TW201426860A - Method for forming through hole or contact hole - Google Patents
Method for forming through hole or contact hole Download PDFInfo
- Publication number
- TW201426860A TW201426860A TW102140584A TW102140584A TW201426860A TW 201426860 A TW201426860 A TW 201426860A TW 102140584 A TW102140584 A TW 102140584A TW 102140584 A TW102140584 A TW 102140584A TW 201426860 A TW201426860 A TW 201426860A
- Authority
- TW
- Taiwan
- Prior art keywords
- etching
- dielectric layer
- plasma
- time period
- barrier layer
- Prior art date
Links
Landscapes
- Drying Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
本發明屬於半導體製造技術領域,具體涉及一種通孔或接觸孔的形成方法。 The invention belongs to the technical field of semiconductor manufacturing, and in particular relates to a method for forming a through hole or a contact hole.
在採用乾法刻蝕製作連接金屬結構與電介質的通孔或者連接金屬結構與金屬結構的接觸孔的過程中,為了減少等離子體刻蝕對金屬結構的影響,並且保證電介質材料刻蝕的均勻性,通常在金屬結構之上形成一層刻蝕阻擋層(etch stop layer)以在等離子體刻蝕過程中保護金屬結構(參見圖1所示),其中圖1中的結構包括:光刻膠101、第一電介質層102、刻蝕阻擋層103、第二電介質層104以及位於第二電介質層104內部的金屬結構105。位於金屬結構之上的刻蝕阻擋層103通常選用相對被刻蝕去除的介質層(如第一電介質層102)所用材料的刻蝕速率選擇比高的電介質材料(如SiN、摻雜碳的SiN或者SiC等),以使對第一電介質層102有足夠的過刻蝕(overetch)以保證第一電介質層102能夠完全打開,穿透第一電介質層102和刻蝕阻擋層103並形成與金屬結構相連的通孔或接觸孔,如圖2和3所示。 In the process of making a through hole connecting a metal structure and a dielectric or a contact hole connecting a metal structure and a metal structure by dry etching, in order to reduce the influence of plasma etching on the metal structure, and ensuring uniformity of etching of the dielectric material Generally, an etch stop layer is formed on the metal structure to protect the metal structure during the plasma etching process (see FIG. 1), wherein the structure in FIG. 1 includes: a photoresist 101, The first dielectric layer 102, the etch stop layer 103, the second dielectric layer 104, and the metal structure 105 located inside the second dielectric layer 104. The etch stop layer 103 over the metal structure generally selects a higher dielectric material (such as SiN, carbon-doped SiN) than the material used for the dielectric layer (such as the first dielectric layer 102) to be etched away. Or SiC or the like) so that the first dielectric layer 102 has sufficient overetch to ensure that the first dielectric layer 102 can be completely opened, penetrate the first dielectric layer 102 and the etch stop layer 103 and form a metal Through holes or contact holes connected to the structure, as shown in Figures 2 and 3.
但是,傳統的形成通孔或接觸孔的刻蝕方法有如下缺點:一方面,傳統的刻蝕方法在刻蝕阻擋層刻蝕 過程中易發生底切(undercut),即通孔或接觸孔的底部的寬度大於金屬結構的寬度,過多地去掉了刻蝕阻擋層(如圖3所示的A區域);另一方面,傳統的刻蝕方法由於有較高的自偏壓,通常會導致金屬結構(如Cu或Al)在乾法刻蝕過程中產生濺射,造成等離子體誘導損傷(plasma induced damage,PID)。因此,傳統的刻蝕工藝在金屬暴露於等離子體之後,等離子體中的活性自由基會造成金屬表面的改性,而正離子的物理轟擊作用會引起金屬的濺射,因此會影響半導體結構的電性能。 However, conventional etching methods for forming via holes or contact holes have the following disadvantages: on the one hand, conventional etching methods are performed in an etch barrier layer. The undercut is easy to occur in the process, that is, the width of the bottom of the through hole or the contact hole is larger than the width of the metal structure, and the etching barrier layer is excessively removed (the A area shown in FIG. 3); Due to the high self-biasing method, the etching method usually causes metal structures (such as Cu or Al) to be sputtered during dry etching, resulting in plasma induced damage (PID). Therefore, in the conventional etching process, after the metal is exposed to the plasma, the living radicals in the plasma cause the modification of the metal surface, and the physical bombardment of the positive ions causes the sputtering of the metal, thus affecting the structure of the semiconductor. Electrical performance.
為解決現有技術中由於通孔或接觸孔採用傳統方法製作的半導體結構的電性能不高的問題,本發明實施例提供一種通孔或接觸孔的形成方法,所述方法包括:刻蝕第一電介質層;刻蝕位於所述第一電介質層下方的刻蝕阻擋層,以暴露出位於所述刻蝕阻擋層下方的第二電介質層中的金屬結構;其特徵在於,所述刻蝕位於所述第一電介質層下方的刻蝕阻擋層包括:重複執行第一刻蝕過程;其中,所述第一刻蝕過程由下述步驟(a)和(b)組成:(a)在第一時間段內,向反應腔室內施加高射頻功率,以對所述刻蝕阻擋層進行乾法刻蝕;(b)在第二時間段內,向反應腔室內施加低射頻功率,以澱積聚合物用以保護所述通孔或接觸孔的側壁。 In order to solve the problem that the electrical performance of the semiconductor structure fabricated by the conventional method is not high due to the through hole or the contact hole in the prior art, the embodiment of the present invention provides a method for forming a via hole or a contact hole, the method comprising: etching the first a dielectric layer; etching an etch barrier layer under the first dielectric layer to expose a metal structure in the second dielectric layer under the etch barrier layer; wherein the etch is located The etch barrier layer under the first dielectric layer includes: repeatedly performing a first etching process; wherein the first etching process is composed of the following steps (a) and (b): (a) at the first time In the segment, a high RF power is applied to the reaction chamber to dry etch the etch barrier; (b) a low RF power is applied to the reaction chamber during the second time period to deposit the polymer. A sidewall for protecting the through hole or the contact hole.
較佳地,所述刻蝕第一電介質層包括重複執行第二刻蝕過程;其中,所述第二刻蝕過程由下述步驟(c) 和(d)組成:(c)在第三時間段內,向反應腔室內施加高射頻功率,以對所述第一電介質層進行乾法刻蝕;(d)在第四時間段內,向反應腔室內施加低射頻功率,以澱積聚合物用以保護所述通孔或接觸孔的側壁。 Preferably, the etching the first dielectric layer comprises repeatedly performing a second etching process; wherein the second etching process is performed by the following step (c) And (d) consisting of: (c) applying a high RF power to the reaction chamber during the third time period to dry etch the first dielectric layer; (d) during the fourth time period, A low RF power is applied within the reaction chamber to deposit a polymer to protect the sidewalls of the via or contact hole.
較佳地,一所述第一時間段和一所述第二時間段構成一第一脈衝週期,第一脈衝頻率為10KHz-500KHz;和/或,一所述第三時間段和一所述第四時間段構成一第二脈衝週期,第二脈衝頻率為10KHz-500KHz。 Preferably, the first time period and the second time period constitute a first pulse period, the first pulse frequency is 10 kHz-500 kHz; and/or, the third time period and the The fourth period of time constitutes a second pulse period, and the second pulse frequency is 10 kHz to 500 kHz.
