201216331 六、發明說明: 【發明所屬之技術領域】 本發明的實施例大體上關於積體電路的製造,並且尤 其關於含硼非晶碳層在半導體基材上的沉積。 【先前技術】 積體電路已經發展成可在單一晶片上包括數百萬個電 晶體、電容器與電阻器的複雜元件。晶片設計的發展持 續地需要更快速的電路以及更高的電路密度。對於具有 更高電路密度的更快速電路的需求產生了對於用來製造 此種積體電路的材料的相應需求。尤其’隨著積體電路 部件的尺寸縮小到次微米尺度,現在必須使用低電阻率 導電材料以及低介電常數絕緣材料來從此種部件獲得適 當的電性效能。 對於更高積體電路密度的需求亦產生了對於用在積體 電路部件的製造的製程順序的需求。舉例而言,在使用 傳統光微影技術的製程順序中,能量敏感阻劑層形成在 多個材料層的堆疊上方,其中該多個材料層的堆疊設置 在基材上。使能量敏感阻劑層暴露於一圖案的圖像,以 形成光阻劑罩幕。然後,使用蝕刻製程將罩幕圖案轉移 到堆疊的一或更多個材料層。用在蝕刻製程的化學蝕刻 劑是經選擇成對堆疊的材料層比對能量敏感阻劑罩幕具 有更大的蝕刻選擇性。也就是說,化學蝕刻劑會以比蝕 201216331 ::Γ=劑Γ的速率來钱刻材料堆疊的-或更多 性可避多個材料層相對於阻劑㈣刻選擇 了避免在完成圖案轉移之前 旦 m , ^ ,使庇1置敏感阻劑被耗盡。 ★I選擇性㈣劑能提升精4的圖案轉移。 隨著圖案尺寸縮小,能量铋片 ^ . 敏感阻劑的厚度必須相應地 縮小,以為了控制圖案解析度。 巾义嘗還受化學蝕刻劑 =擊,此種薄阻劑層在圖案轉移步驟期間不足以罩幕 :下方的材料層。常常在能量敏感阻劑層與下方的材料 之間使用中間層(例如氮氧化、 、 m , 厌化石夕或碳膜),以 :中間層對化學餘刻劑具有更大的阻抗能力而促進圖幸 其中該中間層稱為硬罩幕。期望具有薄硬罩幕:、 該薄硬罩幕具有高蝕刻選擇 你乂 、伴Γ生且在蝕刻製程完成後容易 移除。隨著臨界尺寸減小,目箭 目則的硬罩幕材料缺乏相對 於下方材料的期望姓刻選擇性且常常難以移除。 所以’此技術領域中需要一插; ^ ^種改善的硬罩幕層與用於 沉積改善的硬罩幕層的方法。 【發明内容】 本發明的實施例大體上關於積體電路的製造,並且尤 其關於含硼非晶碳層在半導體基材上的沉積。在一實施 例中’提供-種在製程腔室中處理基材的方法。此方法 包含以下步驟:在處理空間中提供基材;使含碳氫化合 物氣體混合物流動到處理空間内;藉由從Μ源施加功率 201216331 來產生含碳氩化合物氣體混合物的電襞;使含硼氣體混 合物流動到處理空間内;及在電漿的存在下,在基材上 沉積含硼非晶碳膜,其中含硼非晶碳膜含有原子百分比 為約1 0至約6 0的删。 在另一實施例中,提供一種在製程腔室中處理基材的 方法。此方法包含以下步驟:在RF功率的存在下,使基 材暴露於含碳氫化合物氣體的流動,以在基材上沉積不 含棚的非晶碳膜;關閉RF功率,同時使含碳氣化合物氣 體持續流動;及在RF功率的存在下,使基材暴露於含姻 氣體的流動與含碳氫化合物氣體的流動,以在不含硼的 非晶碳膜上沉積含硼非晶碳膜,其中含㈣晶碳膜含有 原子百分比為約30至60的侧。在一實例中,不含翊的 非晶碳膜可具有約5()A至約刪A的厚度,而含侧非晶 碳:可具有約300A至約5〇〇〇A的厚度。含硼非晶碳膜 可含有原子百分比為約2〇至約5〇的碳以及原子百分比 為約1〇至約25的氫。此方法可更包含以下步驟:蝕刻 3硼非晶碳膜’以形成一圖案化含硼非晶碳膜;及在基 材中形成相應於圖案化含硼非晶碳膜的特徵定義。 在另一實施例中,提供一種在製程腔室中處理基材的 ::。此方法包含以下步驟:在處理空間中提供基材; 碳氫化合物氣體混合物流動到處理空間内;藉由從 RF源施加功率來〃 川,錯由從 產3碳風化合物氣體混合物的電 L在電漿㈣在7,在歸Μ料切 使含领氣體現合物流動到處理”,内.…:膜, J外埋二間内,及在電漿的存在 6 201216331 下,在不含硼的非晶碳膜上沉積含硼非晶碳膜,其中含 硼非晶碳膜含有原子百分比為約10至約60的硼。 在一另一實施例中,提供一種在製程腔室中處理基材 的方法。此方法包含以下步驟:在製程腔室中提供基材; 使3碳氫化合物氣體混合物流動到製程腔室内;從含碳 氫化合物氣體混合物產生第—電漿,以在基材上沉積不 含硼的非晶碳膜,不含删的非晶碳膜具有約3〇〇A至約 5000A的厚度,藉由關閉第一電漿來穩定化製程腔室内 的處理條件’同時使含碳氫化合物氣體混合物持續流動 到製程腔室内;使含硼氣體混合物流動到製程腔室内; 及從含碳氫化合物氣體混合物與含硼氣體混合物產生第 二電漿,以在不含硼的非晶碳膜上沉積含硼非晶碳膜, 含硼非晶碳膜具有約3〇〇A至約5〇〇〇A的厚度。在一實 例中,含棚非晶碳膜可含有原子百分比為❸1〇至約的 的侧。此方法可更包含以下步驟:使用含有過氧化氮與 硫酸的溶液來移除含„晶碳臈;及使用含氫電衆、含 氧電漿或它們的組合來移除不含硼的非晶碳膜。 在又另一實施例中,提供_種含硼非晶碳膜。含硼非 晶碳膜含有原子百分比為約1〇至約6〇的硼、原子百分 比為約20至約50的碳與原子百分比為約ι〇至約3〇的 氫。 在又-另-實施例中,提供一種半導體元件。此元件 包含:不含餐非晶碳膜’不含侧的非晶碳膜沉積在基 材上方,不含棚的非晶碳膜具有約5〇A至約测入的厚 201216331 f;含蝴非晶碳膜,含硼非晶碳膜沉積在不含删的非晶 碳膜上’其中含硼非晶碳膜具有約3〇〇A至約5_A的 厚度且含有原子百分比為約10至60的删;抗反射塗覆 膜,抗反射塗覆膜沉積在含硼非晶碳膜上;及光阻劑膜, 光阻劑臈沉積在抗反射塗覆膜上。 在另—實施例令’提供—種在製程腔室甲處理基材 的方法。此方法包含以下步驟:在灯功率的存在下,使 基材暴露於氣體混合物的流動,以在基材上方沉積含测 非晶碳膜,氣體混合物包含含碳氫化合物㈣與含棚氣 體;㈣含硼非晶碳膜,以形成圖案化含㈣晶碳媒, 其中3硼非晶碳膜含有原子百分比為約35至約的刪 且具有約300A至約5〇〇〇入的厚度;及在基材中形成相 應於圖案化含㈣晶碳膜的特徵定義。在—實例中,含 硼非晶奴膜可含有原子百分比為約2〇至約5〇的碳與原 子百分比為約10至約25的氫。 【實施方式】 本發明的實施例大體上關於積體電路 其一非晶碳層在半導體基材上的沉積特St: 於含棚非晶碳層的、v # . _ , ^ 層的/儿積。在邏輯與記憶體元件結構中, 供深接觸所用的高深寬比敍刻可具有1〇_75;的深寬 比,其中硬罩幕佔總堆疊厚度的1G•辦”在施 中,提供改善餘刻選擇性.8〇%的含领非晶碳膜,含棚 8 201216331 ^炭膜此谷許減少硬罩幕厚度類似相應的量。在另— 貫施例中,提供含㈣’含㈣的㈣阻抗性是目前已 知的未摻雜非晶碳膜的㈣阻抗性的2-2G倍,此能容許 硬罩幕厚度與結構深寬比的減少。在此所述的特定實施 例改善硬罩幕輪廟、臨界尺寸控制與臨界尺寸均勻性。 在各種實施例中,可使用含碳氫化合物氣體、含硼氣體 與惰性’載體氣體(諸如氬 '氮與氦)來沉積含硼非晶碳 層:有利地’已經發現可使用工業接受的濕式蝕刻:學 :式將含硼非晶碳膜從下方材料輕易地剝除,而不會損 壞下方的介電質膜。 本發明的實施例亦提供多層硬罩幕,多層硬罩幕包含 非晶碳層與沉積在非晶碳層上的含硼非晶碳層。在一實 施例中,含硼非晶碳膜含有原子百分比為約1 〇至約60 的硼。非晶碳層的厚度可為約50A至約5000A。含硼非 晶碳膜可具有約3GGA至約5_A的厚度。在非晶碳層 具有約50A至約1000A的厚度的情況中,下方的非晶碳 層可作為基材與含侧非晶碳層之間的過渡層,以在使用 3硼氣體(諸如一硼烷)的後續的含硼非晶碳沉積期間避 免非晶硼會直接地形成在基材上,其中非晶硼難以移 除。除了作為過渡膜,在非晶碳層具有約300A至約 5000A的厚度的特定實施例中,含硼非晶碳層可在具有 良好的硬罩幕效能(例如良好的CD控制與特徵輪廓)的 主要蝕刻製程期間被耗盡,同時具有足夠厚的非晶碳 層’其中可使用傳統的氧電漿將該足夠厚的非晶碳層容 201216331 易地灰化,以致下方的層能完成圖案化而不會損壞下方 的層。熟習此技術領域的人士應瞭解,說明書中所使用 的詞語「含硼非晶碳」大體上涵蓋硼碳材料,無論是碳 化硼的形式或非化學計量1合物的硼與碳或摻雜有硼的 非晶碳皆可。亦應瞭解,儘管材料在此稱為「非晶」,五 等沒有意圖將此詞語意指膜中完全不含有結晶結構,而 僅是表示目前可取得的技術無法識別出結晶結構。 第1圖圖示基材製程系統132的示意圖,基材製程系 統132可用於根據在此所述的實施例執行非晶碳層沉 積。可用於實施本發明的基材製程系統132的一實例的 細節被描述在共同受讓的美國專利US6,364,954,美國專 利US6,364,954在西元2002年4月2日被授予SaWad〇r201216331 VI. Description of the Invention: [Technical Field of the Invention] Embodiments of the present invention relate generally to the fabrication of integrated circuits, and more particularly to the deposition of boron-containing amorphous carbon layers on semiconductor substrates. [Prior Art] Integrated circuits have evolved into complex components that can include millions of transistors, capacitors, and resistors on a single wafer. The development of wafer design continues to require faster circuits and higher circuit densities. The need for faster circuits with higher circuit densities creates corresponding demands on the materials used to fabricate such integrated circuits. In particular, as the size of integrated circuit components shrinks to the