TW201300725A - A position-sensing apparatus - Google Patents
A position-sensing apparatus Download PDFInfo
- Publication number
- TW201300725A TW201300725A TW100121271A TW100121271A TW201300725A TW 201300725 A TW201300725 A TW 201300725A TW 100121271 A TW100121271 A TW 100121271A TW 100121271 A TW100121271 A TW 100121271A TW 201300725 A TW201300725 A TW 201300725A
- Authority
- TW
- Taiwan
- Prior art keywords
- scanning
- light source
- somatosensory
- scan
- scanning light
- Prior art date
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本發明是有關於一種偵測裝置,且特別是有關於一種體感偵測裝置。The present invention relates to a detecting device, and more particularly to a body sensing device.
隨著光電科技的進步,身體就是控制器已不再是遙不可及的夢想。藉由身體四肢的運動,使用者可更直覺且便利地對配備有3D動作感應技術的電子產品進行操作。使用者只要在空間中運動其身體四肢,就能夠隨心所欲地操控諸如電視、電腦及家電等產品。With the advancement of optoelectronic technology, the body is the controller is no longer a distant dream. With the movement of the limbs of the body, the user can operate the electronic product equipped with 3D motion sensing technology more intuitively and conveniently. Users can control products such as TVs, computers and home appliances as long as they move their limbs in space.
在3D動作感應技術中,其核心技術莫過於體感偵測方法,而執行該方法的體感偵測裝置,其性能亦對體感偵測之應用具有決定性的影響。在習知技術中,有利用飛時距測法(Time of Flight),或利用物體大小(object scale)來進行體感偵測者,惟該等技術若非電路架構過於複雜,就是不適用於光學感測的應用。此外,習知技術亦有採用雷射作為其偵測光源者,惟該雷射光源在分光後須同時分佈於整個偵測區域,所以需要的功率較高,因此在應用時此種體感偵測裝置耗電量也相對較高。In the 3D motion sensing technology, the core technology is the somatosensory detection method, and the performance of the somatosensory detection device that performs the method also has a decisive influence on the application of the somatosensory detection. In the prior art, there are those who use the time of flight or the object scale to perform the body-sensing detection. However, if the circuit structure is too complicated, it is not suitable for optics. Sensing application. In addition, the conventional technology also uses a laser as its detection light source, but the laser light source must be distributed in the entire detection area at the same time after the light splitting, so the power required is high, so the somatosensory detection is applied at the time of application. The power consumption of the measuring device is also relatively high.
是以,提供一個具有簡易電路架構及低耗電特性的體感偵測裝置有其必要性。Therefore, it is necessary to provide a body sensing device having a simple circuit structure and low power consumption characteristics.
本發明提供一種體感偵測裝置,具有簡易電路架構及低耗電量的特性。The invention provides a body feeling detecting device, which has the characteristics of simple circuit structure and low power consumption.
本發明提供一種體感偵測裝置,適於偵測一區域內待測的至少一物體。體感偵測裝置包括一掃描式光源、二影像偵測器以及一處理器。掃描式光源根據一預定方式產生多個掃描光束。當體感偵測裝置於偵測至少一物體時,掃描式光源藉由掃描光束依序於區域中產生多個光點。影像偵測器分別偵測光點,並分別產生一影像訊號。處理器接收及處理影像訊號以獲得物體的一深度圖(depth map/depth image)資訊。The invention provides a body sensing device adapted to detect at least one object to be tested in an area. The somatosensory detection device includes a scanning light source, two image detectors, and a processor. The scanning light source produces a plurality of scanning beams in accordance with a predetermined pattern. When the body sensing device detects at least one object, the scanning light source generates a plurality of light spots by sequentially scanning the light beam in the region. The image detector detects the light spots and generates an image signal. The processor receives and processes the image signal to obtain a depth map/depth image information of the object.
