣層112b及絕緣層108a的頂面高度。在一實施例中,絕緣層112b及絕緣層108a裸露出導體層110a之約1/8~1/10的高度。然而,本發明並不以此為限。 在另一實施例中,絕緣層112b及絕緣層108a之頂面也可以與導體層110a之頂面大致上齊平。 Referring to FIG. 1E, a portion of the insulating layer 112a and a portion of the insulating layer 108 are removed such that the remaining insulating layer 112b and the insulating layer 108a are exposed to the upper portion of the conductor layer 110a. Specifically, the conductor layer 110a protrudes from the insulating layer 112b and the insulating layer 108a, the conductor layer 110a is configured to surround the insulating layer 112b, and the insulating layer 108a is configured to surround the conductor layer 110a. The method of forming the insulating layer 112b and the insulating layer 108a is, for example, an etch back method which can control the top surface height of the insulating layer 112b and the insulating layer 108a using a time mode. In one embodiment, the insulating layer 112b and the insulating layer 108a are exposed to a height of about 1/8 to 1/10 of the conductor layer 110a. However, the invention is not limited thereto. In another embodiment, the top surface of the insulating layer 112b and the insulating layer 108a may also be substantially flush with the top surface of the conductor layer 110a.
請參照圖1F,於磊晶層104及溝渠107之表面上形成絕緣層114,且絕緣層114覆蓋導體層110a。絕緣層114的材料例如為氧化矽,且其形成方法包括進行熱氧化法或化學氣相沉積製程。在一實施例中,絕緣層114的厚度小於絕緣層108a的厚度。然而,本發明並不以此為限。在另一實施例中,絕緣層114的厚度也可以等於或大於絕緣層108a的厚度。接著,於溝渠107中填滿導體層116。形成導體層116的方法包括於磊晶層104上形成導體材料層(未繪示),且導體材料層填滿溝渠107。導體材料層的材料例如是摻雜多晶矽,且其形成方法包括進行化學氣相沉積製程。然後,進行回蝕刻製程,移除部分導體材料層。 Referring to FIG. 1F, an insulating layer 114 is formed on the surface of the epitaxial layer 104 and the trench 107, and the insulating layer 114 covers the conductor layer 110a. The material of the insulating layer 114 is, for example, ruthenium oxide, and the method of forming the same includes performing a thermal oxidation process or a chemical vapor deposition process. In an embodiment, the thickness of the insulating layer 114 is less than the thickness of the insulating layer 108a. However, the invention is not limited thereto. In another embodiment, the thickness of the insulating layer 114 may also be equal to or greater than the thickness of the insulating layer 108a. Next, the trench 107 is filled with the conductor layer 116. The method of forming the conductor layer 116 includes forming a layer of conductive material (not shown) on the epitaxial layer 104, and filling the trench 107 with a layer of conductive material. The material of the conductor material layer is, for example, doped polysilicon, and the method of forming the same includes performing a chemical vapor deposition process. Then, an etch back process is performed to remove a portion of the conductor material layer.
請參照圖1G,於溝渠107兩側的磊晶層104中分別形成具有第二導電型的二主體層120。主體層120例如是P型主體層,且其形成方法包括進行離子植入製程。然後,於溝渠107之兩側的主體層120中分別形成具有第一導電型的二摻雜區122。摻雜區122例如是N型重摻雜區,且其形成方法包括進行離子植入製程。 Referring to FIG. 1G, two body layers 120 having a second conductivity type are respectively formed in the epitaxial layers 104 on both sides of the trench 107. The body layer 120 is, for example, a P-type body layer, and the method of forming the same includes performing an ion implantation process. Then, two doped regions 122 having a first conductivity type are respectively formed in the body layers 120 on both sides of the trench 107. The doped region 122 is, for example, an N-type heavily doped region, and the method of forming the same includes performing an ion implantation process.
於導體層116及摻雜區122上形成介電層124。介電層124的材料例如是氧化矽、硼磷矽玻璃(BPSG)、磷矽玻璃(PSG)、氟矽玻璃(FSG)或未摻雜之矽玻璃(USG),且其形成方法包括進行化學氣相沉積製程。接著,形成貫穿介電層124及摻雜區122的二開口126。形成開口的方法包括進行微影蝕刻製程。之後,於介電層124上形成導體層128,其中導體層128填入開口126以與 主體層120電性連接。填入開口126之導體層128構成導體插塞127。換言之,導體層128透過導體插塞127與主體層120電性連接。導體層128的材料可以是諸如鋁的金屬,且其形成方法包括進行化學氣相沉積製程。至此,完成第一實施例之溝渠式閘極金氧半場效電晶體100的製造。 A dielectric layer 124 is formed over the conductor layer 116 and the doped region 122. The material of the dielectric layer 124 is, for example, yttrium oxide, borophosphoquinone glass (BPSG), phosphoric bismuth glass (PSG), fluorocarbon glass (FSG) or undoped bismuth glass (USG), and the formation method thereof includes performing chemistry Vapor deposition process. Next, two openings 126 are formed through the dielectric layer 124 and the doped regions 122. The method of forming the opening includes performing a photolithography process. Thereafter, a conductor layer 128 is formed on the dielectric layer 124, wherein the conductor layer 128 fills the opening 126 to The body layer 120 is electrically connected. The conductor layer 128 filled in the opening 126 constitutes a conductor plug 127. In other words, the conductor layer 128 is electrically connected to the body layer 120 through the conductor plugs 127. The material of the conductor layer 128 may be a metal such as aluminum, and the method of forming the same includes performing a chemical vapor deposition process. So far, the manufacture of the trench gate MOS field effect transistor 100 of the first embodiment has been completed.
以下,將參照圖1G來說明本發明之溝渠式閘極金氧半場效電晶體100的結構。請參照圖1G,溝渠式閘極金氧半場效電晶體100包括N型基底102、N型磊晶層104、P型主體層120。磊晶層104配置在基底102上。主體層120配置在磊晶層104中。此外,磊晶層104中具有溝渠109,主體層120中具有溝渠111,溝渠109配置於溝渠111下方,且溝渠109及溝渠111組成溝渠107。 Hereinafter, the structure of the trench gate MOS field oxide crystal 100 of the present invention will be described with reference to FIG. 1G. Referring to FIG. 1G , the trench gate MOS field oxide crystal 100 includes an N-type substrate 102 , an N-type epitaxial layer 104 , and a P-type body layer 120 . The epitaxial layer 104 is disposed on the substrate 102. The body layer 120 is disposed in the epitaxial layer 104. In addition, the epitaxial layer 104 has a trench 109, the main layer 120 has a trench 111, the trench 109 is disposed under the trench 111, and the trench 109 and the trench 111 form a trench 107.