submicron scale, it is now necessary to use low resistivity conductive materials and low dielectric constant insulating materials to obtain proper electrical performance from such components. The need for higher integrated circuit densities also creates a need for process sequences for the fabrication of integrated circuit components. For example, in a process sequence using conventional photolithography techniques, an energy sensitive resist layer is formed over a stack of layers of material disposed on a substrate. The energy sensitive resist layer is exposed to an image of a pattern to form a photoresist mask. The mask pattern is then transferred to the stacked layers of one or more materials using an etching process. The chemical etchant used in the etch process is selected to have a greater etch selectivity for the stacked material layers than for the energy sensitive resist mask. That is to say, the chemical etchant will be stacked with a material etched at a rate of 201216331::Γ= Γ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 多个 多个 多个 多个Before the m, ^, make the shelter 1 sensitive resist is exhausted. ★ I selective (four) agent can improve the pattern transfer of fine 4. As the pattern size shrinks, the thickness of the energy slabs must be correspondingly reduced in order to control the resolution of the pattern. The towel is also subjected to a chemical etchant, which is insufficient to mask during the pattern transfer step: the underlying material layer. An intermediate layer (eg, oxynitride, m, anaerobic or carbon film) is often used between the energy sensitive resist layer and the underlying material to: the intermediate layer has greater resistance to the chemical remnant and promotes the map. Fortunately, the middle layer is called a hard mask. It is desirable to have a thin hard mask: this thin hard mask has a high etch option, Γ, with twins and easy to remove after the etch process is completed. As the critical dimension decreases, the hard mask material of the eyeframe lacks the desired surname selectivity relative to the underlying material and is often difficult to remove. Therefore, there is a need in the art for an improved hard mask layer and a method for depositing an improved hard mask layer. SUMMARY OF THE INVENTION Embodiments of the present invention generally relate to the fabrication of integrated circuits, and more particularly to the deposition of boron-containing amorphous carbon layers on semiconductor substrates. In one embodiment, a method of treating a substrate in a process chamber is provided. The method comprises the steps of: providing a substrate in a processing space; flowing a hydrocarbon-containing gas mixture into the processing space; generating an electricity enthalpy of the carbon-containing argon compound gas mixture by applying power 201216331 from the cerium source; The gas mixture flows into the processing space; and in the presence of the plasma, a boron-containing amorphous carbon film is deposited on the substrate, wherein the boron-containing amorphous carbon film contains an atomic percentage of from about 10 to about 60. In another embodiment, a method of processing a substrate in a processing chamber is provided. The method comprises the steps of: exposing a substrate to a flow of a hydrocarbon-containing gas in the presence of RF power to deposit a shed-free amorphous carbon film on the substrate; turning off RF power while allowing carbonaceous gas Continuous flow of the compound gas; and exposure of the substrate to the flow of the gas-containing gas and the flow of the hydrocarbon-containing gas in the presence of RF power to deposit a boron-containing amorphous carbon film on the boron-free amorphous carbon film The (tetra)crystalline carbon film contains a side having an atomic percentage of about 30 to 60. In one example, the germanium-free amorphous carbon film may have a thickness of from about 5 () A to about A, while the side-containing amorphous carbon: may have a thickness of from about 300 A to about 5 Å. The boron-containing amorphous carbon film may contain carbon having an atomic percentage of from about 2 Torr to about 5 Å and hydrogen having an atomic percentage of from about 1 Torr to about 25. The method may further comprise the steps of: etching the 3 boron amorphous carbon film ' to form a patterned boron-containing amorphous carbon film; and forming a feature definition corresponding to the