在本發明之一實施例中,上述之掃描式光源包括一光源產生模組以及一反射鏡模組。光源產生模組產生一平行光束。反射鏡模組接收平行光束,並根據預定方式反射平行光束以產生掃描光束。In an embodiment of the invention, the scanning light source comprises a light source generating module and a mirror module. The light source generating module produces a parallel beam. The mirror module receives the parallel beams and reflects the parallel beams according to a predetermined pattern to produce a scanning beam.
在本發明之一實施例中,上述之光源產生模組係根據一特定頻率被開關,以產生平行光束。In an embodiment of the invention, the light source generating module is switched according to a specific frequency to generate a parallel beam.
在本發明之一實施例中,上述之反射鏡模組係根據一李賽育掃描(Lissajous scan)、一柵狀掃描(Raster scan)或一鋸齒掃描(Zigzag scan)方式反射平行光束,以產生掃描光束。In an embodiment of the invention, the mirror module reflects a parallel beam according to a Lissajous scan, a Raster scan or a Zigzag scan to generate a scanning beam. .
在本發明之一實施例中,上述之反射鏡模組係包括一微機電掃描振鏡(MEMS Scanning Mirror)。In an embodiment of the invention, the mirror module comprises a MEMS Scanning Mirror.
在本發明之一實施例中,上述之掃描式光源於區域中產生至少一掃描圖樣(pattern)。處理器參考掃描圖樣處理影像訊號,以獲得深度圖資訊。In one embodiment of the invention, the scanning source described above produces at least one scan pattern in the region. The processor processes the image signal with reference to the scan pattern to obtain depth map information.
在本發明之一實施例中,上述之處理器利用影像偵測器其中之一來辨識至少一物體的一感興趣區域(Region of Interest,ROI)。In an embodiment of the invention, the processor uses one of the image detectors to identify a Region of Interest (ROI) of the at least one object.
在本發明之一實施例中,當掃描式光源於偵測物體時,係藉由掃描光束依序於感興趣區域產生光點。In an embodiment of the invention, when the scanning light source detects the object, the light spot is generated by sequentially scanning the light beam to the region of interest.
在本發明之一實施例中,上述之掃描式光源於感興趣區域中產生至少一掃描圖樣。處理器參考掃描圖樣處理影像訊號,以獲得深度圖資訊。In an embodiment of the invention, the scanning light source generates at least one scan pattern in the region of interest. The processor processes the image signal with reference to the scan pattern to obtain depth map information.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.
圖1繪示本發明一實施例之體感偵測裝置的架構示意圖。請參考圖1,本實施例之體感偵測裝置100包括一掃描式光源110、二影像偵測器120a、120b以及一處理器130。在本實施例中,當體感偵測裝置100於偵測一待測物體時,掃描式光源110會將多個掃描光束L2投射於其偵測區域中。於該偵測區域內的物體,特別是,當該待測物體存在於偵測區域時,掃描光束L2將依序於偵測區域中的該待測物體上產生多個光點,並由影像偵測器120a、120b偵測該等光點,以使處理器130在後續計算時可利用例如是三角定位法等計算方式來獲得該物體待測的一深度圖(depth map/depth image)資訊。FIG. 1 is a schematic structural diagram of a body sensing device according to an embodiment of the invention. Referring to FIG. 1 , the body sensing device 100 of the present embodiment includes a scanning light source 110 , two image detectors 120 a and 120 b , and a processor 130 . In this embodiment, when the body sensing device 100 detects an object to be tested, the scanning light source 110 projects a plurality of scanning beams L2 into the detection area thereof. The object in the detection area, in particular, when the object to be tested exists in the detection area, the scanning beam L2 will sequentially generate a plurality of light spots on the object to be tested in the detection area, and the image is generated by the image. The detectors 120a, 120b detect the light spots, so that the processor 130 can obtain a depth map/depth image information to be measured by using a calculation method such as a triangulation method in subsequent calculations. .