溝渠式閘極金氧半場效電晶體100更包括絕緣層108a、導體層110a、絕緣層112b、導體層116及絕緣層114。絕緣層108a配置於溝渠109的表面,絕緣層112b配置於溝渠109中,且導體層110a配置於絕緣層108a與絕緣層112b之間。導體層116配置於溝渠111中。絕緣層114配置於導體層116與主體層120之間以及導體層116與導體層110a之間。在一實施例中,導體層110a更延伸至溝渠111中,且絕緣層114覆蓋導體層110a的頂部。 The trench gate MOS field oxide crystal 100 further includes an insulating layer 108a, a conductor layer 110a, an insulating layer 112b, a conductor layer 116, and an insulating layer 114. The insulating layer 108a is disposed on the surface of the trench 109, the insulating layer 112b is disposed in the trench 109, and the conductor layer 110a is disposed between the insulating layer 108a and the insulating layer 112b. The conductor layer 116 is disposed in the trench 111. The insulating layer 114 is disposed between the conductor layer 116 and the body layer 120 and between the conductor layer 116 and the conductor layer 110a. In an embodiment, the conductor layer 110a extends into the trench 111 and the insulating layer 114 covers the top of the conductor layer 110a.
溝渠式閘極金氧半場效電晶體100更包括二個N型摻雜區122、一介電層124、二個導體插塞127及一導體層128。摻雜區122配置於溝渠111之兩側的主體層120中。介電層124配置於導體層116及摻雜區122上。導體層128配置於介電層124上,其中導體層128透過導體插塞127與主體層120電性連接。 The trench gate MOS half field effect transistor 100 further includes two N-type doping regions 122, a dielectric layer 124, two conductor plugs 127, and a conductor layer 128. The doped regions 122 are disposed in the body layer 120 on both sides of the trench 111. The dielectric layer 124 is disposed on the conductor layer 116 and the doping region 122. The conductor layer 128 is disposed on the dielectric layer 124, wherein the conductor layer 128 is electrically connected to the body layer 120 through the conductor plugs 127.
在第一實施例之溝渠式閘極金氧半場效電晶體100中,基底102作為汲極,摻雜區122作為源極,導體層116作為閘極,導體層110a作為遮蔽閘極,且絕緣層114作為閘氧化層。特別要注意的是,由於遮蔽閘極(即導體層110a)的配置,可減少閘極對汲極之電容Cgd並提高電晶體之崩潰電壓(breakdown voltage)。此外,由於絕緣層112b配置於遮蔽閘極(即導體層110a)中以減少閘極(即導體層116)與遮蔽閘極(即導體層110a)之間的耦合效應,因而可降低閘極對源極之電容Cgs。也就是說,本發明第一實施例之結構可以減少閘極對汲極之電容Cgd及閘極對源極之電容Cgs,以有效地降低切換損失,提升元件效能。 In the trench gate MOS field oxide crystal 100 of the first embodiment, the substrate 102 serves as a drain, the doped region 122 serves as a source, the conductor layer 116 serves as a gate, and the conductor layer 110a serves as a shield gate and is insulated. Layer 114 acts as a gate oxide layer. It is particularly noted that due to the configuration of the shadow gate (ie, conductor layer 110a), the gate-to-drain capacitance Cgd can be reduced and the breakdown voltage of the transistor can be increased. In addition, since the insulating layer 112b is disposed in the shielding gate (ie, the conductor layer 110a) to reduce the coupling effect between the gate (ie, the conductor layer 116) and the shielding gate (ie, the conductor layer 110a), the gate pair can be lowered. The source capacitance C gs . That is to say, the structure of the first embodiment of the present invention can reduce the capacitance of the gate to the drain C gd and the capacitance of the gate to the source C gs to effectively reduce switching losses and improve component performance.
圖2A至2F為依據本發明之第二實施例所繪示的一種溝渠式閘極金氧半場效電晶體的製造方法之剖面示意圖。 2A to 2F are schematic cross-sectional views showing a method of fabricating a trench gate MOS field effect transistor according to a second embodiment of the present invention.
首先,請參照圖2A,於具有第一導電型之基底202上形成具有第一導電型之磊晶層204。基底202例如是N型矽基底。磊晶層204例如是N型磊晶層。然後,於磊晶層204中形成溝渠207。形成磊晶層204與溝渠207的方法請參見第一實施例,於此不再贅述。 First, referring to FIG. 2A, an epitaxial layer 204 having a first conductivity type is formed on a substrate 202 having a first conductivity type. The substrate 202 is, for example, an N-type germanium substrate. The epitaxial layer 204 is, for example, an N-type epitaxial layer. Then, a trench 207 is formed in the epitaxial layer 204. For the method of forming the epitaxial layer 204 and the trench 207, refer to the first embodiment, and details are not described herein again.
接著,於磊晶層204及溝渠207的表面上順應性地形成絕緣層208。絕緣層208的材料例如為氧化矽,且其形成方法包括進行熱氧化法或化學氣相沉積製程。然後,於絕緣層208上形成導體材料層210,且導體材料層210填滿溝渠207。導體材料層210的材料例如是摻雜多晶矽,且其形成方法包括進行化學氣相沉積製程。 Next, an insulating layer 208 is conformally formed on the surfaces of the epitaxial layer 204 and the trench 207. The material of the insulating layer 208 is, for example, ruthenium oxide, and the method of forming the same includes performing a thermal oxidation process or a chemical vapor deposition process. Then, a conductor material layer 210 is formed on the insulating layer 208, and the conductor material layer 210 fills the trench 207. The material of the conductor material layer 210 is, for example, doped polysilicon, and the method of forming the same includes performing a chemical vapor deposition process.
之後,請參照圖2B,進行回蝕刻製程,移除部分導體材料層210,以於溝渠207的底部形成導體層210a。在一實施例中,回蝕刻製程裸露出絕緣層208的頂面及部分側壁,其可使用時間模式來控制導體層210a的頂面高度。在一實施例中,導體層210a之頂面高度需配合主體層之深度,例如約1/2的溝渠深度。 Thereafter, referring to FIG. 2B, an etch back process is performed to remove a portion of the conductor material layer 210 to form a conductor layer 210a at the bottom of the trench 207. In one embodiment, the etch back process exposes the top surface and portions of the sidewalls of the insulating layer 208, which can control the top surface height of the conductor layer 210a using a time mode. In one embodiment, the height of the top surface of the conductor layer 210a needs to match the depth of the body layer, such as about 1/2 of the trench depth.
繼之,請參照圖2C,移除部分絕緣層208,以形成裸露出導體層210a上部的絕緣層208a。形成絕緣層208a的方法包括進行回蝕刻法,直到裸露出導體層210a之約1/8至1/10的高度。在一實施例中,可使用時間模式來控制導體層210a之裸露出來的高度。然而,本發明並不以此為限。在另一實施例中,絕緣層208a之頂面也可以與導體層210a之頂面大致上齊平。 Next, referring to FIG. 2C, a portion of the insulating layer 208 is removed to form an insulating layer 208a that exposes the upper portion of the conductor layer 210a. The method of forming the insulating layer 208a includes performing an etch back method until the height of about 1/8 to 1/10 of the conductor layer 210a is exposed. In an embodiment, a time mode can be used to control the bare height of the conductor layer 210a. However, the invention is not limited thereto. In another embodiment, the top surface of the insulating layer 208a may also be substantially flush with the top surface of the conductor layer 210a.