patterned boron-containing amorphous carbon film in the substrate. In another embodiment, a :: is provided for processing a substrate in a process chamber. The method comprises the steps of: providing a substrate in a processing space; flowing a hydrocarbon gas mixture into the processing space; by applying power from the RF source, the electricity is supplied from the mixture of the 3 carbon-nitrogen compound gas. The plasma (4) at 7, in the categorization of the material to allow the lead gas to flow into the treatment", inside ...: membrane, J buried in the two, and in the presence of plasma 6 201216331, in the absence of boron A boron-containing amorphous carbon film is deposited on the amorphous carbon film, wherein the boron-containing amorphous carbon film contains boron having an atomic percentage of from about 10 to about 60. In another embodiment, a processing base is provided in the processing chamber The method comprises the steps of: providing a substrate in a process chamber; flowing a 3 hydrocarbon gas mixture into the process chamber; generating a first plasma from the hydrocarbon-containing gas mixture to be on the substrate Depositing a boron-free amorphous carbon film having a thickness of about 3 〇〇A to about 5000 Å without dicing, and stabilizing the processing conditions in the process chamber by turning off the first plasma. Hydrocarbon gas mixture continues to flow a process chamber; flowing a boron-containing gas mixture into the process chamber; and generating a second plasma from the mixture of the hydrocarbon-containing gas mixture and the boron-containing gas to deposit boron-containing amorphous on the boron-free amorphous carbon film The carbon film, the boron-containing amorphous carbon film has a thickness of about 3 A to about 5 A. In one example, the shed-containing amorphous carbon film may contain a side having an atomic percentage of ❸1 〇 to about. The method may further comprise the steps of: removing a carbon-containing ruthenium using a solution containing nitrogen peroxide and sulfuric acid; and removing the boron-free amorphous carbon using a hydrogen-containing electricity, an oxygen-containing plasma, or a combination thereof membrane. In yet another embodiment, a boron-containing amorphous carbon film is provided. The boron-containing amorphous carbon film contains boron having an atomic percentage of from about 1 Torr to about 6 Å, a carbon having an atomic percentage of from about 20 to about 50, and a hydrogen having an atomic percentage of from about 1 Å to about 3 Å. In yet another embodiment, a semiconductor component is provided. The element comprises: an amorphous carbon film without a meal, and an amorphous carbon film containing no side deposited on the substrate, and the amorphous carbon film without the shed has a thickness of about 5 〇A to about 201216331 f; An amorphous carbon film on which a boron-containing amorphous carbon film is deposited on a non-deleted amorphous carbon film, wherein the boron-containing amorphous carbon film has a thickness of about 3 Å to about 5 Å and an atomic percentage of about 10 to 60 The anti-reflective coating film is deposited on the boron-containing amorphous carbon film; and the photoresist film is deposited on the anti-reflective coating film. In another embodiment, a method of treating a substrate in a process chamber is provided. The method comprises the steps of: exposing a substrate to a flow of a gas mixture in the presence of lamp power to deposit an amorphous carbon film over the substrate, the gas mixture comprising a hydrocarbon-containing compound (IV) and a gas containing a gas; a boron-containing amorphous carbon film to form a patterned (tetra)-containing carbon medium, wherein the 3-boron amorphous carbon film contains an atomic percentage of from about 35 to about and has a thickness of from about 300 A to about 5 intrusion; A feature definition corresponding to the patterned (tetra)crystalline carbon film is formed in the substrate. In an example, the boron-containing amorphous film can contain from about 2 Torr to about 5 Å of carbon with a hydrogen atomic percentage of from about 10 to about 25. [Embodiment] Embodiments of the present invention generally relate to the deposition of an amorphous carbon layer on a semiconductor substrate of an integrated circuit: a v # . _ , ^ layer of a shed amorphous carbon layer product. In logic and memory component structures, the high aspect ratio quotient for deep contact can have an aspect ratio of 1〇_75; where the hard mask occupies 1G of the total stack thickness, providing improved Residual selectivity. 