值得注意的是,在本實施例中,體感偵測裝置100之偵測區域內配置有一螢幕200。當掃描式光源110的掃描光束L2投射在偵測區域時,其可在螢幕200上產生多個光點,而螢幕200中所繪示者係掃描式光源110於該偵測區域中所產生的一掃描圖樣210。惟應注意者係,螢幕200並非本發明之必要裝置,圖1中所呈現之螢幕200,其目的僅為方便後續解釋,並不用以限制本發明。It should be noted that, in this embodiment, a screen 200 is disposed in the detection area of the somatosensory detecting device 100. When the scanning light beam L2 of the scanning light source 110 is projected on the detection area, it can generate a plurality of light spots on the screen 200, and the image displayed in the screen 200 is generated by the scanning light source 110 in the detection area. A scan pattern 210. It should be noted that the screen 200 is not a necessary device of the present invention. The screen 200 presented in FIG. 1 is for convenience of explanation and is not intended to limit the present invention.
在本實施例中,掃描式光源110包括一光源產生模組112以及一反射鏡模組114,其係根據一預定方式產生掃描光束L2。光源產生模組112例如包括雷射或發光二極體等光源,用以產生一平行光束L1。在本實施例中,所謂的「平行光束」例如是雷射二極體發光後,經過其控制器調變後所產生之平行光束,或者,例如是發光二極體被激發後,輔以透鏡所產生之平行光束。反射鏡模組114用以接收平行光束L1,並根據該預定方式反射平行光束L1以產生掃描光束L2。在此,反射鏡模組114例如是以一微機電掃描振鏡(MEMS Scanning Mirror)或一電流計鏡(Galvanometer Mirror)來實施。在底下的範例實施例中,反射鏡模組114將以微機電掃描振鏡來做說明,但本發明不限於此。In this embodiment, the scanning light source 110 includes a light source generating module 112 and a mirror module 114 for generating a scanning beam L2 according to a predetermined manner. The light source generating module 112 includes, for example, a light source such as a laser or a light emitting diode to generate a parallel light beam L1. In the present embodiment, the so-called "parallel beam" is, for example, a parallel beam generated by a laser diode after being modulated by a controller, or, for example, a light-emitting diode is excited, and is supplemented by a lens. The parallel beam produced. The mirror module 114 is configured to receive the parallel beam L1 and reflect the parallel beam L1 according to the predetermined manner to generate the scanning beam L2. Here, the mirror module 114 is implemented, for example, by a MEMS Scanning Mirror or a Galvanometer Mirror. In the exemplary embodiment below, the mirror module 114 will be described with a microelectromechanical scanning galvanometer, but the invention is not limited thereto.
圖2繪示本發明一實施例之反射鏡模組在不同視角的架構示意圖。請參考圖1及圖2,在本實施例中,以微機電掃描振鏡實施之反射鏡模組114可相對x方向及y方向的軸線(axes)自由扭動,除了具有小尺寸的特性之外,更有相當大的光學掃描全角。因此,搭配x方向及y方向的軸線扭動,掃描式光源110可在其偵測區域內進行大幅度的掃描。而其掃描特性則隨著軸線扭動的頻率來改變。FIG. 2 is a schematic diagram showing the architecture of a mirror module in different viewing angles according to an embodiment of the invention. Referring to FIG. 1 and FIG. 2, in the embodiment, the mirror module 114 implemented by the microelectromechanical scanning galvanometer can be freely twisted with respect to the x direction and the y direction axis, except for the small size. In addition, there is a considerable optical scanning full angle. Therefore, with the axis of the x-direction and the y-direction twisted, the scanning light source 110 can perform a large scan in the detection area. The scanning characteristics change with the frequency of the axis twisting.
值得一提的是,本實施例之反射鏡模組114係藉由微機電掃描振鏡來實施,因此掃描式光源110無需對整個偵測區域進行投影,而係以多點連續掃描的方式對偵測區域進行掃描,以至於掃描式光源110可以較小的能量來驅動,而使其平均消耗功率亦相對較低。此外,利用多點連續掃描的方式,本實施例之體感偵測裝置100在偵測時無須進行對焦的步驟。It should be noted that the mirror module 114 of the embodiment is implemented by a microelectromechanical scanning galvanometer. Therefore, the scanning light source 110 does not need to project the entire detection area, but is multi-point continuous scanning. The detection area is scanned so that the scanning light source 110 can be driven with less energy, and the average power consumption is relatively low. In addition, the multi-point continuous scanning method, the somatosensory detecting device 100 of the embodiment does not need to perform the focusing step when detecting.