較佳地,所述刻蝕位於所述第一電介質層下方的刻蝕阻擋層時,第一占空比在10%~90%之間;其中所述第一占空比為在一個所述第一刻蝕過程內所述第一時間段與所述第一時間段和所述第二時間段之和的比值。 Preferably, when the etching is located on the etch barrier layer under the first dielectric layer, the first duty ratio is between 10% and 90%; wherein the first duty ratio is in one of the The ratio of the first time period to the sum of the first time period and the second time period in the first etching process.
較佳地,所述刻蝕位於所述第一電介質層下方的刻蝕阻擋層採用等離子體射頻源功率和等離子體射頻偏置功率完成;其中,在不同的所述第一刻蝕過程中,所述第一時間段和所述第二時間段均保持不變、且所述第一占空比在40%~90%之間。 Preferably, the etching the etch barrier under the first dielectric layer is performed by using a plasma RF source power and a plasma RF bias power; wherein, in the different first etching processes, The first time period and the second time period remain unchanged, and the first duty ratio is between 40% and 90%.
較佳地,所述刻蝕位於所述第一電介質層下方的刻蝕阻擋層採用等離子體射頻源功率和等離子體射頻偏置功率完成;其中,在所述刻蝕位於所述第一電介質層下方的刻蝕阻擋層的過程中,所述第一占空比逐漸減小。 Preferably, the etching the etch barrier under the first dielectric layer is performed by using a plasma RF source power and a plasma RF bias power; wherein the etching is located in the first dielectric layer During the underlying etch stop, the first duty cycle is gradually reduced.
較佳地,所述刻蝕位於所述第一電介質層下方的刻蝕阻擋層採用等離子體射頻源功率完成;其中,在不同的所述第一刻蝕過程中,所述第一時間段和所述第二 時間段均保持不變、且所述第一占空比在50%~90%之間。 Preferably, the etching the etch barrier layer under the first dielectric layer is completed by using a plasma RF source power; wherein, in the different first etching processes, the first time period and The second The time period remains unchanged, and the first duty cycle is between 50% and 90%.
較佳地,所述刻蝕位於所述第一電介質層下方的刻蝕阻擋層採用等離子體射頻源功率完成;其中,在所述刻蝕位於所述第一電介質層下方的刻蝕阻擋層的過程中,所述第一占空比逐漸減小。 Preferably, the etching the etch barrier under the first dielectric layer is performed by using a plasma RF source power; wherein the etching the etch barrier under the first dielectric layer During the process, the first duty cycle gradually decreases.
較佳地,所述刻蝕第一電介質層時,第二占空比在10%~90%之間;其中所述第二占空比為在一個所述第二刻蝕過程內所述第三時間段與所述第三時間段和所述第四時間段之和的比值。 Preferably, when the first dielectric layer is etched, the second duty ratio is between 10% and 90%; wherein the second duty ratio is the first one in the second etching process The ratio of the three time periods to the sum of the third time period and the fourth time period.
較佳地,所述刻蝕第一電介質層採用等離子體射頻源功率和等離子體射頻偏置功率完成;其中,在不同的所述第二刻蝕過程中,所述第三時間段和所述第四時間段均保持不變、且所述第二占空比在40%~90%之間。 Preferably, the etching the first dielectric layer is performed by using a plasma RF source power and a plasma RF bias power; wherein, in the different the second etching process, the third time period and the The fourth time period remains unchanged, and the second duty ratio is between 40% and 90%.
較佳地,所述刻蝕第一電介質層採用等離子體射頻源功率和等離子體射頻偏置功率完成;其中,在所述刻蝕第一電介質層的過程中,所述第二占空比逐漸減小。 Preferably, the etching the first dielectric layer is performed by using a plasma RF source power and a plasma RF bias power; wherein, in the etching the first dielectric layer, the second duty cycle is gradually Reduced.
較佳地,所述刻蝕第一電介質層採用等離子體射頻源功率完成;其中,在不同的所述第二刻蝕過程中,所述第三時間段和所述第四時間段均保持不變、且所述第二占空比在50%~90%之間。 Preferably, the etching the first dielectric layer is performed by using a plasma RF source power; wherein, in different the second etching processes, the third time period and the fourth time period are not maintained The second duty ratio is between 50% and 90%.
較佳地,所述刻蝕第一電介質層採用等離子體射頻源功率完成;其中,在所述刻蝕第一電介質層的過程中,所述第二占空比逐漸減小。 Preferably, the etching the first dielectric layer is performed by using a plasma RF source power; wherein, in the etching the first dielectric layer, the second duty ratio is gradually decreased.
較佳地,所述刻蝕位於所述第一電介質層下方的刻蝕阻擋層時,所述刻蝕阻擋層所用材料對所述第一電介質層所用材料的選擇比在1.5:1~1:3之間。 Preferably, when the etching is located on the etch barrier layer under the first dielectric layer, the ratio of the material used for the etch barrier layer to the material used for the first dielectric layer is 1.5:1~1: Between 3
較佳地,所述刻蝕位於所述第一電介質層下方的刻蝕阻擋層包括:對所述刻蝕阻擋層進行主刻蝕,以去除所述通孔或接觸孔內的第一部分所述刻蝕阻擋層;對所述刻蝕阻擋層進行過刻蝕,以去除所述通孔或接觸孔內的剩餘部分所述刻蝕阻擋層,並暴露出位於所述第二電介質層中的所述金屬結構。 Preferably, the etching the etch barrier layer under the first dielectric layer comprises: performing a main etch on the etch barrier layer to remove the first portion of the via hole or the contact hole Etching the barrier layer; etching the etch stop layer to remove the remaining portion of the via or the contact etch stop layer, and exposing the portion located in the second dielectric layer Metal structure.
較佳地,所述刻蝕第一電介質層包括:對所述第一電介質層進行主刻蝕,以去除所述通孔或接觸孔內的第一部分所述第一電介質層;對所述第一電介質層進行過刻蝕,以去除所述通孔或接觸孔內的剩餘部分所述第一電介質層,並暴露出所述刻蝕阻擋層。 Preferably, the etching the first dielectric layer comprises: performing a main etch on the first dielectric layer to remove the first portion of the first dielectric layer in the via or contact hole; A dielectric layer is overetched to remove the remaining portion of the first dielectric layer in the via or contact hole and expose the etch stop.
較佳地,所述刻蝕位於所述第一電介質層下方的刻蝕阻擋層所用氣體包括CF4、C4F8、C4F6、CHF3、CH2F2中的一種或者幾種的組合。 Preferably, the gas used for etching the etch barrier layer under the first dielectric layer comprises one or more of CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 The combination.
本發明實施例提供的通孔或接觸孔的形成方法,在對刻蝕阻擋層進行刻蝕時,重複迴圈執行在第一時間段內對刻蝕阻擋層進行乾法刻蝕、在第二時間段內停止對刻蝕阻擋層進行乾法刻蝕。採用這種方法,在第二時間段內在第一電介質層和刻蝕阻擋層的側壁沉積聚合物,這些聚合物能夠在刻蝕過程中保護刻蝕阻擋層的側壁,減少了底切的發生;同時,在停止刻蝕過程的第二時間段內,矽片表面累積的電荷以及矽片內部俘獲後的電荷會得到釋放,所以能夠從根本上減少PID。可見,本發明實施例提供的通孔或接觸孔的形成方法能夠在整體上提高採用該通 孔或接觸孔的半導體結構的電性能。 In the method for forming a via hole or a contact hole provided by an embodiment of the present invention, when etching the etch barrier layer, repeating the loop performs dry etching of the etch barrier layer in the first period of time, and in the second The etch stop layer is dry etched during the time period. In this method, a polymer is deposited on the sidewalls of the first dielectric layer and the etch barrier during the second period of time, and these polymers can protect the sidewalls of the etch barrier during the etching process, thereby reducing the occurrence of undercuts; At the same time, during the second period of time during which the etching process is stopped, the charge accumulated on the surface of the cymbal and the charge trapped inside the cymbal sheet are released, so that the PID can be fundamentally reduced. It can be seen that the method for forming the through hole or the contact hole provided by the embodiment of the present invention can improve the adoption of the pass as a whole. Electrical properties of a semiconductor structure of a hole or contact hole.