接著,請參照圖2D,於磊晶層204及溝渠207之表面上順應性地形成絕緣層212,且絕緣層212覆蓋導體層210a。絕緣層212的材料例如為氧化矽,且其形成方法包括進行熱氧化法或化學氣相沉積製程。在一實施例中,絕緣層212的厚度小於絕緣層208a的厚度。然而,本發明並不以此為限。在另一實施例中,絕緣層212的厚度也可以等於或大於絕緣層208a的厚度。接著,於絕緣層212上順應性地形成導體層214。導體層214的材料例如是摻雜多晶矽,且其形成方法包括進行化學氣相沉積製程。 Next, referring to FIG. 2D, an insulating layer 212 is conformally formed on the surface of the epitaxial layer 204 and the trench 207, and the insulating layer 212 covers the conductor layer 210a. The material of the insulating layer 212 is, for example, ruthenium oxide, and the method of forming the same includes performing a thermal oxidation process or a chemical vapor deposition process. In an embodiment, the thickness of the insulating layer 212 is less than the thickness of the insulating layer 208a. However, the invention is not limited thereto. In another embodiment, the thickness of the insulating layer 212 may also be equal to or greater than the thickness of the insulating layer 208a. Next, the conductor layer 214 is conformally formed on the insulating layer 212. The material of the conductor layer 214 is, for example, doped polysilicon, and the method of forming the same includes performing a chemical vapor deposition process.
然後,請參照圖2E,移除部分導體層214,以於絕緣層212的側壁上形成導體層214a。具體言之,導體層214a以間隙壁的形式配置在絕緣層212的側壁上,且具有曝露出絕緣層212之部分底面的開口215。形成導體層214a的方法包括進行非等向性乾蝕刻製程。 Then, referring to FIG. 2E, a portion of the conductor layer 214 is removed to form a conductor layer 214a on the sidewall of the insulating layer 212. Specifically, the conductor layer 214a is disposed on the sidewall of the insulating layer 212 in the form of a spacer and has an opening 215 exposing a portion of the bottom surface of the insulating layer 212. The method of forming the conductor layer 214a includes performing an anisotropic dry etching process.
繼之,請參照圖2F,於溝渠207兩側的磊晶層204中分別形成具有第二導電型的二主體層220。主體層220例如是P型主體層。之後,於溝渠207之兩側的主體層220中分別形成具有第一導電型的二摻雜區222。摻雜區222例如是N型重摻雜區。之後,於導體層214a及摻雜區222上形成介電層224,且介電層224填入開口215中。繼之,形成貫穿介電層224及摻雜區222的二開口226。接著,於介電層224上形成導體層228,其中導體層228填入開口226以與主體層220電性連接。填入開口226之導體層228構成導體插塞227。換言之,導體層228透過導體插塞227與主體層220電性連接。主體層220、摻雜區222、導體插塞227及導體層228的材料及形成方法請參見第一實施例,於此不再贅述。至此,完成第二實施例之溝渠式閘極金氧半場效電晶體200的製造。 Then, referring to FIG. 2F, two body layers 220 having a second conductivity type are respectively formed in the epitaxial layers 204 on both sides of the trench 207. The body layer 220 is, for example, a P-type body layer. Thereafter, a second doped region 222 having a first conductivity type is formed in each of the body layers 220 on both sides of the trench 207. The doped region 222 is, for example, an N-type heavily doped region. Thereafter, a dielectric layer 224 is formed over the conductor layer 214a and the doped region 222, and the dielectric layer 224 is filled in the opening 215. Next, two openings 226 are formed through the dielectric layer 224 and the doped regions 222. Next, a conductor layer 228 is formed on the dielectric layer 224, wherein the conductor layer 228 is filled in the opening 226 to be electrically connected to the body layer 220. The conductor layer 228 filled in the opening 226 constitutes a conductor plug 227. In other words, the conductor layer 228 is electrically connected to the body layer 220 through the conductor plug 227. For the material and formation method of the main body layer 220, the doping region 222, the conductor plug 227, and the conductor layer 228, refer to the first embodiment, and details are not described herein again. So far, the fabrication of the trench gate MOS field effect transistor 200 of the second embodiment has been completed.
以下,將參照圖2F來說明本發明之溝渠式閘極金氧半場效電晶體200的結構。請參照圖2F,溝渠式閘極金氧半場效電晶體200包括N型基底202、N型磊晶層204、P型主體層220。磊晶層204配置在基底202上。主體層220配置在磊晶層204中。此外,磊晶層204中具有溝渠209,主體層220中具有溝渠211,溝渠209配置於溝渠211下方,且溝渠209及溝渠211組成溝渠207。 Hereinafter, the structure of the trench gate MOS field-effect transistor 200 of the present invention will be described with reference to FIG. 2F. Referring to FIG. 2F , the trench gate MOS field oxide transistor 200 includes an N-type substrate 202 , an N-type epitaxial layer 204 , and a P-type body layer 220 . The epitaxial layer 204 is disposed on the substrate 202. The body layer 220 is disposed in the epitaxial layer 204. In addition, the epitaxial layer 204 has a trench 209, the main layer 220 has a trench 211, the trench 209 is disposed under the trench 211, and the trench 209 and the trench 211 form a trench 207.
溝渠式閘極金氧半場效電晶體200更包括絕緣層208a、導體層210a、絕緣層212及導體層214a。導體層210a配置於溝渠209中。絕緣層208a配置於導體層210a與磊晶層204之間。導體層214a配置於溝渠211之側壁上。絕緣層212配置於導體層 214a與主體層220之間以及導體層214a與導體層210a之間。在一實施例中,導體層210a更延伸至溝渠211中,且絕緣層212覆蓋導體層210a的頂部。 The trench gate MOS half field effect transistor 200 further includes an insulating layer 208a, a conductor layer 210a, an insulating layer 212, and a conductor layer 214a. The conductor layer 210a is disposed in the trench 209. The insulating layer 208a is disposed between the conductor layer 210a and the epitaxial layer 204. The conductor layer 214a is disposed on the sidewall of the trench 211. The insulating layer 212 is disposed on the conductor layer Between the 214a and the body layer 220 and between the conductor layer 214a and the conductor layer 210a. In an embodiment, the conductor layer 210a extends into the trench 211 and the insulating layer 212 covers the top of the conductor layer 210a.
溝渠式閘極金氧半場效電晶體200更包括二個N型摻雜區222、一介電層224、二個導體插塞227及一導體層228。摻雜區222配置於溝渠211之兩側的主體層220中。介電層224配置於絕緣層212上並填滿溝渠211。亦即,介電層224配置於導體層214a的開口215中。導體層228配置於介電層224上,其中導體層228透過導體插塞227與主體層220電性連接。 The trench gate MOS half field effect transistor 200 further includes two N-type doped regions 222, a dielectric layer 224, two conductor plugs 227, and a conductor layer 228. The doped regions 222 are disposed in the body layer 220 on both sides of the trench 211. The dielectric layer 224 is disposed on the insulating layer 212 and fills the trench 211. That is, the dielectric layer 224 is disposed in the opening 215 of the conductor layer 214a. The conductor layer 228 is disposed on the dielectric layer 224 , wherein the conductor layer 228 is electrically connected to the body layer 220 through the conductor plug 227 .