在本實施例中,反射鏡模組114例如是根據一李賽育掃描(Lissajous scan)方式反射平行光束L1,以產生掃描光束L2。因此,當掃描光束L2投射到螢幕200上時,即可對應到一特定的李賽育圖形(Lissajous figure)。該李賽育圖形所呈現的態樣則隨著反射鏡模組114在x方向及y方向的掃描頻率的設定及兩者間的相位差而有所不同,如圖3所示。In the present embodiment, the mirror module 114 reflects the parallel beam L1 according to a Lissajous scan method to generate the scanning beam L2. Therefore, when the scanning beam L2 is projected onto the screen 200, it can correspond to a specific Lissajous figure. The appearance of the Li Saiyu pattern differs depending on the setting of the scanning frequency of the mirror module 114 in the x direction and the y direction and the phase difference between the two, as shown in FIG.
圖3繪示本發明一實施例之反射鏡模組在螢幕上所產生的李賽育圖形。請參考圖1及圖3,在圖3(a)中,其繪示一特定掃描頻率及相位差的李賽育圖形。在此,光源產生模組112係根據一特定頻率間歇性地被開關,以產生平行光束L1。在本實施例中,所謂的「間歇性地被開關」係指光源產生模組112根據該特定的預設頻率被開啟及關閉,因此經過反射鏡模組114反射後,掃描光束L2投射到螢幕200上的曲線係由一連串密集且連續的光點所形成。另一方面,在圖3(b)中,其繪示掃描光束L2根據李賽育掃描方式對偵測區域進行掃描的結果。由圖3(b)可知,藉由設定反射鏡模組114在x方向及y方向的掃描頻率及兩者間的相位差,掃描式光源110可在其所欲偵測的區域內進行大幅度、完整且無遺漏的掃描。因此,對於偵測區域的移動物體,體感偵測裝置100可提供準確的掃描結果。FIG. 3 is a diagram showing the Li Saiyu pattern generated on the screen by the mirror module according to an embodiment of the invention. Please refer to FIG. 1 and FIG. 3. In FIG. 3(a), a Li Saiyu graph with a specific scanning frequency and phase difference is shown. Here, the light source generating module 112 is intermittently switched according to a specific frequency to generate a parallel light beam L1. In the present embodiment, the so-called "intermittently switched" means that the light source generating module 112 is turned on and off according to the specific preset frequency, so that after being reflected by the mirror module 114, the scanning light beam L2 is projected onto the screen. The curve on 200 is formed by a series of dense and continuous spots. On the other hand, in FIG. 3(b), the scanning beam L2 is scanned for the detection area according to the Li Sai scanning method. As can be seen from FIG. 3(b), by setting the scanning frequency of the mirror module 114 in the x direction and the y direction and the phase difference between the two, the scanning light source 110 can be greatly expanded in the area to be detected. Complete and exhaustive scanning. Therefore, the somatosensory detecting device 100 can provide an accurate scan result for the moving object in the detection area.
值得一提的是,藉由上述微機電掃描振鏡以及李賽育掃描方式,本實施例之掃描式光源110例如為一雷射光源,因此在進行偵測之前無須進行對焦之步驟,可增加其應用層面及使用的便利性。It is worth mentioning that, by using the above-mentioned microelectromechanical scanning galvanometer and the Li Saiyu scanning method, the scanning light source 110 of the embodiment is, for example, a laser light source, so that the step of focusing is not required before the detection, and the application thereof can be increased. Level and ease of use.