101‧‧‧覆光刻膠 101‧‧‧Photolithography
102‧‧‧第一電介質層 102‧‧‧First dielectric layer
103‧‧‧刻蝕阻擋層 103‧‧‧etch barrier
104‧‧‧第二電介質層 104‧‧‧Second dielectric layer
105‧‧‧金屬結構 105‧‧‧Metal structure
為了更清楚地說明本發明實施例或現有技術中的技術方案,下面將對實施例或先前技術描述中所需要使用的附圖作簡單地介紹,圖中相同的標記表示相同的部件,顯而易見地,下面描述中的附圖是本發明的一些實施例,對於本領域普通技術人員來講,在不付出創造性勞動的前提下,還可以根據這些附圖獲得其他的附圖。在全部附圖中相同的附圖標記指示相同的部分。並未刻意按實際尺寸等比例縮放繪製附圖,重點在於示出本發明的主旨。 BRIEF DESCRIPTION OF THE DRAWINGS In order to more clearly illustrate the embodiments of the present invention or the prior art, the drawings in which the embodiments or the prior art description are used will be briefly described. The drawings in the following description are some embodiments of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any creative work. The same reference numerals are used throughout the drawings to refer to the same parts. The drawings are not intended to be scaled to scale in actual size, with emphasis on the gist of the present invention.
圖1是通孔或接觸孔形成之前的結構示意圖;圖2是採用傳統方法製作通孔或接觸孔時刻蝕第一電介質層之後形成的結構示意圖;圖3是採用傳統方法製作的通孔或接觸孔的結構示意圖;圖4是本發明實施例一提供的通孔或接觸孔的製作方法的流程圖;圖5是採用本發明實施例一提供的通孔或接觸孔的製作方法製作的通孔或接觸孔的結構示意圖;圖6是本發明實施例一製作通孔或接觸孔時所採用的等離子體射頻功率的波形圖;圖7~8是本發明實施例一第一示例的等離子體射頻功率的波形圖;圖9~10是本發明實施例一第二示例的等離子體射頻功率的波形圖;圖11是本發明實施例二提供的通孔或接觸孔的製作方法的 流程圖;圖12~15是採用本發明實施例二提供的製作方法製作通孔或接觸孔過程中各個階段的結構示意圖。 1 is a schematic structural view of a through hole or a contact hole before forming; FIG. 2 is a schematic view of a structure formed by etching a first dielectric layer when a via hole or a contact hole is formed by a conventional method; and FIG. 3 is a through hole or contact formed by a conventional method; FIG. 4 is a flow chart of a method for fabricating a through hole or a contact hole according to Embodiment 1 of the present invention; and FIG. 5 is a through hole formed by using the through hole or contact hole provided by Embodiment 1 of the present invention; Or a schematic diagram of the structure of the contact hole; FIG. 6 is a waveform diagram of the plasma RF power used in the fabrication of the via hole or the contact hole according to the embodiment of the present invention; FIGS. 7-8 are plasma RF signals according to the first example of the first embodiment of the present invention. FIG. 9 is a waveform diagram of plasma RF power according to a second example of the first embodiment of the present invention; FIG. 11 is a method for fabricating a through hole or a contact hole according to Embodiment 2 of the present invention; 12 to 15 are schematic structural views of various stages in the process of fabricating through holes or contact holes by using the manufacturing method provided by the second embodiment of the present invention.
為使本發明實施例的目的、技術方案和優點更加清楚,下面將結合本發明實施例中的附圖,對本發明實施例中的技術方案進行清楚、完整地描述,顯然,所描述的實施例是本發明一部分實施例,而不是全部的實施例。基於本發明中的實施例,本領域普通技術人員在沒有做出創造性勞動前提下所獲得的所有其他實施例,都屬於本發明保護的範圍。 The technical solutions in the embodiments of the present invention will be clearly and completely described in conjunction with the drawings in the embodiments of the present invention. It is a partial embodiment of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
為製作高電性能的半導體結構,本發明實施例提出了以下技術方案。 In order to fabricate a semiconductor structure of high electrical performance, the following technical solutions are proposed in the embodiments of the present invention.
為此,本發明實施例一提供一種通孔或接觸孔的製作方法,圖4示出了該製作方法的流程圖,該方法包括以下步驟: To this end, the first embodiment of the present invention provides a method for fabricating a through hole or a contact hole, and FIG. 4 shows a flow chart of the manufacturing method. The method includes the following steps:
步驟S401:刻蝕第一電介質層102; Step S401: etching the first dielectric layer 102;
具體地,在執行步驟S401之前,還可以先在第一電介質層102的預定區域塗覆光刻膠101,以在後續刻蝕過程中保護第一電介質層102,其中該預定區域可以是形成通孔或接觸孔之外的區域。 Specifically, before performing step S401, the photoresist 101 may be first coated on a predetermined region of the first dielectric layer 102 to protect the first dielectric layer 102 during the subsequent etching process, wherein the predetermined region may be formed. A hole or area outside the contact hole.
在刻蝕第一電介質層102的過程中,可以採用傳統的乾法刻蝕,也可以採用其他適用的刻蝕方法。 In the process of etching the first dielectric layer 102, a conventional dry etching may be employed, or other suitable etching methods may be employed.
需要說明的是,本步驟S401的乾法刻蝕可以採用雙頻電源驅動放電的方式,即刻蝕第一電介質層102的 過程可以採用等離子體射頻源功率(source power)和/或等離子體射頻偏置功率(bias power)完成,即可以單獨採用等離子體射頻源功率完成或者單獨採用等離子體射頻偏置功率完成、還可以採用等離子體射頻源功率和等離子體射頻偏置功率相結合的方式完成。其中,本發明實施例中的等離子體射頻源功率的頻率可以在25MHz~120MHz範圍內,該頻率的等離子體射頻源功率主要用於控制等離子體的密度;等離子體射頻偏置功率的頻率可以在2MHz~15MHz範圍內,該頻率的等離子體射頻偏置功率主要用於控制等離子體的能量。 It should be noted that the dry etching in step S401 can be performed by using a dual-frequency power source to drive the discharge, that is, etching the first dielectric layer 102. The process can be performed using plasma RF source power and/or plasma RF bias power, which can be done by plasma RF source power alone or by plasma RF bias power alone. This is accomplished by a combination of plasma RF source power and plasma RF bias power. The frequency of the plasma RF source power in the embodiment of the present invention may be in the range of 25 MHz to 120 MHz. The plasma RF source power of the frequency is mainly used to control the density of the plasma; the frequency of the plasma RF bias power may be In the range of 2MHz~15MHz, the plasma RF bias power of this frequency is mainly used to control the energy of the plasma.