在第二實施例之溝渠式閘極金氧半場效電晶體200中,基底202作為汲極,摻雜區222作為源極,導體層214a作為閘極,導體層210a作為遮蔽閘極,且絕緣層212作為閘氧化層。特別要注意的是,由於遮蔽閘極(即導體層210a)的配置,可減少閘極對汲極之電容Cgd並提高電晶體之崩潰電壓。此外,由於介電層224配置於閘極(即導體層214a)中以減少閘極(即導體層214a)與遮蔽閘極(即導體層210a)之間的耦合效應,因而可降低閘極對源極之電容Cgs。也就是說,本發明第二實施例之結構可以同時減少閘極對汲極之電容Cgd及閘極對源極之電容Cgs,以有效地降低切換損失,提升元件效能。 In the trench gate MOS field-effect transistor 200 of the second embodiment, the substrate 202 serves as a drain, the doped region 222 serves as a source, the conductor layer 214a serves as a gate, and the conductor layer 210a serves as a shield gate and is insulated. Layer 212 acts as a gate oxide layer. It is particularly noted that due to the configuration of the shadow gate (ie, conductor layer 210a), the gate-to-drain capacitance Cgd can be reduced and the breakdown voltage of the transistor can be increased. In addition, since the dielectric layer 224 is disposed in the gate (ie, the conductor layer 214a) to reduce the coupling effect between the gate (ie, the conductor layer 214a) and the shadow gate (ie, the conductor layer 210a), the gate pair can be lowered. The source capacitance C gs . That is to say, the structure of the second embodiment of the present invention can simultaneously reduce the capacitance of the gate to the drain C gd and the capacitance of the gate to the source C gs to effectively reduce switching losses and improve component performance.
圖3A至3H為依據本發明之第三實施例所繪示的一種溝渠式閘極金氧半場效電晶體的製造方法之剖面示意圖。 3A to 3H are schematic cross-sectional views showing a method of fabricating a trench gate MOS field effect transistor according to a third embodiment of the present invention.
首先,請參照圖3A,於具有第一導電型之基底302上依序形成具有第一導電型之磊晶層304及罩幕層305。基底302 例如是N型矽基底。磊晶層304例如是N型磊晶層。罩幕層305的材料例如是氧化矽、氮化矽或氮氧化矽,且其形成方法包括進行化學氣相沉積製程。接著,以罩幕層305為罩幕,進行蝕刻製程,以於磊晶層304中形成溝渠311。接著,於磊晶層304及溝渠311的表面上形成間隙壁材料層308。間隙壁材料層308的材料例如是氧化矽、氮化矽或氮氧化矽,且其形成方法包括進行化學氣相沉積製程。在此實施例中,罩幕層305與間隙壁材料層308的材料不同。 First, referring to FIG. 3A, an epitaxial layer 304 and a mask layer 305 having a first conductivity type are sequentially formed on a substrate 302 having a first conductivity type. Substrate 302 For example, it is an N-type crucible substrate. The epitaxial layer 304 is, for example, an N-type epitaxial layer. The material of the mask layer 305 is, for example, hafnium oxide, tantalum nitride or hafnium oxynitride, and the method of forming the same includes performing a chemical vapor deposition process. Next, an etching process is performed using the mask layer 305 as a mask to form a trench 311 in the epitaxial layer 304. Next, a spacer material layer 308 is formed on the surface of the epitaxial layer 304 and the trench 311. The material of the spacer material layer 308 is, for example, hafnium oxide, tantalum nitride or hafnium oxynitride, and the method of forming the same includes performing a chemical vapor deposition process. In this embodiment, the mask layer 305 is different in material from the spacer material layer 308.
之後,請參照圖3B,進行非等向性乾蝕刻製程,移除部分間隙壁材料層308,以於溝渠311的側壁上形成間隙壁308a。在此實施例中,由於間隙壁材料層308對罩幕層305的蝕刻選擇比夠高,因此上述非等向性乾蝕刻製程實質上會停在罩幕層305的表面上。換言之,罩幕層305可保護磊晶層304表面,使磊晶層304表面免受後續蝕刻製程的破壞。然後,以罩幕層305及間隙壁308a為罩幕,移除部分磊晶層304,以於溝渠311的下方形成溝渠309。形成溝渠309的方法例如是進行蝕刻製程。之後,移除間隙壁308a。由於形成溝渠309的方法是以間隙壁308a為罩幕,因此為一種自對準製程(self-aligned process),其中溝渠309的寬度小於溝渠311的寬度。此外,溝渠309配置於溝渠311下方,且溝渠309及溝渠311組成溝渠307。 Thereafter, referring to FIG. 3B, an anisotropic dry etching process is performed to remove a portion of the spacer material layer 308 to form a spacer 308a on the sidewall of the trench 311. In this embodiment, since the etching selectivity of the spacer material layer 308 to the mask layer 305 is sufficiently high, the above-described anisotropic dry etching process substantially stops on the surface of the mask layer 305. In other words, the mask layer 305 can protect the surface of the epitaxial layer 304 from the surface of the epitaxial layer 304 from subsequent etching processes. Then, a portion of the epitaxial layer 304 is removed by using the mask layer 305 and the spacer 308a as a mask to form a trench 309 under the trench 311. The method of forming the trench 309 is, for example, an etching process. Thereafter, the spacer 308a is removed. Since the method of forming the trench 309 is to cover the spacer 308a, it is a self-aligned process in which the width of the trench 309 is smaller than the width of the trench 311. In addition, the trench 309 is disposed below the trench 311, and the trench 309 and the trench 311 form a trench 307.
繼之,請參照圖3C,於磊晶層304及溝渠307的表面上順應性地形成絕緣層310。絕緣層310的材料例如為氧化矽,且其形成方法包括進行熱氧化法或化學氣相沉積製程。接著,於絕緣層310上形成導體層312。具體言之,導體層312順應性地形成 於磊晶層304及溝渠311的表面上,並填滿溝渠309。導體層312的材料例如是摻雜多晶矽,且其形成方法包括進行化學氣相沉積製程。然後,於磊晶層304上形成絕緣材料層314,且絕緣材料層314填滿溝渠311。絕緣材料層314的材料例如是氧化矽,且其形成方法包括進行化學氣相沉積製程。 Next, referring to FIG. 3C, the insulating layer 310 is conformally formed on the surface of the epitaxial layer 304 and the trench 307. The material of the insulating layer 310 is, for example, cerium oxide, and the forming method thereof includes performing a thermal oxidation method or a chemical vapor deposition process. Next, a conductor layer 312 is formed on the insulating layer 310. In particular, the conductor layer 312 is conformally formed On the surface of the epitaxial layer 304 and the trench 311, the trench 309 is filled. The material of the conductor layer 312 is, for example, doped polysilicon, and the method of forming the same includes performing a chemical vapor deposition process. Then, an insulating material layer 314 is formed on the epitaxial layer 304, and the insulating material layer 314 fills the trench 311. The material of the insulating material layer 314 is, for example, cerium oxide, and the method of forming the same includes performing a chemical vapor deposition process.