在本實施例中,掃描光束L2係根據李賽育掃描方式對偵測區域進行掃描,但本發明並不限於此。在其他實施例中,掃描光束L2亦可根據柵狀掃描(Raster scan)或鋸齒掃描(Zigzag scan)的方式對偵測區域進行掃描。In the present embodiment, the scanning beam L2 scans the detection area according to the Li Sai scanning method, but the present invention is not limited thereto. In other embodiments, the scanning beam L2 can also scan the detection area according to a Raster scan or a Zigzag scan.
圖4繪示本發明一實施例之掃描光束L2根據柵狀掃描方式對偵測區域進行掃描的結果。在圖4中,掃描光束L2係利用由上而下、由左而右的掃描方式對偵測區域進行柵狀掃描。其中,粗黑箭頭代表掃描光束L2係由左而右進行水平掃描,而虛線箭頭代表掃描光束L2在掃描完前一條掃描線後,在進行次一條掃描線之前,係回到偵測區域的左邊,以開始向右邊進行該次一條掃描線的水平掃描。應注意的是,上述之「上」、「下」、「左」、「右」方向係參照圖4說明時的參考,並不用以限定本發明之柵狀掃描方式。FIG. 4 illustrates a result of scanning the detection area by the scanning beam L2 according to the grid scanning method according to an embodiment of the invention. In FIG. 4, the scanning beam L2 performs raster scanning of the detection area by a top-down, left-to-right scanning method. Wherein, the thick black arrow represents that the scanning beam L2 is horizontally scanned from the left and the right, and the dashed arrow represents that the scanning beam L2 is returned to the left of the detection area after scanning the previous scanning line before performing the next scanning line. To start the horizontal scan of the one scan line to the right. It should be noted that the above-mentioned "upper", "lower", "left", and "right" directions are referred to with reference to FIG. 4 and are not intended to limit the raster scanning method of the present invention.
另一方面,圖5繪示本發明一實施例之掃描光束L2根據鋸齒掃描方式對偵測區域進行掃描的結果。請參照圖5,相較於圖4的柵狀掃描,本實施例之鋸齒掃描,其掃描路徑實質上係與水平方向夾45度角,如圖5所示。其中,粗黑箭頭代表掃描光束L2係進行鋸齒掃描的掃描路徑。因此,本實施例之掃描式光源110可選擇性地利用李賽育掃描、柵狀掃描或鋸齒掃描等方式對偵測區域進行掃描。另外,在本實施例中,掃描式光源110可依據實際需求設計在偵測區域中產生至少一掃描圖樣210,諸如十字、星號等任何足以與其他光點區隔的標記。之後,處理器130即可參考掃描圖樣210的位置來處理影像偵測器120a、120b所得的影像訊號,以獲得深度圖資訊。舉例而言,掃描式光源110可在偵測區域中僅產生一掃描圖樣210,或者先將該偵測區域劃分為多個子區域,再於該等子區域中產生對應的掃描圖樣。藉此,處理器130可參考各該掃描圖樣的位置來對其周圍的光點進行演算,以簡化其演算流程,並增加體感偵測之準確度。並且,由於掃描圖樣的存在,可增加體感偵測裝置100偵測到待測物體的速度。On the other hand, FIG. 5 illustrates a result of scanning the detection area by the scanning beam L2 according to the sawtooth scanning method according to an embodiment of the invention. Referring to FIG. 5, compared with the grid scan of FIG. 4, the zigzag scan of the present embodiment has a scan path substantially at a 45 degree angle to the horizontal direction, as shown in FIG. Among them, the thick black arrow represents the scanning path of the scanning beam L2 for zigzag scanning. Therefore, the scanning light source 110 of the embodiment can selectively scan the detection area by using a Li Sai scanning, a grid scanning or a sawtooth scanning. In addition, in the present embodiment, the scanning light source 110 can be designed to generate at least one scan pattern 210 in the detection area according to actual needs, such as a cross, an asterisk, or the like, which is sufficiently separated from other spots. Then, the processor 130 can process the image signals obtained by the image detectors 120a, 120b with reference to the position of the scan pattern 210 to obtain depth map information. For example, the scanning light source 110 may generate only one scan pattern 210 in the detection area, or first divide the detection area into a plurality of sub-areas, and then generate corresponding scan patterns in the sub-areas. Thereby, the processor 130 can calculate the position of each scan pattern to calculate the surrounding light spot to simplify the calculation process and increase the accuracy of the somatosensory detection. Moreover, due to the presence of the scanning pattern, the speed of the object to be detected detected by the body sensing device 100 can be increased.