步驟S402:刻蝕位於第一電介質層102下方的刻蝕阻擋層103,以暴露出位於其下方的第二電介質層104中的金屬結構105;其中,步驟S402可以通過重複執行第一刻蝕過程來完成,該第一刻蝕過程可以由如下兩個步驟(a)和(b)組成: Step S402: etching the etch barrier layer 103 under the first dielectric layer 102 to expose the metal structure 105 in the second dielectric layer 104 underneath; wherein step S402 can repeatedly perform the first etching process To complete, the first etching process can be composed of the following two steps (a) and (b):
(a)在第一時間段t1內,向反應腔室內施加高射頻功率,對刻蝕阻擋層103進行乾法刻蝕;其中,該高射頻功率的功率可以在500-1200W範圍內,該高射頻功率的頻率可以在2MHz以上;(b)在第二時間段t2內,向反應腔室內施加低射頻功率,該低射頻功率的頻率可以為高射頻功率值的40%及以下,另外,該低射頻功率還可以在0-300W範圍內,此時,停止對刻蝕阻擋層103進行乾法刻蝕,以澱積聚合物用以保護所述通孔或接觸孔的側壁。 (a) applying a high RF power to the reaction chamber during the first time period t1, and performing dry etching on the etch barrier layer 103; wherein the power of the high RF power may be in the range of 500-1200 W, which is high. The frequency of the radio frequency power may be above 2 MHz; (b) applying a low RF power to the reaction chamber during the second time period t2, the frequency of the low RF power may be 40% or less of the high RF power value, in addition, The low RF power can also be in the range of 0-300 W. At this time, the etch stop layer 103 is stopped from being dry etched to deposit a polymer to protect the sidewalls of the via or contact hole.
其中,本發明實施例中的高射頻功率和低射頻功率是指同一個射頻電源輸出的同一種頻率、且具有兩種功 率輸出狀態,兩個階段變化的僅是功率的大小。 The high RF power and the low RF power in the embodiment of the present invention refer to the same frequency output by the same RF power source, and have two functions. Rate output state, the only change in the two phases is the size of the power.
對刻蝕阻擋層103的乾法刻蝕可以採用重複執行第一刻蝕過程的方式進行,即採用不斷連續執行步驟(a)和步驟(b)的方式進行。在實際操作過程中,可以連續交替執行步驟(a)和步驟(b),即採用步驟(a)-步驟(b)-步驟(a)-步驟(b)……步驟(a)-步驟(b)的方式。連續執行一個步驟(a)和一個步驟(b)即為一個第一刻蝕過程,其中每個第一刻蝕過程可以總是以步驟(a)開始、以步驟(b)結束、且每個第一刻蝕過程所經歷的總時間(該總時間t=t1+t2)可以是固定不變的;即,第一時間段t1可以改變、第二時間段t2可以改變、但是t的值是不變的。本步驟S402中,在第一時間段t1內施加高射頻功率以執行乾法刻蝕操作,在第二時間段t2內施加低射頻功率以澱積聚合物用以保護所述通孔或接觸孔的側壁;即,採用脈衝的方式執行對刻蝕阻擋層103的乾法刻蝕。其中,第一時間段t1和第二時間段t2的長度可以滿足如下關係:第一時間段t1與第一時間段t1和第二時間段t2之和的比值在0.1~0.9之間,即第一占空比在10%~90%之間,其中第一占空比M1=t1/(t1+t2)=t1/t。 The dry etching of the etch stop layer 103 can be performed by repeating the first etching process, that is, by continuously performing the steps (a) and (b) continuously. In the actual operation, step (a) and step (b) may be alternately performed, that is, step (a) - step (b) - step (a) - step (b) ... step (a) - step ( b) way. Performing one step (a) and one step (b) continuously is a first etching process, wherein each first etching process may always start with step (a), end with step (b), and each The total time experienced by the first etching process (the total time t=t1+t2) may be fixed; that is, the first time period t1 may change, the second time period t2 may change, but the value of t is Changeless. In this step S402, a high RF power is applied in the first time period t1 to perform a dry etching operation, and a low RF power is applied in the second time period t2 to deposit a polymer to protect the through hole or the contact hole. The sidewalls; that is, the dry etching of the etch barrier layer 103 is performed in a pulsed manner. The length of the first time period t1 and the second time period t2 may satisfy the following relationship: the ratio of the first time period t1 to the sum of the first time period t1 and the second time period t2 is between 0.1 and 0.9, that is, the first A duty cycle is between 10% and 90%, wherein the first duty cycle M1 = t1/(t1 + t2) = t1/t.
另外,一個第一時間段t1和一個第二時間段t2構成一個第一脈衝週期,第一脈衝頻率可以為10KHz-500KHz。 In addition, a first time period t1 and a second time period t2 form a first pulse period, and the first pulse frequency may be 10 kHz to 500 kHz.
本步驟S402中的乾法刻蝕可以通過向反應腔室內施加高射頻功率的方式完成,具體地,可以採用雙頻電源驅動放電的方式,即對刻蝕阻擋層103進行刻蝕的過程可以採用等離子體射頻源功率和/或等離子體射頻偏置功率完 成,即可以單獨採用等離子體射頻源功率完成或者單獨採用等離子體射頻偏置功率完成、還可以採用等離子體射頻源功率和等離子體射頻偏置功率相結合的方式完成。其中,本發明實施例中的等離子體射頻源功率的頻率可以在25MHz~120MHz範圍內,該頻率的等離子體射頻源功率主要用於控制等離子體的密度,等離子體射頻偏置功率的頻率可以在2MHz~15MHz範圍內),該頻率的等離子體射頻偏置功率主要用於控制等離子體的能量。 The dry etching in the step S402 can be performed by applying high RF power to the reaction chamber. Specifically, the dual-frequency power source can be used to drive the discharge, that is, the etching of the etch barrier layer 103 can be performed. Plasma RF source power and / or plasma RF bias power is completed The process can be completed by using the plasma RF source power alone or by using the plasma RF bias power alone, or by combining the plasma RF source power and the plasma RF bias power. The frequency of the plasma RF source power in the embodiment of the present invention may be in the range of 25 MHz to 120 MHz. The plasma RF source power of the frequency is mainly used to control the density of the plasma, and the frequency of the plasma RF bias power may be In the range of 2MHz~15MHz), the plasma RF bias power of this frequency is mainly used to control the energy of the plasma.
在實際操作過程中,可以在第一時間段t1內,令等離子體射頻功率(包括等離子體射頻源功率和/或等離子體射頻偏置功率)處於高射頻功率狀態,執行等離子體乾法刻蝕操作;在第二時間段t2內,令射頻功率處於低射頻功率狀態,以澱積聚合物用以保護所述通孔或接觸孔的側壁。即在對刻蝕阻擋層進行刻蝕的整個過程中,等離子體射頻頻率可以按如圖6中的b所示的脈衝波形變化:在第一時間段t1內,等離子體射頻功率處於高射頻功率狀態,在第二時間段t2內,等離子體射頻功率處於低射頻功率狀態,在一個具體實施例中,該低射頻功率狀態的功率可以為零。圖6中的a中的波形圖是微觀的脈衝波形圖,正常的脈衝開啟時的實際波形可以是正弦波,所以圖6中的a和圖6中的b實際是等效的脈衝示意圖。另外,在第一時間段t1內,等離子體射頻功率可以為恒定值,也可以隨時間而變化,本發明對此不作限定。 In the actual operation process, the plasma RF power (including the plasma RF source power and/or the plasma RF bias power) may be in a high RF power state during the first time period t1, and plasma dry etching may be performed. Operating; during the second time period t2, the RF power is placed in a low RF power state to deposit a polymer to protect the sidewalls of the via or contact hole. That is, during the etching of the etch barrier layer, the plasma RF frequency can be changed according to the pulse waveform as shown by b in FIG. 6: during the first time period t1, the plasma RF power is at a high RF power. State, during the second time period t2, the plasma RF power is in a low RF power state, and in one embodiment, the power of the low RF power state may be zero. The waveform diagram in a in Fig. 6 is a microscopic pulse waveform diagram, and the actual waveform when the normal pulse is turned on may be a sine wave, so a in Fig. 6 and b in Fig. 6 are actually equivalent pulse diagrams. In addition, in the first time period t1, the plasma RF power may be a constant value or may change with time, which is not limited by the present invention.