8〇% of the amorphous carbon film containing the shed 8 201216331 ^ carbon film This valley reduces the thickness of the hard mask similar to the corresponding amount. In another example, provides (4) 'including (four) (4) Impedance is 2-2 G times the (4) impedance of the currently known undoped amorphous carbon film, which allows for a reduction in the thickness of the hard mask and the aspect ratio of the structure. The specific embodiment described herein is improved. Hard mask wheel temple, critical dimension control and critical dimension uniformity. In various embodiments, hydrocarbon-containing gases, boron-containing gases, and inert 'carrier gases (such as argon nitrogen and helium) can be used to deposit boron-containing non- Crystalline Carbon Layer: Advantageously, it has been found that industrially acceptable wet etching can be used: the boron-containing amorphous carbon film is easily stripped from the underlying material without damaging the underlying dielectric film. The embodiment also provides a multilayer hard mask comprising a layer of amorphous carbon and sinking A boron-containing amorphous carbon layer on the amorphous carbon layer. In one embodiment, the boron-containing amorphous carbon film contains boron having an atomic percentage of from about 1 Å to about 60. The amorphous carbon layer may have a thickness of about 50 Å to Approximately 5000 A. The boron-containing amorphous carbon film may have a thickness of from about 3 GGA to about 5 A. In the case where the amorphous carbon layer has a thickness of from about 50 A to about 1000 A, the underlying amorphous carbon layer may serve as a substrate and a side-containing non- a transition layer between the crystalline carbon layers to prevent amorphous boron from being directly formed on the substrate during subsequent deposition of boron-containing amorphous carbon using a 3 boron gas such as monoborane, wherein amorphous boron is difficult to move In addition to being a transition film, in a particular embodiment having an amorphous carbon layer having a thickness of from about 300 A to about 5000 A, the boron-containing amorphous carbon layer can have good hard mask performance (eg, good CD control and feature profile) ) is exhausted during the main etching process, while having a sufficiently thick amorphous carbon layer 'which can be easily ashed using a conventional oxygen plasma to thicken the amorphous carbon layer 201216331 so that the underlying layer can be completed Patterned without damaging the underlying layer. People familiar with this technology It is understood that the term "boron-containing amorphous carbon" as used in the specification generally covers boron-carbon materials, whether in the form of boron carbide or non-stoichiometric compounds of boron and carbon or boron-doped amorphous carbon. . It should also be understood that although the material is referred to herein as "amorphous", the fifth is not intended to mean that the film does not contain a crystalline structure at all, but merely that the currently available technique does not recognize the crystalline structure. 1 illustrates a schematic diagram of a substrate processing system 132 that can be used to perform amorphous carbon layer deposition in accordance with embodiments described herein. An example of an example of a substrate processing system 132 that can be used to practice the present invention is described in commonly-assigned U.S. Patent No. 6,364,954, issued to U.S. Patent No. 6,364,954, issued to SaW.
等人且在此以引用方式被併入到本文内。適當的系統的 實例包括能從美國加州聖大克勞拉市的應用材料公司商 業上取得的可使用DxZ™製程腔室的CENTURA®系統、 PRECISION 5〇〇〇®,系統、PR0DUCERTM 系統、pR〇DUCER GT™與PRODUCER SE™製程腔室。可瞭解,其他製程系 統(包括能從其他製造業者取得的製程系統)可適於實施 在此所述的實施例。 製程系統132包括製程腔室100,製程腔室ι〇〇耦接 到氣體面板130與控制器110。大體上,製程腔室ι〇〇 包括頂壁124、側壁1〇1與底壁122,頂壁124、側壁ιοί 與底壁122界定内部處理空間126。支撐載座15〇被提 供在腔室100的内部處理空間126中。載座150由桿160 10 201216331 來支樓’並且載座15G可典型地由紹、陶竟與其他適當 材料製成。可使用位移機構(未圖示)在腔室1〇〇内將載 座150移動於垂直方向。 載座150可包括欲設加熱器構件17〇,嵌設加熱器構 件170適於控制被支撐在載座15〇的表面192上的基材 190的溫度。可藉由施加來自功率供應器1〇6的電流到 加熱器構件17〇,以將載座15〇電阻 …可㈣·鉻導線製成,其中鎳_鉻導線㈣裝;^ 鐵-鉻合金(例如INC0L0Y,的勒管中。從功率供應器1〇6 供應的電流是由控制器110來調節,以控制加熱器構件 170產生的熱’藉此在膜沉積期間維持基# 與載座 150於實質上恆定的溫度。可調整所供應的電流,以選 擇性地控職座15G的溫度於約⑽。^至約則。C之間。 溫度感測器172(諸如熱電偶)可被嵌設在支撐載座 中,以利用傳統方式來監控載座15〇的溫度。