應注意的是,本實施例雖以微機電掃描振鏡做為反射鏡模組的範例實施例,惟任何所屬技術領域中具有通常知識者當知微機電掃描振鏡並非用以限定本發明的反射鏡模組。同時,本發明亦不限定於李賽育掃描方式來進行偵測區域之掃描,舉凡任何可被偵測之掃描式光源皆為本發明所欲保護之範疇。It should be noted that although the embodiment uses a microelectromechanical scanning galvanometer as an exemplary embodiment of the mirror module, it is known to those skilled in the art that the microelectromechanical scanning galvanometer is not intended to limit the present invention. Mirror module. At the same time, the present invention is not limited to the Li Saiyu scanning method for scanning the detection area, and any scanning light source that can be detected is within the scope of the invention.
換句話說,本實施例之掃描式光源110係根據李賽育掃描方式產生多個掃描光束L2。當掃描式光源110對待測物體進行體感偵測時,可藉由掃描光束L2依序在偵測區域的待測物體上產生多個光點。接著,影像偵測器120a、120b分別偵測該等光點,並分別產生一影像訊號。在此,影像偵測器120a、120b可偵測的光源波段係對應於掃描式光源110之波長。若掃描式光源110係發出紅外光波段之光束,則影像偵測器120a、120b至少可偵測紅外光波段區間之光源。類似地,若掃描式光源110係發出可見光波段之光束,則影像偵測器120a、120b至少可偵測可見光波段區間之光源。之後,處理器130再分別接收及處理該等影像訊號以獲得待測物體的一深度圖資訊。In other words, the scanning light source 110 of the present embodiment generates a plurality of scanning light beams L2 according to the Li Sai scanning method. When the scanning light source 110 performs the somatosensory detection on the object to be measured, a plurality of light spots can be sequentially generated on the object to be tested in the detection area by the scanning light beam L2. Then, the image detectors 120a and 120b respectively detect the light spots and respectively generate an image signal. Here, the light source band detectable by the image detectors 120a, 120b corresponds to the wavelength of the scanning light source 110. If the scanning light source 110 emits a light beam in the infrared light band, the image detectors 120a, 120b can detect at least the light source in the infrared light band. Similarly, if the scanning light source 110 emits a light beam in the visible light band, the image detectors 120a, 120b can detect at least the light source in the visible light band interval. Then, the processor 130 separately receives and processes the image signals to obtain a depth map information of the object to be tested.
進一步而言,本實施例之影像偵測器120a、120b在接收到待測物體反射之光點資訊後,會分別產生對應的影像訊號。其中,各該影像訊號係分別對應於該待測物體由影像偵測器120a、120b在不同視角所拍攝的兩個影像畫面。接著,利用三角定位法,處理器130可依據各該影像訊號,計算出該等影像畫面中不同區域相對於影像偵測器120a、120b的距離。並且,處理器130可定義各該不同區域相對於影像偵測器120a、120b的距離係對應於不同的灰階,以獲得深度圖資訊。Further, after receiving the spot information reflected by the object to be tested, the image detectors 120a and 120b of the embodiment respectively generate corresponding image signals. Each of the image signals corresponds to two image frames captured by the image detectors 120a and 120b at different viewing angles. Then, using the triangulation method, the processor 130 can calculate the distance of different regions of the image images relative to the image detectors 120a, 120b according to the image signals. Moreover, the processor 130 can define that the distances of the different regions relative to the image detectors 120a, 120b correspond to different gray levels to obtain depth map information.