在第二時間段t2內,雖然等離子體射頻功率處於低射頻功率狀態,但是此時工藝腔內仍然有大量的啟動粒子(radical),這些啟動粒子具有很高的反應活性,會在工藝 腔內反應形成聚合物,這些聚合物沉積在第一電介質層102和刻蝕阻擋層103的側壁。當等離子體射頻功率回到高射頻功率狀態(即執行刻蝕操作)時,沉積在刻蝕阻擋層103的側壁的聚合物會保護刻蝕阻擋層103的側壁,從而減少了底切的發生。採用本發明實施例一提供的通孔或接觸孔的形成方法製作的通孔或接觸孔可以具有如圖5所示的結構,該通孔或接觸孔正好完全暴露出金屬結構105、且沒有對刻蝕阻擋層103的過多刻蝕,沒有底切現象發生。 In the second time period t2, although the plasma RF power is in a low RF power state, there are still a large number of rading particles in the process chamber, and these priming particles have high reactivity and will be in the process. The intracavity reaction forms a polymer which is deposited on the sidewalls of the first dielectric layer 102 and the etch stop layer 103. When the plasma RF power returns to a high RF power state (i.e., an etching operation is performed), the polymer deposited on the sidewalls of the etch barrier layer 103 protects the sidewalls of the etch barrier layer 103, thereby reducing the occurrence of undercuts. The through hole or the contact hole formed by the method for forming the through hole or the contact hole provided by the first embodiment of the present invention may have a structure as shown in FIG. 5, the through hole or the contact hole just completely exposing the metal structure 105, and there is no Excessive etching of the etch barrier layer 103 occurs without undercutting.
在傳統的等離子體刻蝕條件下,正電荷會在電場加速下注入電介質材料的表面和內部,隨時間的增加,電荷累積越來越多,在電勢差的情況下會形成電流,造成器件的損傷,即使在等離子體射頻偏置功率為零的情況下,這種等離子體誘導損傷(PID)仍然很嚴重。而在本發明實施例一中,採用脈衝等離子體來進行刻蝕,在第二時間段t2內,等離子體射頻功率處於關閉狀態,此時,矽片表面累積的電荷以及矽片內部俘獲(trap)的電荷會得到釋放,所以能夠從根本上減少PID。 Under the traditional plasma etching conditions, the positive charge will be injected into the surface and inside of the dielectric material under the acceleration of the electric field. As time increases, the charge accumulates more and more, and in the case of potential difference, current will be formed, causing damage to the device. This plasma induced damage (PID) is still severe even when the plasma RF bias power is zero. In the first embodiment of the present invention, the pulse plasma is used for etching. During the second time period t2, the plasma RF power is turned off. At this time, the accumulated charge on the surface of the cymbal and the internal trap of the cymbal (trap) The charge will be released, so the PID can be radically reduced.
需要說明的是,在對刻蝕阻擋層進行過刻蝕的過程中,即金屬暴露在等離子體的過程中,採用脈衝等離子體可以在金屬表面形成一層聚合物,這層聚合物能夠減少過刻蝕過程中F、O等活性自由基對金屬表面的腐蝕以及離子對金屬表面的物理轟擊引起的濺射作用。 It should be noted that in the process of over etching the etch barrier layer, that is, during the process of exposing the metal to the plasma, a pulsed plasma can be used to form a layer of polymer on the metal surface, which can reduce the engraving. The sputtering effect of active radicals such as F and O on the metal surface during etching and the physical bombardment of ions on the metal surface.
本發明實施例一提供的通孔或接觸孔的形成方法,在對刻蝕阻擋層進行刻蝕時,重複迴圈執行在第一時間段內採用高射頻功率對刻蝕阻擋層進行乾法刻蝕、在第二時間段內採用低射頻功率澱積聚合物用以保護通孔或接觸 孔的側壁進行乾法刻蝕。採用這種方法,在第二時間段內在第一電介質層和刻蝕阻擋層的側壁沉積聚合物,這些聚合物能夠在刻蝕過程中保護刻蝕阻擋層的側壁,減少了底切的發生;同時,在停止刻蝕過程的第二時間段內,矽片表面累積的電荷以及矽片內部俘獲後的電荷會得到釋放,所以能夠從根本上減少PID。可見,本發明實施例提供的通孔或接觸孔的形成方法能夠在整體上提高採用該通孔或接觸孔的半導體結構的電性能。 A method for forming a via hole or a contact hole according to Embodiment 1 of the present invention, when etching the etch barrier layer, repeating the loop to perform dry etching of the etch barrier layer by using high RF power in the first period of time Etching, using a low RF power to deposit a polymer to protect vias or contacts during the second time period The sidewalls of the holes are dry etched. In this method, a polymer is deposited on the sidewalls of the first dielectric layer and the etch barrier during the second period of time, and these polymers can protect the sidewalls of the etch barrier during the etching process, thereby reducing the occurrence of undercuts; At the same time, during the second period of time during which the etching process is stopped, the charge accumulated on the surface of the cymbal and the charge trapped inside the cymbal sheet are released, so that the PID can be fundamentally reduced. It can be seen that the method for forming the via hole or the contact hole provided by the embodiment of the present invention can improve the electrical properties of the semiconductor structure using the via hole or the contact hole as a whole.
需要說明的是,在上述刻蝕過程(包括步驟S401和/或步驟S402)中,所採用的刻蝕氣體可以包括CF4、C4F8、C4F6、CHF3、CH2F2中的一種或者幾種的組合,另外,該刻蝕氣體還可以含有一定量的Ar以及O2等,其中Ar可以用於稀釋刻蝕氣體,O2有助於刻蝕過程中聚合物的產生。在本發明一個較佳實施例中,刻蝕氣體可以採用由CF4、Ar和O2組成的混合氣體,另外,還可以在該混合氣體中添加一定量的C4F8、C4F6、CHF3、CH2F2中的一種或者幾種以進一步提高刻蝕效果。 It should be noted that, in the above etching process (including step S401 and/or step S402), the etching gas used may include CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 . One or a combination of the two, in addition, the etching gas may also contain a certain amount of Ar and O 2 , etc., wherein Ar can be used to dilute the etching gas, and O 2 contributes to the production of the polymer during the etching process. . In a preferred embodiment of the present invention, the etching gas may be a mixed gas composed of CF 4 , Ar and O 2 , and a certain amount of C 4 F 8 and C 4 F 6 may be added to the mixed gas. One or several of CHF 3 and CH 2 F 2 to further improve the etching effect.