控制器110 使用測量的溫度來控制供應到加熱構件17〇的功率,以 維持基材於期望的溫度。 真空系102麵接到形成在腔室100的底部中的埠。真 空泵102用於維持製程腔室⑽中的㈣的氣體壓h 真空录102亦可將後處理氣體與製程副產物從腔室刚 排空。 製程系統132還可包括用於控制腔室壓力的額外設 備,例如設置在製程腔室1〇〇與真空果1〇2之間而用: 控制腔室壓力的閥(例如節流閥與隔離閥)。 201216331 喷頭120具有複數個穿孔128,喷頭120設置在製程 腔室100的頂部上而位在基材支撐載座丨5〇上方。喷頭 120的穿孔128用於將製程氣體引進到腔室10〇内。穿 孔128可具有不同的尺寸、數量、分佈、形狀、設計與 直徑’以促進針對不同製程要求的各種製程氣體流動。 噴頭120連接到氣體面板130,氣體面板130容許各種 氣體在製程期間供應到内部處理空間126。電漿從離開 喷頭120的製程氣體混合物而形成,以提升製程氣體的 熱分解’使得材料能沉積在基材19〇的表面191上。 喷頭120與基材支撐載座15〇可在内部處理空間126 中形成一對相隔電極。一或更多個RF功率源14〇經由匹 配網路138提供偏電位到噴頭12〇,以促進噴頭丨2〇與 載座150之間的電毁的產生。或者,RF功率源與匹 配網路138可耦接到喷頭12〇、基材載座15〇,或耦接到 喷頭120與基材載纟15〇兩者,或叙接到設置在腔室刚 外面的天線(未圖示)。在一實施例中,RF功率源14〇可 在約50 kHz至約u·6 MHz的頻率下提供約100 Watts 與約3000 Watts之間。 可在約50 kHz至約13 與約1800 Watts之間。 在另一實施例中,RF功率源14〇 6MHz的頻率下提供約5〇〇 Watts 控制器110包括中血考田苗- W央處理單兀(CpU)112、記憶體116 ,、支援電路114,而用以控制製程順序與 面板uo的氣體流動。⑽上 :自乱體 u j以疋用在工業設備中 的任何形式的通用目的雷聪♦ 。 的電細處理益。軟體常式可儲存在 12 201216331 記憶體mt,記憶體係諸如隨機存取記憶體、唯讀記 憶體、軟碟或硬碟機’或任何形式的數位儲存器。支援 電路114係以傳統方式㈣到cpu ιΐ2且可包㈣b 時脈電路、輸入/輪出系統、功率供應器與諸如此類者。 控制器110與製程系统132的各種部件之間的雙向溝通 是透過多㈣號纜線來操縱,該#訊號_共同地稱為 訊说匯流排1 1 8 ’ 一此句骑藤泣1 1 〇 二訊唬匯流排U8被圖示在第1圖中。 其他沉積腔室亦可受益自本發明,並且上述所列的參 數可根據歸形成非晶碳層的㈣沉積腔室而改變。舉 例而言’其他沉積腔室可具有更大或更小的容積,使得 氣體流速大於或小於能從應用材料公司取得的沉積腔室 的氣體流速。在-實施例中,可使用能從美國加州聖大 克勞拉市的應用材料公司商業上取得% producer ㈣或PR卿cergt™製程腔室而利用表一所揭示的 參數來沉積含领非晶碳層。 所沉積的含侧非晶碳膜中的删的量/百分比可根據應 用而改纟本發明的各種實施例中’含爛非晶碳膜可 含有原子百分比為至少8、10、15、20、25、3〇、35、 40、45、50或55的硼。含硼非晶碳膜可含有原 比高達 15、2〇、25、30、35、4〇、45、5。、55或二 蝴。含棚非晶碳膜可含有原子百分比為約1〇至約⑼的 棚。含侧非晶碳膜可含有原子百分比為約3〇至約6〇的 硼。含硼非晶碳膜可含有原子百分比為至少丨5、2 u、 30、35、40'4S、<;n cc 上, 50、55或60的碳。含硼非晶碳膜可 13 201216331 含有原子百分比高達25、3〇 川、35 、 40 、 45 、 50 、 55 、 60 或65的碳。含硼非晶碳膜 ^ r 3有原子百分比為約20 ? 約65的碳,例如原子百分比 非a磁眩矸人古店 約35至約50的碳。含硼 人u 比為至少的氫。 3蝴非晶碳膜可含有原子百八 ^ 厚于百刀比向達15、20、25、3〇或 40的氫。含硼非晶碳膜可含 一 艰于百刀比為約1 〇至約 25的氫。在氣作為前驅物的特定音尬办丨士 J符疋實施例中’含硼非晶碳 膜可含有原子百分比為至少5、1η$ 1 〇或1 5的氮。含硼非晶 碳膜可含有原子百分&宾$ 1 Λ , 乃τ 丁曰刀比冋違1〇、ls或2〇的氮。 大體上,下述的示範性沉積製程參數可用於形成含蝴 非晶碳層。製程參數可以是晶圓溫度可為約1()代至約 赋,例如在約20(rc與約5〇〇t之間。腔室壓力可為 約1 Ton·至約20Torr,例如在約2T〇rr與約ι〇τ〇γγ< 間。含碳氩化合物氣體的流速可為約2〇〇 sccm至約 seem,例如在約400 sccm與約2〇〇〇 sccm之間。稀釋氣 體的流速可獨立地為約〇 sccm至約2〇〇〇〇 sccm,例如約 2000 sccm至約10000 sccm。惰性氣體的流速可獨立地 為約0 seem至約20000 seem’例如約200 seem至約2〇〇〇 seem。含硼氣體混合物的流速可為約i〇〇〇 sccm至約 15000 seem,例如在約 5000 seem 與約 13000 seem 之間。 RF功率為在約1 w/in2與約100 WAn2之間,諸如在約3 W/in2與約20 W/in2之間,並且基材的頂表面與喷頭之間 的板間隔為在約200 mils與約600 mils之間。含爛非晶 碳層可沉積成厚度為在約100A與約20000A之間,諸如 14 201216331 在約300A與約5000A之間。上述的製程參數提供含硼 非晶碳層在約l〇〇A/min至約10000A/min的典型沉積速 率,並且可被實施在能從美國加州聖大克勞拉市的應用 材料公司取得的沉積腔室中的300 mm基材上。 表一 沉積參數 示範性範圍 溫度(°c) 200-550 °C 400 °C 壓力(Torr) 2.0-10.0 Torr 7.0 Torr RF 功率(13·56ΜΗζ) 100-3,000 Watts 1,200 Watts 間隔 200-600 mils 320 mils C2H2流動 200-2,000 seem 500 seem He流動 0-10,000 seem 400 seem B2H6混合物流動 1,000-15,000 seem 13,000 seem Ar流動 0-10,000 seem 3,000 seem 所沉積的含硼非晶碳膜可具有小於2.0%的均勻性(R/2 %)。所沉積的含硼非晶碳膜可具有大於1.8的折射率 (RI(63 3 nm)),例如約2.3 2。所沉積的含硼非晶碳膜可具 有小於0.1的k值(K(在633 nm)),例如約0.02。所沉積 的含硼非晶碳膜可具有約 〇至約-500 MPa的應力 (MPa),例如-50 MPa。所沉積的含硼非晶碳膜可具有大 於1.5 g/cc的密度(g/cc),例如約1.86 g/cc或更高(諸如 1.95 g/cc) 〇 第2圖是製程流程圖,該製程流程圖圖示用於根據在 15 201216331 此所述的實施例沉積含硼非晶碳膜的方法2〇〇的一實施 例。方法200開始於方塊202,方塊2〇2是在製程腔室 的内部空間中提供基材。製程腔室可以是第丨圖所圖示 的製程腔室100。基材19〇(如第3圖所示)具有實質上平 坦的表面191。或者,基材19〇可具有圖案化結構,即 具有溝槽、孔洞或介層洞形成在其中的表面。基材19〇 亦可具有實質上平坦的表面,該實質上平坦的表面具有 於期望高度處形成在其上或在其中的結構。儘管基材19〇 被圖示成單一本體,可瞭解的是基材190可含有用於形 成半導體元件(諸如金屬接觸、溝槽隔離、閘極、位元線 或任何其他内連線特徵)的—或更多個材料。基材19〇可 包含用於製造半導體元件的一或更多個金屬I、一或更 夕個’丨電材料、半導體材料與上述的組合。舉例而言, 基材19G可包括氧化物材料、氮化物材料、多晶石夕材料 或諸如此類者’取決於應用。在期望記憶體應用的一實 施例中,基材19Q可包㈣基材材料、氧化物材料與氮 化物.材料’無論具有或不具有多晶石夕夾置在該等材料之 =可。在另—實施例中,基材刚可包括沉積在基材 .面上的複數個交替的氧化物與氮化物材料(即氧化 物-氮化物-氧化物(_))(未圖示)。在各種實施例中,基 材_ T包括複數個交替的氧化物與氮化物材料、―二 更多個氧化物或氮化物材料 '多晶石夕或非 知 :::交替的氧化物、和多-交替的氧化物:摻: 夕父替的未摻雜矽、和摻雜多曰 ” 雜夕日日矽父替的未摻雜多晶 16 201216331 矽、或和摻雜非晶矽交替的未摻雜非晶;6夕。基材可以是 任何基材或材料表面,膜處理被執行在基材或材料表面 上。舉例而言,基材190可以是諸如結晶矽、氧化矽、 氮氧化矽、氮化矽、伸張矽、矽鍺、鎢、氮化鈦、摻雜 或未摻雜多晶石夕、摻雜或未摻雜石夕晶圓與圖案化或未圖 案化晶圓、絕緣體覆矽(SOI)、摻雜碳的氧化矽、氮化石夕、 摻雜矽、赭、砷化鎵、玻璃、藍寶石(sapphire)、低k介 電質與上述的組合的材料。 在方塊204中,使含碳氫化合物氣體混合物流動到處 理空間1 26内。可使含碳氫化合物氣體混合物從氣體面 板130經由噴頭120流動到處理空間126内。氣體混合 物可包括至少一碳氫化合物與惰性氣體。儘管較佳的前 驅物是在室溫下的蒸氣以能將到腔室的材料計量、控制 與輸送予以簡單化,碳氫化合物可以是任何液體或氣 體。較佳地,碳源是氣態碳氫化合物,諸如線性碳氫化 合物。在-實施例中’碳氫化合物具有CxHy的通式,其 中X為在1與20之間且y為在i與2〇之間。適當的碳 氫化合物包括一或更多個下述的化合物,例如烷類甲烷 (ch4)、乙院(C2h6)、丙稀(c3H6)、丙烧(㈣)、丁烧⑹ 及其異構物異丁烧、戊_12)及其異構物異戊烧和新 戊烷、己烷(C6HM)及其異構物2_曱基戊烷、3_甲基戊烷、 2,3_二甲基丁院和2’2_二甲基丁烷與諸如此類者:額:的 適當的碳氫化合物可包括烯類(諸如乙婦、丙歸、 其異構物、戍稀及其異構物與諸如此類者)、二鮮類(諸 17 201216331 如丁二烯、異戊烯、戊二烯、己二烯與諸如此類者)、與 齒化院類(包括—敗乙稀、二敗乙稀、z氣乙埽、四氟乙 烯、-氣乙烯、二氣乙稀、三氯乙婦、四氣乙烯與諸如 此類者)。此外,炔類(諸如乙炔(c^2)、丙炔(c3H4)、丁 烯(C#8)、乙烯基乙炔與上述的衍生物)可作為碳前驅 物。