舉例而言,體感偵測裝置100之偵測區域例如是位於其前方1至5公尺以內的距離,處理器130可定義此區間內的不同位置係對應於0至255的灰階。因此,處理器130所獲的其中一深度圖資訊例如如圖6所示。在圖6中,顏色較深的區域係灰階值較小者,其例如是偵測區域中距離體感偵測裝置100較遠之偵測區域。相對地,顏色較淡的區域係灰階值較大者,其例如是偵測區域中距離體感偵測裝置100較近之偵測區域。是以,基於三維(3D)立體成像原理,處理器130在獲得深度圖資訊後,可重建待測物體在偵測區域中的移動狀態,以達到體感偵測之目的。For example, the detection area of the somatosensory detection device 100 is, for example, a distance within 1 to 5 meters of the front of the motion detection device 100, and the processor 130 can define different positions within the interval corresponding to gray scales of 0 to 255. Therefore, one of the depth map information obtained by the processor 130 is as shown in FIG. 6, for example. In FIG. 6, the darker color region is smaller in grayscale value, and is, for example, a detection region farther from the somatosensory detecting device 100 in the detecting region. In contrast, the lighter-colored area is larger in grayscale value, and is, for example, a detection area in the detection area that is closer to the somatosensory detecting device 100. Therefore, based on the principle of three-dimensional (3D) stereo imaging, after obtaining the depth map information, the processor 130 can reconstruct the moving state of the object to be tested in the detection area to achieve the purpose of somatosensory detection.
值得一提的是,本實施例之處理器130也可以利用影像偵測器120a、120b其中之一來辨識待測物體的一感興趣區域(Region of Interest,ROI)。因此,當掃描式光源於偵測該待測物體時,係藉由掃描光束L2依序於該辨識所得之感興趣區域產生光點。進而,掃描式光源110於感興趣區域中產生至少一掃描圖樣,而處理器130係參考該掃描圖樣處理影像訊號,以獲得深度圖資訊。It is worth mentioning that the processor 130 of the embodiment may also use one of the image detectors 120a, 120b to identify a Region of Interest (ROI) of the object to be tested. Therefore, when the scanning light source detects the object to be tested, the scanning light beam L2 sequentially generates a light spot in the identified region of interest. In addition, the scanning light source 110 generates at least one scan pattern in the region of interest, and the processor 130 processes the image signal with reference to the scan pattern to obtain depth map information.
綜上所述,在本發明之範例實施例中,體感偵測裝置利用主動式掃描投影在物體上做出標記,可簡化演算法,增加系統穩定性。In summary, in an exemplary embodiment of the present invention, the somatosensory detecting device uses an active scanning projection to mark on an object, which simplifies the algorithm and increases system stability.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
100...體感偵測裝置100. . . Somatosensory detection device
110...掃描式光源110. . . Scanning light source
112...光源產生模組112. . . Light source generating module
114...反射鏡模組114. . . Mirror module
120a、120b...影像偵測器120a, 120b. . . Image detector
130...處理器130. . . processor
200...螢幕200. . . Screen
210...掃描圖樣210. . . Scanning pattern
L1...平行光束L1. . . Parallel beam
L2...掃描光束L2. . . Scanning beam
圖1繪示本發明一實施例之體感偵測裝置的架構示意圖。FIG. 1 is a schematic structural diagram of a body sensing device according to an embodiment of the invention.
圖2繪示本發明一實施例之反射鏡模組在不同視角的架構示意圖。FIG. 2 is a schematic diagram showing the architecture of a mirror module in different viewing angles according to an embodiment of the invention.
圖3(a)繪示一特定掃描頻率及相位差的李賽育圖形。Fig. 3(a) shows a Li Saiyu graph of a specific scanning frequency and phase difference.
圖3(b)繪示掃描光束根據李賽育掃描方式對偵測區域進行掃描的結果。FIG. 3(b) shows the result of scanning the detection area by the scanning beam according to the Li Sai scanning method.