實際上,本發明實施例對刻蝕阻擋層進行刻蝕的過程可以有多種實現方式,以下以幾個具體示例為例對這些方式進行介紹,需要說明的是,本發明實施例對刻蝕阻擋層進行刻蝕的方式並不限於下述幾種方式,本領域普通技術人員也可以在本發明技術方案的基礎上採用其他適用的方式。 In fact, the process of etching the etch barrier layer in the embodiment of the present invention may be implemented in various manners. The following describes the manners by taking several specific examples as an example. It should be noted that the embodiment of the present invention blocks the etch. The manner in which the layer is etched is not limited to the following manners, and those skilled in the art may also adopt other suitable methods based on the technical solutions of the present invention.
在對刻蝕阻擋層進行刻蝕的過程中,可以同時採用等離子體射頻源功率和等離子體射頻偏置功率,且等離 子體射頻偏置功率可以按脈衝方式設置,即在一段時間等離子體射頻偏置功率大於零、在隨後的另一段時間等離子體射頻偏置功率等於零;例如在第一時間段t1內等離子體射頻偏置功率為高射頻功率狀態、在第二時間段t2內等離子體射頻偏置功率為低射頻功率狀態,如圖7中的b所示;而在此過程中,等離子體射頻源功率可以保持大於零且保持恒定不變,如圖7中的a所示。 In the process of etching the etch barrier layer, plasma RF source power and plasma RF bias power can be simultaneously used, and is equally spaced The daughter body RF bias power can be set in a pulsed manner, that is, the plasma RF bias power is greater than zero for a period of time, and the plasma RF bias power is equal to zero at a later period; for example, the plasma RF during the first time period t1 The bias power is a high RF power state, and the plasma RF bias power is a low RF power state during the second time period t2, as shown by b in FIG. 7; and in this process, the plasma RF source power can be maintained. It is greater than zero and remains constant, as shown by a in Figure 7.
採用這種方式時,在對刻蝕阻擋層進行刻蝕的整個過程中,即多次重複迴圈連續執行步驟(a)和步驟(b)的過程中,執行一次步驟(a)的時間和執行一次步驟(b)的時間可以保持均不變,即第一時間段t1和第二時間段t2可以均為恒定值。此時,在第一刻蝕過程中,即連續執行一個步驟(a)和一個步驟(b)的過程中,第一占空比可以在40%~90%之間,即t1/(t1+t2)在40%~90%之間,如圖7中的b所示。 In this manner, the time of step (a) is performed during the entire etching process of the etch barrier layer, that is, during the repeated execution of steps (a) and (b) in a plurality of repeated loops. The time for performing step (b) once may be kept constant, that is, the first time period t1 and the second time period t2 may both be constant values. At this time, in the first etching process, that is, during the continuous execution of one step (a) and one step (b), the first duty ratio may be between 40% and 90%, that is, t1/(t1+). T2) is between 40% and 90%, as shown by b in FIG.
另外,採用等離子體射頻源功率和等離子體射頻偏置功率相結合的方式執行刻蝕操作時,在對刻蝕阻擋層進行刻蝕的整個過程中,第一占空比可以逐漸減小,即隨著刻蝕過程的進行,在連續執行的不同的第一刻蝕過程中,第一占空比可以逐漸減小,也即在不同的第一刻蝕過程中t1/(t1+t2)的值不斷減小,但是,第一占空比仍在在10%~90%之間。鑒於每個第一刻蝕過程所用的總時間(t1+t2)保持不變,因此這相當於隨著對刻蝕阻擋層進行刻蝕的進行,執行步驟(a)的時間不斷減小,而執行步驟(b)的時間不斷增大,即在連續執行的不同的第一刻蝕過程中,第一時間段t1不斷減小,第二時間段t2不斷增大,如圖8所示,在連續的 兩個第一刻蝕過程中,時間段t1’小於時間段t1。如圖8中的b所示;而在此過程中,等離子體射頻源功率可以保持大於零且保持恒定不變,如圖8中的a所示。 In addition, when the etching operation is performed by combining the plasma RF source power and the plasma RF bias power, the first duty ratio can be gradually reduced during the etching of the etch barrier layer, that is, As the etching process proceeds, the first duty cycle may be gradually reduced during successively performing different first etching processes, that is, t1/(t1+t2) in different first etching processes. The value keeps decreasing, but the first duty cycle is still between 10% and 90%. Since the total time (t1+t2) used for each first etching process remains unchanged, this is equivalent to the time for performing step (a) decreases as the etching of the etch barrier layer proceeds. The time for performing step (b) is continuously increased, that is, during the different first etching processes that are continuously performed, the first time period t1 is continuously decreased, and the second time period t2 is continuously increased, as shown in FIG. continuously In the two first etching processes, the period t1' is smaller than the period t1. As shown by b in Figure 8; during this process, the plasma RF source power can remain greater than zero and remain constant, as shown by a in Figure 8.
在對刻蝕阻擋層進行刻蝕的過程中,也可以僅採用等離子體射頻源功率執行,且等離子體射頻源功率按脈衝方式設置,即在一段時間等離子體射頻源功率為高射頻功率狀態,在隨後的另一段時間等離子體射頻源功率為低射頻功率狀態;例如在第一時間段t1內等離子體射頻源功率大於零、在第二時間段t2內等離子體射頻源功率等於零。 In the process of etching the etch barrier layer, the plasma RF source power can also be used only, and the plasma RF source power is set in a pulse manner, that is, the plasma RF source power is in a high RF power state for a period of time. At a later time, the plasma RF source power is in a low RF power state; for example, the plasma RF source power is greater than zero during the first time period t1 and the plasma RF source power is equal to zero during the second time period t2.
此時,在不同的第一刻蝕過程中,執行步驟(a)的時間可以完全相同、同時執行步驟(b)的時間也可以完全相同,即在對刻蝕阻擋層進行刻蝕的整個過程中,第一時間段t1保持不變、第二時間段t2也保持不變,參見圖9所示。此時,第一占空比保持不變,但是,第一占空比需要保持在50%~90%之間。 At this time, in different first etching processes, the time for performing step (a) may be completely the same, and the time for performing step (b) may be completely the same, that is, the entire process of etching the etching barrier layer. The first time period t1 remains unchanged, and the second time period t2 remains unchanged, as shown in FIG. At this time, the first duty ratio remains unchanged, but the first duty ratio needs to be maintained between 50% and 90%.
另外,僅採用等離子體射頻源功率時,在對刻蝕阻擋層進行刻蝕的整個過程中,第一占空比可以逐漸減小,即在不同的第一刻蝕過程中t1/(t1+t2)的值不斷減小,但是,第一占空比仍然在10%~90%之間。鑒於每個第一刻蝕過程所用的總時間(t1+t2)保持不變,因此這相當於隨著對刻蝕阻擋層進行刻蝕的進行,執行步驟(a)的時間不斷減小、而執行步驟(b)的時間不斷增大,即在連續執行的不同的第一刻蝕過程中,第一時間段t1不斷減小、第二時間段t2不斷增大,如圖10所示,在連續的兩個第一刻蝕過程中,時間段t1’小於時間段t1。 In addition, when only the plasma RF source power is used, the first duty cycle can be gradually reduced during the etching of the etch barrier layer, that is, t1/(t1+) in different first etching processes. The value of t2) keeps decreasing, but the first duty cycle is still between 10% and 90%. Since the total time (t1+t2) used for each first etching process remains unchanged, this is equivalent to the time for performing step (a) decreases as the etching of the etch barrier layer proceeds. The time for performing step (b) is continuously increased, that is, during the different first etching processes that are continuously performed, the first time period t1 is continuously decreased, and the second time period t2 is continuously increased, as shown in FIG. In the two consecutive first etching processes, the time period t1' is smaller than the time period t1.