然後,請參照圖3D,進行回蝕刻製程,移除部分絕緣材料層314,以形成填滿溝渠311之絕緣層314a。在一實施例中,回蝕刻製程裸露出導體層312的頂面,其可使用時間模式來控制絕緣層314a的厚度。在一實施例中,絕緣層314a的寬度大致上等於導體層312在溝渠309中的寬度,如圖3D所示。然而,本發明並不以此為限。在另一實施例中,絕緣層314a的寬度也可以大於導體層312在溝渠309中的寬度。 Then, referring to FIG. 3D, an etch back process is performed to remove a portion of the insulating material layer 314 to form an insulating layer 314a filling the trench 311. In one embodiment, the etch back process exposes the top surface of conductor layer 312, which can use time mode to control the thickness of insulating layer 314a. In one embodiment, the width of the insulating layer 314a is substantially equal to the width of the conductor layer 312 in the trench 309, as shown in Figure 3D. However, the invention is not limited thereto. In another embodiment, the width of the insulating layer 314a may also be greater than the width of the conductor layer 312 in the trench 309.
接著,請參照圖3E,移除部分導體層312,以形成導體層312a於絕緣層314a的下方。形成導體層312a的方法包括以絕緣層314a為罩幕,進行非等向性乾蝕刻製程。此外,由於上述方法是以絕緣層314a為罩幕,因此為一種自對準製程,其中導體層312a位於絕緣層314a的正下方。此外,由於絕緣層314a的寬度等於或大於導體層312在溝渠309中的寬度,因此上述蝕刻製程不會移除導體層312在溝渠309中的部分。 Next, referring to FIG. 3E, a portion of the conductor layer 312 is removed to form a conductor layer 312a below the insulating layer 314a. The method of forming the conductor layer 312a includes performing an anisotropic dry etching process using the insulating layer 314a as a mask. In addition, since the above method is based on the insulating layer 314a, it is a self-aligned process in which the conductor layer 312a is located directly under the insulating layer 314a. Moreover, since the width of the insulating layer 314a is equal to or greater than the width of the conductor layer 312 in the trench 309, the above etching process does not remove portions of the conductor layer 312 in the trench 309.
然後,請參照圖3F,移除絕緣層314a及部分絕緣層310,以形成裸露出導體層312a上部的絕緣層310a。形成絕緣層310a的方法例如是回蝕刻法,其可使用時間模式來控制絕緣層310a的頂面高度。在一實施例中,絕緣層310a裸露出導體層312a之約1/8~1/10的高度。在另一實施例中,絕緣層310a僅位於溝渠 309的表面上。 Then, referring to FIG. 3F, the insulating layer 314a and the portion of the insulating layer 310 are removed to form an insulating layer 310a that exposes the upper portion of the conductor layer 312a. The method of forming the insulating layer 310a is, for example, an etch back method which can control the top surface height of the insulating layer 310a using a time mode. In one embodiment, the insulating layer 310a exposes a height of about 1/8 to 1/10 of the conductor layer 312a. In another embodiment, the insulating layer 310a is only located in the trench On the surface of 309.
接著,請參照圖3G,於磊晶層304及溝渠307之表面上順應性地形成絕緣層316,且絕緣層316覆蓋導體層312a。絕緣層316的材料例如為氧化矽,且其形成方法包括進行熱氧化法或化學氣相沉積製程。在一實施例中,絕緣層316的厚度小於絕緣層310a的厚度。然而,本發明並不以此為限。在另一實施例中,絕緣層316的厚度也可以等於或大於絕緣層310a的厚度。接著,於溝渠311中填滿導體層318。形成導體層318的方法包括於磊晶層304上形成導體材料層(未繪示),且導體材料層填滿溝渠311。導體材料層的材料例如是摻雜多晶矽,且其形成方法包括進行化學氣相沉積製程。然後,進行回蝕刻製程,移除部分導體材料層。 Next, referring to FIG. 3G, an insulating layer 316 is conformally formed on the surface of the epitaxial layer 304 and the trench 307, and the insulating layer 316 covers the conductor layer 312a. The material of the insulating layer 316 is, for example, ruthenium oxide, and the method of forming the same includes performing a thermal oxidation process or a chemical vapor deposition process. In an embodiment, the thickness of the insulating layer 316 is less than the thickness of the insulating layer 310a. However, the invention is not limited thereto. In another embodiment, the thickness of the insulating layer 316 may also be equal to or greater than the thickness of the insulating layer 310a. Next, the trench 311 is filled with the conductor layer 318. The method of forming the conductor layer 318 includes forming a layer of conductive material (not shown) on the epitaxial layer 304, and filling the trench 311 with a layer of conductive material. The material of the conductor material layer is, for example, doped polysilicon, and the method of forming the same includes performing a chemical vapor deposition process. Then, an etch back process is performed to remove a portion of the conductor material layer.
繼之,請參照圖3H,於溝渠311兩側的磊晶層304中分別形成具有第二導電型的二主體層320。主體層320例如是P型主體層。之後,於溝渠311之兩側的主體層320中分別形成具有第一導電型的二摻雜區322。摻雜區322例如是N型重摻雜區。之後,於導體層318及摻雜區322上形成介電層324。繼之,形成貫穿介電層324及摻雜區322的二開口326。接著,於介電層324上形成導體層328,其中導體層328填入開口326以與主體層320電性連接。填入開口326之導體層328構成導體插塞327。換言之,導體層328透過導體插塞327與主體層320電性連接。主體層320、摻雜區322、導體插塞327及導體層328的材料及形成方法請參見第一實施例,於此不再贅述。至此,完成第三實施例之溝渠式閘極金氧半場效電晶體300的製造。 Then, referring to FIG. 3H, two body layers 320 having a second conductivity type are respectively formed in the epitaxial layers 304 on both sides of the trench 311. The body layer 320 is, for example, a P-type body layer. Thereafter, a second doped region 322 having a first conductivity type is formed in the body layer 320 on both sides of the trench 311, respectively. Doped region 322 is, for example, an N-type heavily doped region. Thereafter, a dielectric layer 324 is formed over the conductor layer 318 and the doped region 322. Next, two openings 326 are formed through dielectric layer 324 and doped region 322. Next, a conductor layer 328 is formed on the dielectric layer 324, wherein the conductor layer 328 is filled in the opening 326 to be electrically connected to the body layer 320. The conductor layer 328 filled in the opening 326 constitutes a conductor plug 327. In other words, the conductor layer 328 is electrically connected to the body layer 320 through the conductor plug 327. For the material and formation method of the main body layer 320, the doping region 322, the conductor plug 327 and the conductor layer 328, please refer to the first embodiment, and details are not described herein again. So far, the manufacture of the trench gate MOS field effect transistor 300 of the third embodiment has been completed.
以下,將參照圖3H來說明本發明之溝渠式閘極金氧半 場效電晶體300的結構。請參照圖3H,溝渠式閘極金氧半場效電晶體300包括N型基底302、N型磊晶層304、P型主體層320。磊晶層304配置在基底302上。主體層320配置在磊晶層304中。此外,磊晶層304中具有溝渠309,主體層320中具有溝渠311,溝渠309配置於溝渠311下方,且溝渠309及溝渠311組成溝渠307。 Hereinafter, the trench gate galvanic half of the present invention will be described with reference to FIG. 3H. The structure of the field effect transistor 300. Referring to FIG. 3H, the trench gate MOS field oxide transistor 300 includes an N-type substrate 302, an N-type epitaxial layer 304, and a P-type body layer 320. The epitaxial layer 304 is disposed on the substrate 302. The body layer 320 is disposed in the epitaxial layer 304. In addition, the epitaxial layer 304 has a trench 309, the main layer 320 has a trench 311, the trench 309 is disposed under the trench 311, and the trench 309 and the trench 311 form a trench 307.