可使用額外的芳香族碳氫化合物(諸如苯笨乙烯、 甲笨一甲笨、乙笨、苯乙酮、苯甲酸甲酯、乙酸苯醋、 酚、甲酚、呋喃與諸如此類者)、松油烯、異丙基曱苯、 1,1,3,3-四甲基丁基笨、第三丁基醚、第三丁基乙烯、甲 基丙烯酸曱酯與第三丁基糠基醚、具有化學式C3H2與 CSH4的化合物、鹵化芳香族化合物(包括一氟化苯、二氟 化苯、四氟化苯、六氟化苯與諸如此類者p在一實施例 中,C^2是較佳的,此是因為能形成更穩定的中間物種, 更穩定的中間物種能容許更大的表面移動性。 若希望的話’可添加適當的稀釋氣體(諸如氦(He)、氬 (Ar)、氫(H2)、氮(A)、氨(NH3)、或上述的組合、與諸 如此類者)到氣體混合物。Ar、He與是用來控制非晶 碳層的密度與沉積速率。在一些情況中,與/或Μ% 的添加可用來控制非晶碳層的氫比例,如下文所討論。 或者’在沉積期間可不使用稀釋氣體。 可隨同含碳氫化合物氣體混合物供應惰性氣體(諸如 氬(Ar)與/或氦(He))到製程腔室1〇〇内。亦可使用其他惰 性氣體(諸如氮(N2)與一氧化氮(NO))來控制非晶碳層的 密度與沉積速率。此外,可添加各種其他製程氣體到氣 201216331 體混合物,以改轡北s 0 L, 又雯非日日妷材料的性質。在一實施例中, 製程氣體可以是^及藤地名^ 疋反應性乳體,諸如氫(H2)、氨(NH3)、氫 (H2)與氮(NO的混合物赤μ 物次上述的組合。Η2與/或ΝΗ3的添 加可用來控制所%積的非晶碳層的氫比例(例如碳對氣 的比例)#在於非晶碳膜中的氫比例係提供對層性質 (諸如反射率)的控制。 在方塊206中,使含硼氣體混合物流動到内部處理空 間126内。可使含硼氣體混合物從氣體面板130經由噴 頭120流動到處理空間126内。在一實施例中,含硼氣 體混合物包含含硼化合物與惰性氣體。含硼化合物的實 例包括一硼烷(Β2%)、三甲基硼烷(ΤΜΒ或B(CH3)3)、三 乙基硼烷(TEB)、曱基硼烷、二甲基硼烷、乙基硼烷、二 乙基硼烧與類似的化合物。在一實施例中,含硼化合物 在總含棚氣體混合物中的百分比為約2%至約20%。在另 一實施例中’含硼化合物在總含硼氣體混合物中的百分 比為約5%至約1 〇%。示範的含硼氣體混合物可包括5〇/〇 B2H6/95°/〇 N2、5% B2H6/95°/。He、10% B2H6/90% He、5% B2H6/95% Ar、10% B2H6/90% Ar、或 5% B2H6/95% H2。 不被理論受限但發明人已經發現到,氦的使用(而非氮的 使用)可達到改善的機械膜性質(諸如模數與硬度)。可設 想出的是當使用了不同濃度的含硼氣體混合物時,需要 達到特定膜性質的流速可相應地改變。舉例而言,在使 用5%二硼烷作為含硼氣體源的情況中,含硼氣體混合物 的流速可為約5000 seem至約15000 seem,例如約13000 201216331 明祝邗為含硼氣體源的另 seem 〇在使 ^ \7'\ 中,含硼氣體混合物的流速可為約4〇〇〇sccm至約1〇〇〇〇 seem,例如約 6000 sccm 至約 7〇〇〇 sccm。 在方塊观中,在内部處理空間126中產生灯電衆, 以在基材190上沉積含蝴非晶碳膜3()4。第2圖在此顯 示-實施例,其中在啟動RF電漿之前將含碳氮化合物氣 體混合物與含硼氣體混合物引進到内部處理空間126 内。在此情況中’可將含碳氫化合物氣體混合物引進到 處理空間126内長達較長的時間’諸如約5秒與約30秒 之間,例如約15秒,時間可取決於基材的尺寸。咸作, 在引進含硼氣體之前的含碳氫化合物氣體混合物的流動 能提供處理空間126的連續的熱與壓力穩定性。儘管使 含碳氫化合物氣體混合物流動,含侧氣體混合物接著在 引發RF電漿之前流動到處理空間126内長達約〇 5秒至 約5秒,例如約1科$的〇 , 約2秒(只要流動恰好能長到足以 使含硼氣體混合物開始抵達處理空$ 126,流動時間可 文變)含碳氫化合物氣體混合物與含侧氣體混合物可持 續流動,直到達到期望厚度的含硼非晶碳膜304。或者, 可在將含硼氣體混合物引進到内部處理空間126内之前 產生RF電漿。 硼非邱石及膜304的厚度是取決於處理階段而可改變 實施例中,含蝴非晶碳貞3〇4可具有約1〇〇A .至約2 0000A的厘;ί 的厚度’例如约30(U至約5000A。可使用 標準先阻剩圖案化技術將含蝴非晶碳们〇4予以圖案 20 201216331 可使用a有過氧化氫與硫酸的溶液將含硼非晶碳膜 3〇4移除。-含有過氧化氫與硫酸的示範性溶液稱為柏 爛哈溶液(Piranha SQlu—或㈣哈㈣劑(pkanha etch)。#可使用含有氧與齒素(例如1或氯)的银刻化學 試劑(例如Cl2/〇2、CF4/〇2、cl2/〇2/CF4)將含刪非晶碳膜 304移除。 第4圖是製程流程圖,該製程流程圖圖示用於根據在 此所述的實施例沉積含硼非晶碳膜的方法4〇〇的另—實 施例。第5 ®圖示根據在此所述的實施例的基材結構的 示意剖視圖,該基材結構在未摻雜非晶碳膜5()2上具有 作為硬罩幕層的含硼非晶碳膜3〇4。第4圖所圖示的方 法400類似於第2圖所圖示的方法2〇〇,除了在含调非 晶碳膜304沉積在未摻雜非晶碳膜5〇2之前使未摻雜非 晶碳膜502沉積在基材的表面ι91上。 在方塊402中,基材19〇定位在製程腔室1〇〇的内部 處理空間126中。 在方塊404中,使含碳氫化合物氣體混合物流動到内 部處理空間126内。含碳氫化合物氣體混合物可類似於 方法200中所使用的含碳氫化合物氣體混合物。 在方塊406中,在内部處理空間126中產生rf電漿, 以在基材190的表面191上沉積未掺雜非晶碳(不含硼) 膜。可使用前述的處理條件在沒有含硼氣體混合的流動 下來;儿積未#雜非晶碳膜502。在一實施例中,未摻雜 #晶碳膜502可具有約5〇A至約1〇〇〇A的厚度,未接雜 21 201216331 非晶%膜502可作為基材! 9〇與後續沉積的含硼非晶碳 膜304之間的過渡層(第5圖)。已經觀察到在後續的 含硼非晶碳膜304的沉積期間,作為碳源的含硼氣體(諸 如二硼烷)被分解且在加熱的基材上形成非晶硼臈(即使 沒有啟動電漿),其中非晶賴難以移除。所沉積的未換 雜非晶碳膜502可在後續的含硼非晶碳沉積期間避免非 晶堋會直接地形成在基材上。 在另一實施例中,未摻雜非晶碳層5〇2可具有約3〇〇a 至約5000A的較厚厚度,例如約2〇〇〇A至約3〇〇〇a,以 致待沉積在未掺雜非晶碳層502上的後續含侧非晶碳膜 綱(第5圖)能在具有良好的硬罩幕效能(例如良好的⑶ 控制與特徵輪廓)的主要姓刻製程期間被耗盡,同時具有 足夠厚的非晶碳層’其中可使用傳統的氧電漿將該足夠 厚的非晶碳層輕易地灰化’以致下方的層能完成圖案化 而不會損壞下方的層。此多層硬罩幕方式可被應用到各 種應用’諸如深氧化物接㈣刻、DRAM電容器模禱触 刻、及線與/或空間钱刻。在線與空間姓刻應用(諸如淺 =隔離钱刻硬罩幕、問極钮刻硬罩幕與位元線姓刻硬 罩幕)的情況中,膜堆疊可具有約3〇〇A至齡酬入的未 =晶碳膜502與約3。。“約1〇_的含哪非晶碳 、 取決於緻密與稀疏區域的蝕刻選擇性,可^ μ 該等層的厚度。 了調郎 晶碳膜 ,同時 一旦在基材190上沉積了期望厚度的未摻雜非 502 ’可藉Φ㈣RF f漿將製程腔室+以穩定化 22 201216331 使含碳氮化合物氣體混合物持續流動到處理空間1 26 内。在將含硼氣體混合物引進到處理空間126内之後, 可繼續RF電敷。在一實例中,含硼氣體混合物在引發 RF電聚之刖流動到處理空間!26内長達約〇 5秒至約5 秒’例如約1秒至約2秒(只要流動恰好能長到足以使含 硼氣體混合物開始抵達處理空間丨26,流動時間可改變)。 在沉積未摻雜非晶碳膜502之後,在方塊408中,使 含硼氣體混合物(類似於方法2 〇 〇中所使用的含硼氣體混 合物)流動到製程腔室的内部處理空間丨26内。在一實施 例中’可維持用於沉積未摻雜非晶碳膜5〇2的處理條 件,同時使含爛氣體混合物流動到製程腔室丨〇〇的内部 處理空間126内。或者,如上所述,在將含硼氣體混合 物引進到内部處理空間126内之前,可關閉RF電漿,同 時使含奴氩化合物氣體混合物持續流動到處理空間126 内。 在方塊410中,在RF電漿的存在下,含硼非晶碳膜 304沉積在未摻雜非晶碳膜5〇2上。在一實施例中,含 硼非晶碳膜304可具有約100A至約20000A的厚度,例 如約300A至約5000A。所沉積的含硼非晶碳膜3〇4可提 供對罩幕琢面(mask faceting)較#的阻抗性(此對於在主 要蝕刻製程期間維持CD控制與特徵輪廓是重要的)以及 比傳統非晶碳硬罩幕更佳的良好蝕刻選擇性(此是根據 高達7X毯覆膜測試)。可使用含有過氧化氫與硫酸的溶 液將含觸非晶碳膜3G4移除。—含有過氧化氫與硫酸的 23 201216331 示範性溶液稱為柏瀾哈溶液(Piranha s〇luti〇n)或柏瀾哈 蝕刻劑(Piranha etch)。可使用含氫電漿、含氧電漿或^ 們的組合將未摻雜(不含硼)非晶碳膜5〇2移除。亦可使 用含有氧與齒素(例如就或氣)的蝕刻化學試劑(例如 Cl2/〇2 CF4/〇2、C12/Q2/CF4)將含删非晶碳膜 3Q4 移除。