另外,本發明實施例一中還可以僅採用等離子體射頻偏置功率的方式製作通孔或接觸孔,在此不再贅述。 In addition, in the first embodiment of the present invention, the through hole or the contact hole can be formed only by using the plasma RF bias power, and details are not described herein again.
需要說明的是,為減少刻蝕工藝對金屬結構的轟擊進而造成金屬濺射,本發明實施例中的等離子體射頻偏置功率應該較低,例如,可以在0~500w範圍內;同時,也需要保證一定的等離子體射頻源功率,例如可以在200~1000W範圍內;此外,通孔或接觸孔形成過程中,還需要保證一定的腔室壓力,如20~200Mt。這些參數可以按具體工藝要求而定,在此不作限定。 It should be noted that, in order to reduce the bombardment of the metal structure by the etching process and thereby cause metal sputtering, the plasma RF bias power in the embodiment of the present invention should be low, for example, in the range of 0 to 500 W; It is necessary to ensure a certain plasma RF source power, for example, in the range of 200 to 1000 W; in addition, a certain chamber pressure, such as 20 to 200 Mt, needs to be ensured during the formation of the via hole or the contact hole. These parameters may be determined according to specific process requirements, and are not limited herein.
上述具體示例給出了幾種對刻蝕阻擋層進行刻蝕的具體實現方式,需要說明的是,這些實現方式可以與本發明實施例中的其他工藝或者參數結合得到其他的技術方案,這些都在本發明實施例的保護範圍內,在此不再一一列舉。 The foregoing specific examples provide several implementations for etching the etch barrier layer. It should be noted that these implementations can be combined with other processes or parameters in the embodiments of the present invention to obtain other technical solutions. Within the scope of protection of the embodiments of the present invention, they are not enumerated here.
另外,本發明實施例中對第一電介質層進行刻蝕的過程也可以有多種不同的實現方式。 In addition, the process of etching the first dielectric layer in the embodiment of the present invention may also have various implementations.
例如,該步驟可以採用等離子體射頻源功率和等離子體射頻偏置功率相結合的方式完成。其中,在每個第二刻蝕過程中,第三時間段t3和第四時間段t4均保持不變,且第二占空比在40%~90%之間;另外,在不同的第二刻蝕過程中,第二占空比還可以逐漸減小,即執行步驟(c)的時間不斷減小、而執行步驟(d)的時間不斷增加,但是,第二占空比仍然在10%~90%之間,該情況類似上述第一示例的情況,在此不再贅述。 For example, this step can be accomplished in a combination of plasma RF source power and plasma RF bias power. Wherein, in each second etching process, the third time period t3 and the fourth time period t4 remain unchanged, and the second duty ratio is between 40% and 90%; in addition, in a different second During the etching process, the second duty cycle can also be gradually reduced, that is, the time for performing step (c) is continuously decreased, and the time for performing step (d) is continuously increased, but the second duty ratio is still at 10%. Between ~90%, the situation is similar to the case of the first example above, and details are not described herein again.
又如,該步驟也可以僅採用等離子體射頻源功率完成。其中,在每個第二刻蝕過程中,第三時間段t3和第 四時間段t4可以均保持不變,且第二占空比在0.4~0.9之間;另外,在不同的第二刻蝕過程中,第二占空比也可以逐漸減小,即執行步驟(c)的時間不斷減小、而執行步驟(d)的時間不斷增加,該情況類似上述第二示例的情況,在此不再贅述。 As another example, this step can also be accomplished using only plasma RF source power. Wherein, in each second etching process, the third time period t3 and the first The four time periods t4 can all remain unchanged, and the second duty ratio is between 0.4 and 0.9. In addition, during the second etching process, the second duty cycle can also be gradually reduced, that is, the steps are performed ( The time of c) is continuously decreasing, and the time for performing step (d) is continuously increased, which is similar to the case of the second example described above, and will not be described herein.
此外,本發明實施例中,一個第三時間段t3和一個第四時間段t4構成一個第二脈衝週期,第二脈衝頻率可以為10KHz-500KHz。 In addition, in the embodiment of the present invention, a third time period t3 and a fourth time period t4 constitute a second pulse period, and the second pulse frequency may be 10 kHz to 500 kHz.
需要說明的是,為更好地防止通孔或接觸孔形成過程中發生底切,本發明實施例中,在刻蝕位於第一電介質層102下方的刻蝕阻擋層103的過程中,刻蝕阻擋層103所用的材料對第一電介質層102所用的材料的刻蝕選擇比可以在1.5:1~1:3之間;另外,該刻蝕阻擋層103還需具有一定的過刻率(OE%),以保證在形成通孔或接觸孔的過程中刻蝕阻擋層103能夠被完全打開。 It should be noted that, in order to better prevent the undercut in the formation of the via hole or the contact hole, in the embodiment of the present invention, during the etching of the etch barrier layer 103 under the first dielectric layer 102, etching is performed. The etching selectivity of the material used for the barrier layer 103 to the material used for the first dielectric layer 102 may be between 1.5:1 and 1:3; in addition, the etching barrier layer 103 also needs to have a certain overetch rate (OE). %) to ensure that the etch stop layer 103 can be fully opened during the formation of the via or contact hole.
另外,本發明實施例的通孔或接觸孔的形成方法還可以採用其他方式實現。 In addition, the method for forming the via hole or the contact hole in the embodiment of the present invention may also be implemented in other manners.
本發明實施例二提供一種形成通孔或接觸孔的方法,圖11示示出了該方法的流程圖,圖12~圖15示出了採用該方法製作通孔或接觸孔時各個階段的結構示意圖。為簡化起見,本發明實施例二僅對其與本發明實施例一的不同之處進行介紹,其與本發明實施例一的相同之處,在此不再贅述。 Embodiment 2 of the present invention provides a method for forming a through hole or a contact hole, FIG. 11 shows a flow chart of the method, and FIGS. 12 to 15 show a schematic structural view of each stage when a through hole or a contact hole is formed by the method. . For the sake of brevity, the second embodiment of the present invention is only described in the same manner as the first embodiment of the present invention, and is not described herein again.
一併參見圖11~15,該方法包括以下步驟: Referring to Figures 11-15 together, the method includes the following steps:
步驟S1101:對第一電介質層102進行主刻蝕, 以去除所述通孔或接觸孔內的第一部分所述第一電介質層,如圖12所示。 Step S1101: performing main etching on the first dielectric layer 102, The first dielectric layer in the first portion of the via or contact hole is removed, as shown in FIG.
步驟S1102:對所述第一電介質層進行過刻蝕,以去除所述通孔或接觸孔內的剩餘部分所述第一電介質層,並暴露出所述刻蝕阻擋層,如圖13所示。 Step S1102: etching the first dielectric layer to remove the remaining portion of the first dielectric layer in the via hole or the contact hole, and exposing the etch barrier layer, as shown in FIG. .
步驟S1103:對所述刻蝕阻擋層進行主刻蝕,以去除所述通孔或接觸孔內的第一部分所述刻蝕阻擋層,以暴露所述金屬結構。如圖14所示。 Step S1103: performing main etching on the etch barrier layer to remove the first portion of the etch barrier layer in the via hole or the contact hole to expose the metal structure. As shown in Figure 14.
步驟S1104:對所述刻蝕阻擋層進行過刻蝕,以保證完全去除所述通孔或接觸孔內的剩餘部分所述刻蝕阻擋層,如圖15所示。 Step S1104: etching the etch stop layer to ensure complete removal of the remaining portion of the via hole or the etch stop layer in the contact hole, as shown in FIG.