溝渠式閘極金氧半場效電晶體300更包括絕緣層310a、導體層312a、絕緣層316及導體層318。絕緣層310a配置於溝渠309的表面上。導體層312a填滿溝渠309。導體層318配置於溝渠311中。絕緣層316配置於導體層318與主體層320之間以及導體層318與導體層312a之間。在一實施例中,導體層312a更延伸至溝渠311中,且絕緣層316覆蓋導體層312a的頂部。 The trench gate MOS half field effect transistor 300 further includes an insulating layer 310a, a conductor layer 312a, an insulating layer 316, and a conductor layer 318. The insulating layer 310a is disposed on the surface of the trench 309. The conductor layer 312a fills the trench 309. The conductor layer 318 is disposed in the trench 311. The insulating layer 316 is disposed between the conductor layer 318 and the body layer 320 and between the conductor layer 318 and the conductor layer 312a. In an embodiment, the conductor layer 312a extends into the trench 311 and the insulating layer 316 covers the top of the conductor layer 312a.
溝渠式閘極金氧半場效電晶體300更包括二個N型摻雜區322、一介電層324、二個導體插塞327及一導體層328。摻雜區322配置於溝渠311之兩側的主體層320中。介電層324配置於導體層318及摻雜區322上。導體層328配置於介電層324上,其中導體層328透過導體插塞327與主體層320電性連接。 The trench gate MOS half field effect transistor 300 further includes two N-type doped regions 322, a dielectric layer 324, two conductor plugs 327, and a conductor layer 328. The doped regions 322 are disposed in the body layer 320 on both sides of the trench 311. The dielectric layer 324 is disposed on the conductor layer 318 and the doping region 322. The conductor layer 328 is disposed on the dielectric layer 324 , wherein the conductor layer 328 is electrically connected to the body layer 320 through the conductor plug 327 .
在第三實施例之溝渠式閘極金氧半場效電晶體300中,基底302作為汲極,摻雜區322作為源極,導體層318作為閘極,導體層312a作為遮蔽閘極,且絕緣層316作為閘氧化層。特別要注意的是,由於遮蔽閘極(即導體層312a)的配置,可減少閘極對汲極之電容Cgd並提高電晶體之崩潰電壓。此外,由於溝渠309的寬度小於溝渠311的寬度,且絕緣層310a的厚度大於絕緣層316的厚度,因此遮蔽閘極(即導體層312a)的寬度小於閘極(即導 體層318)的寬度。所以,可以減少閘極(即導體層318)與遮蔽閘極(即導體層312a)之間的耦合效應,因而可降低閘極對源極之電容Cgs。也就是說,本發明之結構可以同時減少閘極對汲極之電容Cgd及閘極對源極之電容Cgs,以有效地降低切換損失,提升元件效能。 In the trench gate MOS field III transistor of the third embodiment, the substrate 302 serves as a drain, the doped region 322 serves as a source, the conductor layer 318 serves as a gate, and the conductor layer 312a serves as a shield gate and is insulated. Layer 316 acts as a gate oxide layer. It is particularly noted that due to the configuration of the shadow gate (ie, conductor layer 312a), the gate-to-drain capacitance Cgd can be reduced and the breakdown voltage of the transistor can be increased. Moreover, since the width of the trench 309 is smaller than the width of the trench 311, and the thickness of the insulating layer 310a is greater than the thickness of the insulating layer 316, the width of the shadow gate (ie, the conductor layer 312a) is smaller than the width of the gate (ie, the conductor layer 318). Therefore, the coupling effect between the gate (i.e., the conductor layer 318) and the shadow gate (i.e., the conductor layer 312a) can be reduced, thereby reducing the gate-to-source capacitance Cgs . That is to say, the structure of the present invention can simultaneously reduce the capacitance of the gate to the drain C gd and the capacitance of the gate to the source C gs to effectively reduce switching losses and improve component performance.
圖4A至4F為依據本發明之第四實施例所繪示的一種溝渠式閘極金氧半場效電晶體的製造方法之剖面示意圖。 4A to 4F are schematic cross-sectional views showing a method of fabricating a trench gate MOS field effect transistor according to a fourth embodiment of the present invention.
首先,請參照圖4A,於具有第一導電型之基底402上形成具有第一導電型之磊晶層404。基底402例如是N型矽基底。磊晶層404例如是N型磊晶層。然後,於磊晶層404中形成溝渠407。形成磊晶層404與溝渠407的方法請參見第一實施例,於此不再贅述。 First, referring to FIG. 4A, an epitaxial layer 404 having a first conductivity type is formed on a substrate 402 having a first conductivity type. Substrate 402 is, for example, an N-type germanium substrate. The epitaxial layer 404 is, for example, an N-type epitaxial layer. Then, a trench 407 is formed in the epitaxial layer 404. For the method of forming the epitaxial layer 404 and the trench 407, refer to the first embodiment, and details are not described herein again.
接著,於磊晶層404及溝渠407的表面上順應性地形成絕緣層408。絕緣層408的材料例如為氧化矽,且其形成方法包括進行熱氧化法或化學氣相沉積製程。然後,於磊晶層404上形成導體材料層410,且導體材料層410填滿溝渠407。導體材料層410的材料例如是摻雜多晶矽,且其形成方法包括進行化學氣相沉積製程。 Next, an insulating layer 408 is conformally formed on the surface of the epitaxial layer 404 and the trench 407. The material of the insulating layer 408 is, for example, ruthenium oxide, and the method of forming the same includes performing a thermal oxidation process or a chemical vapor deposition process. Then, a conductor material layer 410 is formed on the epitaxial layer 404, and the conductor material layer 410 fills the trench 407. The material of the conductor material layer 410 is, for example, doped polysilicon, and the method of forming the same includes performing a chemical vapor deposition process.
之後,請參照圖4B,進行回蝕刻製程,移除部分導體材料層410,以於溝渠407中形成導體層410a。在一實施例中,回蝕刻製程裸露出絕緣層408的頂面及部分側壁,其可使用時間模式來控制導體層410a的厚度。 Thereafter, referring to FIG. 4B, an etch back process is performed to remove a portion of the conductor material layer 410 to form the conductor layer 410a in the trench 407. In one embodiment, the etch back process exposes the top surface and portions of the sidewalls of the insulating layer 408, which can control the thickness of the conductor layer 410a using a time mode.
繼之,請參照圖4C,移除部分絕緣層408,以形成裸露 出導體層410a上部的絕緣層408a。形成絕緣層408a的方法包括進行回蝕刻法,直到裸露出導體層410a之約1/3至2/5的高度。在一實施例中,可使用時間模式來控制導體層410a之裸露出來的高度。在一實施例中,絕緣層408a的頂面高度需配合主體層之深度,以此例為約1/2的溝渠深度。 Then, referring to FIG. 4C, a portion of the insulating layer 408 is removed to form a bare The insulating layer 408a on the upper portion of the conductor layer 410a. The method of forming the insulating layer 408a includes performing an etch back method until the height of about 1/3 to 2/5 of the conductor layer 410a is exposed. In an embodiment, the time mode can be used to control the bare height of the conductor layer 410a. In one embodiment, the top surface of the insulating layer 408a is required to match the depth of the body layer, for example about 1/2 of the trench depth.