圖4繪示本發明一實施例之掃描光束根據柵狀掃描方式對偵測區域進行掃描的結果。FIG. 4 illustrates a result of scanning a detection area of a scanning beam according to a grid scanning method according to an embodiment of the invention.
圖5繪示本發明一實施例之掃描光束根據鋸齒掃描方式對偵測區域進行掃描的結果。FIG. 5 illustrates a result of scanning a detection area of a scanning beam according to a sawtooth scanning method according to an embodiment of the invention.
圖6繪示本發明一實施例之深度圖資訊(depth map/depth image)。FIG. 6 illustrates a depth map/depth image according to an embodiment of the invention.
100...體感偵測裝置100. . . Somatosensory detection device
110...掃描式光源110. . . Scanning light source
112...光源產生模組112. . . Light source generating module
114...反射鏡模組114. . . Mirror module
120a、120b...影像偵測器120a, 120b. . . Image detector
130...處理器130. . . processor
200...螢幕200. . . Screen
210...掃描圖樣210. . . Scanning pattern
L1...平行光束L1. . . Parallel beam
L2...掃描光束L2. . . Scanning beam
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100121271A TW201300725A (en) | 2011-06-17 | 2011-06-17 | A position-sensing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100121271A TW201300725A (en) | 2011-06-17 | 2011-06-17 | A position-sensing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201300725A true TW201300725A (en) | 2013-01-01 |
Family
ID=48137446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100121271A TW201300725A (en) | 2011-06-17 | 2011-06-17 | A position-sensing apparatus |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201300725A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112525078A (en) * | 2019-09-18 | 2021-03-19 | 财团法人工业技术研究院 | Three-dimensional measuring device and operation method thereof |
-
2011
- 2011-06-17 TW TW100121271A patent/TW201300725A/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112525078A (en) * | 2019-09-18 | 2021-03-19 | 财团法人工业技术研究院 | Three-dimensional measuring device and operation method thereof |
CN112525078B (en) * | 2019-09-18 | 2022-08-16 | 财团法人工业技术研究院 | Three-dimensional measuring device and operation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109458928B (en) | Laser line scanning 3D detection method and system based on scanning galvanometer and event camera | |
US9879984B2 (en) | Optical scanning probe and apparatus for generating three-dimensional data using the same | |
KR101954855B1 (en) | Use of intensity variations of light patterns for depth mapping of objects in a volume | |
US8491135B2 (en) | Interactive projection with gesture recognition | |
JP5395173B2 (en) | Overlaid projection of scanned rays | |
KR100919166B1 (en) | Stereo Moire Measurement Apparatus and Method | |
US9971455B2 (en) | Spatial coordinate identification device | |
CA3057460A1 (en) | Lidar based 3-d imaging with structured light and integrated illumination and detection | |
US9842407B2 (en) | Method and system for generating light pattern using polygons | |
TWI420081B (en) | Distance measuring system and distance measuring method | |
US20080291179A1 (en) | Light Pen Input System and Method, Particularly for Use with Large Area Non-Crt Displays | |
JP6862751B2 (en) | Distance measuring device, distance measuring method and program | |
US10877153B2 (en) | Time of flight based 3D scanner | |
JP6102330B2 (en) | projector | |
KR20100112853A (en) | Apparatus for detecting three-dimensional distance | |
KR20160147760A (en) | Device for detecting objects | |
US11747476B2 (en) | Dynamically interlaced laser beam scanning 3D depth sensing system and method | |
US20160004385A1 (en) | Input device | |
CN102346020B (en) | Three-dimensional information generation device and method for interactive interface | |
US20150185321A1 (en) | Image Display Device | |
TWI454653B (en) | Systems and methods for determining three-dimensional absolute coordinates of objects | |
TW201300725A (en) | A position-sensing apparatus | |
TW201301078A (en) | A position-sensing method | |
US20220244392A1 (en) | High resolution lidar scanning | |
TWI472801B (en) | 3d information generator for use in interactive interface and method for 3d information generation |