And others are incorporated herein by reference. Examples of suitable systems include the CENTURA® system, PRECISION 5®®, system, PR0DUCERTM system, pR〇 commercially available from Applied Materials, Inc., Santa Clara, Calif., using DxZTM process chambers. DUCER GTTM and PRODUCER SETM process chambers. It will be appreciated that other process systems, including process systems that can be taken from other manufacturers, can be adapted to implement the embodiments described herein. The process system 132 includes a process chamber 100 that is coupled to the gas panel 130 and the controller 110. In general, the process chamber ι includes a top wall 124, side walls 〇1 and a bottom wall 122, and the top wall 124, the side walls ιοί and the bottom wall 122 define an interior processing space 126. A support carrier 15 is provided in the interior processing space 126 of the chamber 100. The carrier 150 is supported by a pole 160 10 201216331 and the carrier 15G is typically made of Shao, Tao and other suitable materials. The carrier 150 can be moved in the vertical direction in the chamber 1〇〇 using a displacement mechanism (not shown). The carrier 150 can include a heater member 17 that is adapted to control the temperature of the substrate 190 supported on the surface 192 of the carrier 15A. The iron can be made by applying a current from the power supply unit 〇6 to the heater member 17〇 to make the carrier 15 〇 resistance. (4) chrome wire, wherein the nickel chrome wire (four) is mounted; For example, in the tube of INC0L0Y, the current supplied from the power supply unit 〇6 is regulated by the controller 110 to control the heat generated by the heater member 170, thereby maintaining the base # and the carrier 150 during film deposition. A substantially constant temperature. The supplied current can be adjusted to selectively control the temperature of the seat 15G from about (10) to about 6.00 C. The temperature sensor 172 (such as a thermocouple) can be embedded. In the support carrier, the temperature of the carrier 15 is monitored in a conventional manner. The controller 110 uses the measured temperature to control the power supplied to the heating member 17 to maintain the substrate at a desired temperature. The crucible is formed in the bottom of the chamber 100. The vacuum pump 102 is used to maintain the gas pressure h of (4) in the process chamber (10). The vacuum recording 102 can also evacuate the after-treatment gas and process by-products from the chamber. System 132 may also include additional settings for controlling chamber pressure For example, it is disposed between the process chamber 1〇〇 and the vacuum fruit 1〇2 for: a valve for controlling the pressure of the chamber (for example, a throttle valve and an isolation valve). 201216331 The nozzle 120 has a plurality of perforations 128, the nozzle 120 is disposed on top of the process chamber 100 above the substrate support carrier 丨5〇. The perforations 128 of the showerhead 120 are used to introduce process gases into the chamber 10. The perforations 128 can have different sizes, The quantity, distribution, shape, design and diameter 'to facilitate various process gas flows for different process requirements. The showerhead 120 is coupled to a gas panel 130 that allows various gases to be supplied to the internal processing space 126 during processing. The process gas mixture of the showerhead 120 is formed to enhance the thermal decomposition of the process gas so that the material can be deposited on the surface 191 of the substrate 19A. The showerhead 120 and the substrate support carrier 15 can be disposed in the internal processing space 126. A pair of spaced apart electrodes are formed. One or more RF power sources 14A provide a bias potential to the showerhead 12 via the matching network 138 to facilitate the generation of electrical damage between the showerhead 〇2〇 and the carrier 150. The RF power source and matching network 138 can be coupled to the showerhead 12A, the substrate carrier 15〇, or to both the showerhead 120 and the substrate carrier 15〇, or can be coupled to the chamber. Just outside the antenna (not shown). In an embodiment, the RF power source 14 提供 can provide between about 100 Watts and about 3000 Watts at a frequency of about 50 kHz to about u·6 MHz. Between kHz and about 13 and about 1800 Watts. In another embodiment, the RF power source provides about 5 〇〇 Watts controller 110 at a frequency of 14 MHz 6 MHz, including medium blood test field seedlings - W central processing unit (CpU) 112, the memory 116, and the support circuit 114 are used to control the flow of the gas in the process sequence and the panel uo. (10) Upper: Self-invasive u j is used in any form of general purpose Lei Cong ♦ in industrial equipment. The power of the fine processing benefits. The software routine can be stored in 12 201216331 memory mt, memory systems such as random access memory, read-only memory, floppy or hard disk drive' or any form of digital storage. The support circuit 114 is conventionally (four) to cpu ιΐ2 and can include (iv) b clock circuits, input/round