接下來,請參照圖4D,進行氧化製程,將未被絕緣層408a覆蓋的導體層410a上部氧化成絕緣層412,並留下導體層410b,且此氧化製程同時於磊晶層404的表面及溝渠407的側壁上形成絕緣層414。絕緣層412及絕緣層414的材料例如是氧化矽。在一實施例中,上述氧化製程將導體層410a上部全部氧化,如圖4D所示。在另一實施例中(未繪示),上述氧化製程僅將導體層410a上部進行部份氧化。此外,在一實施例中,絕緣層414的厚度小於絕緣層408a的厚度。然而,本發明並不以此為限。在另一實施例中,絕緣層414的厚度也可以等於或大於絕緣層408a的厚度。 Next, referring to FIG. 4D, an oxidation process is performed to oxidize the upper portion of the conductor layer 410a not covered by the insulating layer 408a into the insulating layer 412, leaving the conductor layer 410b, and the oxidation process is simultaneously performed on the surface of the epitaxial layer 404 and An insulating layer 414 is formed on the sidewall of the trench 407. The material of the insulating layer 412 and the insulating layer 414 is, for example, yttrium oxide. In one embodiment, the oxidation process oxidizes the entire upper portion of the conductor layer 410a as shown in FIG. 4D. In another embodiment (not shown), the above oxidation process only partially oxidizes the upper portion of the conductor layer 410a. Further, in an embodiment, the thickness of the insulating layer 414 is less than the thickness of the insulating layer 408a. However, the invention is not limited thereto. In another embodiment, the thickness of the insulating layer 414 may also be equal to or greater than the thickness of the insulating layer 408a.
然後,請參照圖4E,於溝渠407中形成導體層416。形成導體層416的方法包括於磊晶層404上形成導體材料層(未繪示),且導體材料層覆蓋絕緣層412、絕緣層414並填滿溝渠407。導體材料層的材料例如是摻雜多晶矽,且其形成方法包括進行化學氣相沉積製程。然後,進行回蝕刻製程,移除部分導體材料層。 Then, referring to FIG. 4E, a conductor layer 416 is formed in the trench 407. The method of forming the conductor layer 416 includes forming a conductor material layer (not shown) on the epitaxial layer 404, and the conductor material layer covers the insulating layer 412, the insulating layer 414, and fills the trench 407. The material of the conductor material layer is, for example, doped polysilicon, and the method of forming the same includes performing a chemical vapor deposition process. Then, an etch back process is performed to remove a portion of the conductor material layer.
接著,請參照圖4F,於溝渠407兩側的磊晶層404中分別形成具有第二導電型的二主體層420。主體層420例如是P型主體層。之後,於溝渠407之兩側的主體層420中分別形成具有第一導電型的二摻雜區422。摻雜區422例如是N型重摻雜區。之 後,於導體層416及摻雜區422上形成介電層424。繼之,形成貫穿介電層424及摻雜區422的二開口426。接著,於介電層424上形成導體層428,其中導體層428填入開口426以與主體層420電性連接。填入開口426之導體層428構成導體插塞427。換言之,導體層428透過導體插塞427與主體層420電性連接。主體層420、摻雜區422、導體插塞427及導體層428的材料及形成方法請參見第一實施例,於此不再贅述。至此,完成第四實施例之溝渠式閘極金氧半場效電晶體400的製造。 Next, referring to FIG. 4F, two body layers 420 having a second conductivity type are respectively formed in the epitaxial layers 404 on both sides of the trench 407. The body layer 420 is, for example, a P-type body layer. Thereafter, a second doped region 422 having a first conductivity type is formed in the body layer 420 on both sides of the trench 407, respectively. Doped region 422 is, for example, an N-type heavily doped region. It Thereafter, a dielectric layer 424 is formed over the conductor layer 416 and the doped region 422. Next, two openings 426 are formed through dielectric layer 424 and doped region 422. Next, a conductor layer 428 is formed on the dielectric layer 424, wherein the conductor layer 428 is filled in the opening 426 to be electrically connected to the body layer 420. The conductor layer 428 filled in the opening 426 constitutes a conductor plug 427. In other words, the conductor layer 428 is electrically connected to the body layer 420 through the conductor plug 427. For the material and formation method of the main body layer 420, the doping region 422, the conductor plug 427 and the conductor layer 428, refer to the first embodiment, and details are not described herein again. So far, the fabrication of the trench gate MOS field effect transistor 400 of the fourth embodiment has been completed.
以下,將參照圖4F來說明本發明之溝渠式閘極金氧半場效電晶體400的結構。請參照圖4F,溝渠式閘極金氧半場效電晶體400包括N型基底402、N型磊晶層404、P型主體層420。磊晶層204配置在基底402上。主體層420配置在磊晶層404中。此外,磊晶層404中具有溝渠409,主體層420中具有溝渠411,溝渠409配置於溝渠411下方,且溝渠409及溝渠411組成溝渠407。 Hereinafter, the structure of the trench gate MOS field-effect transistor 400 of the present invention will be described with reference to FIG. 4F. Referring to FIG. 4F , the trench gate MOS field oxide transistor 400 includes an N-type substrate 402 , an N-type epitaxial layer 404 , and a P-type body layer 420 . The epitaxial layer 204 is disposed on the substrate 402. The body layer 420 is disposed in the epitaxial layer 404. In addition, the epitaxial layer 404 has a trench 409, the main layer 420 has a trench 411, the trench 409 is disposed under the trench 411, and the trench 409 and the trench 411 form a trench 407.
溝渠式閘極金氧半場效電晶體400更包括絕緣層408a、導體層410b、絕緣層412、絕緣層414及導體層416。導體層410b配置於溝渠409中。絕緣層408a配置於導體層410b與磊晶層404之間。絕緣層412配置於溝渠411中並覆蓋導體層410b。亦即,絕緣層412的寬度大於或等於導體層410b的寬度。此外,導體層416配置於溝渠411中並覆蓋絕緣層412。絕緣層414配置於導體層416與主體層420之間。 The trench gate MOS half field effect transistor 400 further includes an insulating layer 408a, a conductor layer 410b, an insulating layer 412, an insulating layer 414, and a conductor layer 416. The conductor layer 410b is disposed in the trench 409. The insulating layer 408a is disposed between the conductor layer 410b and the epitaxial layer 404. The insulating layer 412 is disposed in the trench 411 and covers the conductor layer 410b. That is, the width of the insulating layer 412 is greater than or equal to the width of the conductor layer 410b. Further, the conductor layer 416 is disposed in the trench 411 and covers the insulating layer 412. The insulating layer 414 is disposed between the conductor layer 416 and the body layer 420.
溝渠式閘極金氧半場效電晶體400更包括二個N型摻雜區422、一介電層424、二個導體插塞427及一導體層428。摻雜 區422配置於溝渠411之兩側的主體層420中。介電層424配置於磊晶層404上並覆蓋導體層416。導體層428配置於介電層424上,其中導體層428透過導體插塞427與主體層420電性連接。 The trench gate MOS half field effect transistor 400 further includes two N-type doped regions 422, a dielectric layer 424, two conductor plugs 427, and a conductor layer 428. Doping The regions 422 are disposed in the body layer 420 on both sides of the trench 411. The dielectric layer 424 is disposed on the epitaxial layer 404 and covers the conductor layer 416. The conductor layer 428 is disposed on the dielectric layer 424, wherein the conductor layer 428 is electrically connected to the body layer 420 through the conductor plug 427.