此處僅對本發明實施例二的技術方案進行了簡要介紹,需要說明的是,本發明實施例一中的各項參數對本發明實施例二的技術方案同樣適用。例如,本發明實施例二中的各個刻蝕步驟(包括步驟S1101、步驟S1102、步驟S1102、步驟S1104)均可以採用本發明實施例一提到的脈衝刻蝕的方式進行,還可以採用本發明實施例一提到的等離子體射頻源功率和/或等離子體射頻偏置功率的脈衝刻蝕的方式進行。本領域普通技術人員可以在實施例二的基礎上結合實施例一得到其他的技術方案,這些均在本發明的保護範圍之內。 The technical solutions of the second embodiment of the present invention are also applicable to the technical solutions of the second embodiment of the present invention. For example, each of the etching steps (including the step S1101, the step S1102, the step S1102, and the step S1104) in the second embodiment of the present invention can be performed by using the pulse etching method mentioned in the first embodiment of the present invention, and the present invention can also be used. The plasma RF source power and/or plasma RF bias power pulse etching is performed in the first embodiment. Those skilled in the art can obtain other technical solutions in combination with the first embodiment on the basis of the second embodiment, which are all within the protection scope of the present invention.
以上所述僅是本發明的較佳實施方式,應當指出,對於本技術領域的普通技術人員來說,在不脫離本發明原理的前提下,還可以做出若干改進和潤飾,這些改進和潤飾也應視為本發明的保護範圍。 The above is only a preferred embodiment of the present invention, and it should be noted that those skilled in the art can make several improvements and retouchings without departing from the principles of the present invention. It should also be considered as the scope of protection of the present invention.
102‧‧‧第一電介質層 102‧‧‧First dielectric layer
103‧‧‧刻蝕阻擋層 103‧‧‧etch barrier
Claims (17)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210560146.2A CN103021934B (en) | 2012-12-20 | 2012-12-20 | A kind of formation method of through hole or contact hole |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201426860A true TW201426860A (en) | 2014-07-01 |
TWI501314B TWI501314B (en) | 2015-09-21 |
Family
ID=47970381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102140584A TW201426860A (en) | 2012-12-20 | 2013-11-07 | Method for forming through hole or contact hole |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103021934B (en) |
TW (1) | TW201426860A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106356297A (en) * | 2015-07-16 | 2017-01-25 | 中微半导体设备(上海)有限公司 | Etching method of tantalum nitride TaN film |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106653594B (en) * | 2015-10-30 | 2019-05-28 | 中微半导体设备(上海)股份有限公司 | A method of for improving side wall etching effect in depth-width ratio silicon etching |
CN106811752B (en) * | 2015-12-02 | 2019-10-25 | 中微半导体设备(上海)股份有限公司 | Form method, the method for etching plasma of double damask structure |
CN107526218B (en) * | 2016-06-22 | 2020-07-07 | 群创光电股份有限公司 | Display panel |
US9865484B1 (en) * | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
CN110190027A (en) * | 2019-07-02 | 2019-08-30 | 武汉新芯集成电路制造有限公司 | The production method of semiconductor devices |
CN110739269B (en) * | 2019-10-25 | 2020-11-20 | 武汉新芯集成电路制造有限公司 | Semiconductor device and method of forming the same |
CN113035694B (en) * | 2019-12-25 | 2024-09-10 | 中微半导体设备(上海)股份有限公司 | Etching method |
CN112216600A (en) * | 2020-10-13 | 2021-01-12 | 西安交通大学 | Method for preparing large-area SiC nano-pillar array rapidly, controllably and at low cost |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5656123A (en) * | 1995-06-07 | 1997-08-12 | Varian Associates, Inc. | Dual-frequency capacitively-coupled plasma reactor for materials processing |
KR100253080B1 (en) * | 1997-06-25 | 2000-04-15 | 윤종용 | Method for and apparatus of semiconductor dry etching |
US6887340B2 (en) * | 2001-11-13 | 2005-05-03 | Lam Research Corporation | Etch rate uniformity |
KR100685953B1 (en) * | 2002-08-20 | 2007-02-23 | 엘지.필립스 엘시디 주식회사 | Method for Forming Metal Lines in Liquid Crystal Display Device |
US7431857B2 (en) * | 2003-08-15 | 2008-10-07 | Applied Materials, Inc. | Plasma generation and control using a dual frequency RF source |
US20050106888A1 (en) * | 2003-11-14 | 2005-05-19 | Taiwan Semiconductor Manufacturing Co. | Method of in-situ damage removal - post O2 dry process |
US7078350B2 (en) * | 2004-03-19 | 2006-07-18 | Lam Research Corporation | Methods for the optimization of substrate etching in a plasma processing system |
TW201128702A (en) * | 2010-02-12 | 2011-08-16 | Advanced Micro Fab Equip Inc | Method for plasma etching a silicon-containing insulating layer |
CN102737983B (en) * | 2012-07-05 | 2015-06-17 | 中微半导体设备(上海)有限公司 | Method for forming semiconductor structure |
-
2012
- 2012-12-20 CN CN201210560146.2A patent/CN103021934B/en active Active
-
2013
- 2013-11-07 TW TW102140584A patent/TW201426860A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106356297A (en) * | 2015-07-16 | 2017-01-25 | 中微半导体设备(上海)有限公司 | Etching method of tantalum nitride TaN film |
Also Published As
Publication number | Publication date |
---|---|
CN103021934B (en) | 2015-10-21 |
CN103021934A (en) | 2013-04-03 |
TWI501314B (en) | 2015-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201426860A (en) | Method for forming through hole or contact hole | |
JP5214596B2 (en) | Method for minimizing mask undercuts and notches in plasma processing systems | |
JP4674368B2 (en) | Method for anisotropic etching of silicon | |
US7241683B2 (en) | Stabilized photoresist structure for etching process | |
TW201310525A (en) | Method for achieving smooth side walls after Bosch etch process | |
TW200402102A (en) | Two stage etching of silicon nitride to form a nitride spacer | |
KR20190035900A (en) | Pre-cleaning method for manufacturing superconductor interconnect | |
WO2008147756A3 (en) | In-situ photoresist strip during plasma etching of active hard mask | |
TW201426814A (en) | Semiconductor etching device and etching method of semiconductor structure | |
TWI556307B (en) | Etching method | |
TW202105505A (en) | Plasma etch processes | |
US20010044212A1 (en) | Techniques for improving etching in a plasma processing chamber | |
JP2004111779A (en) | Method of etching organic insulating film and method of manufacturing semiconductor device | |
JP5413331B2 (en) | Manufacturing method of semiconductor device | |
JP2004304029A (en) | Plasma treatment method | |
TW201604993A (en) | Etching method of high aspect-ratio structure and manufacturing method of MEMS devices | |
CN108831857B (en) | Manufacturing method of dual damascene structure | |
CN110190027A (en) | The production method of semiconductor devices | |
KR100227636B1 (en) | Method of forming contact hole in semiconductor device | |
CN111048414B (en) | Groove etching and side wall roughening method and light emitting diode | |
KR100778871B1 (en) | Pumping line apparatus of dry etching equipment | |
CN103972055B (en) | Photoresist minimizing technology | |
CN102420124B (en) | Etching method of dielectric layer | |
JP5670177B2 (en) | Plasma etching method | |
JP2012109395A (en) | Method for manufacturing semiconductor device |