在第四實施例之溝渠式閘極金氧半場效電晶體400中,基底402作為汲極,摻雜區422作為源極,導體層416作為閘極,導體層410b作為遮蔽閘極,且絕緣層414作為閘氧化層。特別要注意的是,由於遮蔽閘極(即導體層410b)的配置,可減少閘極對汲極之電容Cgd並提高電晶體之崩潰電壓。此外,由於介電層412配置於閘極(即導體層416)中以減少閘極(即導體層416)與遮蔽閘極(即導體層410b)之間的耦合效應,因而可降低閘極對源極之電容Cgs。也就是說,本發明之結構可以同時減少閘極對汲極之電容Cgd及閘極對源極之電容Cgs,以有效地降低切換損失,提升元件效能。 In the trench gate MOS field-effect transistor 400 of the fourth embodiment, the substrate 402 serves as a drain, the doped region 422 serves as a source, the conductor layer 416 serves as a gate, and the conductor layer 410b serves as a shield gate and is insulated. Layer 414 acts as a gate oxide layer. It is particularly noted that due to the configuration of the shadow gate (ie, conductor layer 410b), the gate-to-drain capacitance Cgd can be reduced and the breakdown voltage of the transistor can be increased. In addition, since the dielectric layer 412 is disposed in the gate (ie, the conductor layer 416) to reduce the coupling effect between the gate (ie, the conductor layer 416) and the shadow gate (ie, the conductor layer 410b), the gate pair can be lowered. The source capacitance C gs . That is to say, the structure of the present invention can simultaneously reduce the capacitance of the gate to the drain C gd and the capacitance of the gate to the source C gs to effectively reduce switching losses and improve component performance.
另外,在第一至第四實施例中,是以第一導電型為N型,第二導電型為P型為例來說明之,但本發明並不以此為限。熟知此技藝者應了解,第一導電型也可以為P型,而第二導電型為N型。 Further, in the first to fourth embodiments, the first conductivity type is N-type and the second conductivity type is P-type as an example, but the invention is not limited thereto. Those skilled in the art will appreciate that the first conductivity type may also be P-type and the second conductivity type may be N-type.
綜上所述,在本發明之溝渠式閘極金氧半場效電晶體中,將遮蔽閘極配置於閘極下方,可減少閘極對汲極之電容Cgd並提高電晶體之崩潰電壓。此外,絕緣層(或介電層)配置於閘極或遮蔽閘極中可減少閘極與遮蔽閘極之間的耦合效應,因而降低閘極對源極之電容Cgs。或者,藉由製成上寬下窄之溝渠,使位於第二溝渠之閘極與位於第一溝渠之遮蔽閘極之間的耦合效應減少,亦可降低閘極對源極之電容Cgs。換言之,本發明之結構可以 同時減少閘極對汲極之電容Cgd及閘極對源極之電容Cgs,以有效地降低切換損失,提升元件效能。 In summary, in the trench gate MOS field effect transistor of the present invention, the shielding gate is disposed under the gate, which can reduce the capacitance C gd of the gate to the drain and increase the breakdown voltage of the transistor. In addition, the insulating layer (or dielectric layer) is disposed in the gate or the shielding gate to reduce the coupling effect between the gate and the shielding gate, thereby reducing the gate-to-source capacitance C gs . Alternatively, by forming the upper and lower narrow trenches, the coupling effect between the gate of the second trench and the shielding gate of the first trench is reduced, and the gate-to-source capacitance C gs can also be reduced. In other words, the structure of the present invention can simultaneously reduce the gate-to-drain capacitance C gd and the gate-to-source capacitance C gs to effectively reduce switching losses and improve component performance.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
300‧‧‧溝渠式閘極金氧半場效電晶體 300‧‧‧ Ditch-type gate galvanic half-field effect transistor
302‧‧‧基底 302‧‧‧Base
304‧‧‧磊晶層 304‧‧‧ epitaxial layer
307、309、311‧‧‧溝渠 307, 309, 311‧‧‧ Ditch
310a、316‧‧‧絕緣層 310a, 316‧‧‧ insulation
312a、318、328‧‧‧導體層 312a, 318, 328‧‧‧ conductor layers
320‧‧‧主體層 320‧‧‧ body layer
322‧‧‧摻雜區 322‧‧‧Doped area
324‧‧‧介電層 324‧‧‧ dielectric layer
326‧‧‧開口 326‧‧‧ openings
327‧‧‧導體插塞 327‧‧‧ Conductor plug
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103137402A TW201507154A (en) | 2012-07-13 | 2012-07-13 | Trench gate MOSFET |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103137402A TW201507154A (en) | 2012-07-13 | 2012-07-13 | Trench gate MOSFET |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201507154A true TW201507154A (en) | 2015-02-16 |
Family
ID=53019497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103137402A TW201507154A (en) | 2012-07-13 | 2012-07-13 | Trench gate MOSFET |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201507154A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10818800B2 (en) | 2017-12-22 | 2020-10-27 | Nanya Technology Corporation | Semiconductor structure and method for preparing the same |
-
2012
- 2012-07-13 TW TW103137402A patent/TW201507154A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10818800B2 (en) | 2017-12-22 | 2020-10-27 | Nanya Technology Corporation | Semiconductor structure and method for preparing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI470790B (en) | Trench gate mosfet | |
US9865694B2 (en) | Split-gate trench power mosfet with protected shield oxide | |
TWI458097B (en) | Trench gate mosfet and method of forming the same | |
TWI512841B (en) | Method of forming trench gate mosfet | |
TWI629795B (en) | Trench power semiconductor device and manufacturing method thereof | |
CN111092123A (en) | Lateral double-diffused transistor and manufacturing method thereof | |
TWI567830B (en) | Trench power transistor structure and manufacturing method thereof | |
TWI622124B (en) | Manufacturing method of trench power semiconductor device | |
US20170365708A1 (en) | Trench power semiconductor device | |
TWI678805B (en) | Trench power semiconductor device and manufacturing method thereof | |
TWI488309B (en) | Trench gate mosfet and method of forming the same | |
CN107910269B (en) | Power semiconductor device and method of manufacturing the same | |
TW202215548A (en) | Ldmos transistor and manufacturing method thereof | |
TWI546956B (en) | Trench gate mosfet | |
CN109887840B (en) | Manufacturing method of trench gate metal oxide semiconductor field effect transistor | |
CN107910271B (en) | Power semiconductor device and method of manufacturing the same | |
TW201507154A (en) | Trench gate MOSFET | |
TWI435447B (en) | Power mosfet and method of fabricating the same | |
CN108511346B (en) | Manufacturing method of LDMOS device | |
CN109216450B (en) | Manufacturing method of trench type power semiconductor element | |
TW201924049A (en) | Power transistor and manufacturing method thereof | |
CN108321206B (en) | LDMOS device and manufacturing method thereof | |
TWI517398B (en) | Lateral double diffused metal-oxide-semiconductor device and method for forming the same | |
TW201926470A (en) | Trench gate MOSFET |