systems, power supplies, and the like. The two-way communication between the controller 110 and the various components of the process system 132 is handled by a multi-(4-) cable, which is commonly referred to as a communication bus 1 1 8 '. The second information bus bar U8 is shown in Fig. 1. Other deposition chambers may also benefit from the present invention, and the parameters listed above may vary depending on the (four) deposition chamber that is formed into the amorphous carbon layer. For example, other deposition chambers may have a larger or smaller volume such that the gas flow rate is greater or less than the gas flow rate of the deposition chamber available from Applied Materials. In an embodiment, a % producer (four) or PR cergtTM process chamber can be commercially obtained from Applied Materials, Inc. of Santa Clara, Calif., using the parameters disclosed in Table 1 to deposit a collar amorphous Carbon layer. The amount/percentage of the deposited side-containing amorphous carbon film may vary depending on the application. In various embodiments of the present invention, the rotten amorphous carbon film may contain an atomic percentage of at least 8, 10, 15, 20, 25, 3, 35, 40, 45, 50 or 55 boron. The boron-containing amorphous carbon film may contain up to 15, 2, 25, 30, 35, 4, 45, and 5. , 55 or two. The shed amorphous carbon film may contain a shed having an atomic percentage of from about 1 Torr to about (9). The side-containing amorphous carbon film may contain boron having an atomic percentage of from about 3 Å to about 6 Å. The boron-containing amorphous carbon film may contain carbon having an atomic percentage of at least 、5, 2 u, 30, 35, 40'4S, <;n cc, 50, 55 or 60. Boron-containing amorphous carbon film 13 201216331 Contains carbon with atomic percentages up to 25, 3, 3, 35, 40, 45, 50, 55, 60 or 65. The boron-containing amorphous carbon film ^ r 3 has a carbon percentage of about 20 Å to about 65, for example, an atomic percentage. A carbon is about 35 to about 50 carbon. The boron-containing human u ratio is at least hydrogen. 3 Amorphous carbon film may contain hydrogen with an atomic ratio of 15, 20, 25, 3 or 40. The boron-containing amorphous carbon film may contain a hydrogen having a hardness of from about 1 Torr to about 25 Å. The boron-containing amorphous carbon film may contain nitrogen having an atomic percentage of at least 5, 1 η $ 1 〇 or 15 in the specific syllables of the gas as a precursor. The boron-containing amorphous carbon film may contain atomic percent & $$1 Λ, which is a nitrogen that is less than 1 〇, ls or 2 。. In general, the exemplary deposition process parameters described below can be used to form a butterfly-containing amorphous carbon layer. The process parameter can be that the wafer temperature can be from about 1 (1) to about, for example between about 20 (rc and about 5 Torr). The chamber pressure can be from about 1 Ton to about 20 Torr, for example at about 2T. The flow rate of the carbon-containing argon compound gas may be from about 2 〇〇sccm to about seem, for example, between about 400 sccm and about 2 〇〇〇 sccm. The flow rate of the diluent gas may be 〇rr and about ι〇τ〇γγ< Independently from about 〇sccm to about 2 〇〇〇〇sccm, for example from about 2000 sccm to about 10,000 sccm. The flow rate of the inert gas can independently be from about 0 seem to about 20,000 seem', for example from about 200 seem to about 2 〇〇〇. The flow rate of the boron-containing gas mixture can range from about i〇〇〇sccm to about 15000 seem, for example between about 5000 seem and about 13000 seem. The RF power is between about 1 w/in 2 and about 100 WAn 2 , such as Between about 3 W/in 2 and about 20 W/in 2 , and the plate spacing between the top surface of the substrate and the showerhead is between about 200 mils and about 600 mils. The rotten amorphous carbon layer can be deposited The thickness is between about 100 A and about 20,000 A, such as 14 201216331 between about 300 A and about 5000 A. The process parameters described above provide boron-containing amorphous The layer has a typical deposition rate of from about 10 A/min to about 10000 A/min and can be implemented on a 300 mm substrate in a deposition chamber available from Applied Materials, Inc. of Santa Clara, Calif. Table 1 Deposition parameters Exemplary range temperature (°c) 200-550 °C 400 °C Pressure (Torr) 2.0-10.0 Torr 7.0 Torr RF power (13·56ΜΗζ) 100-3,000 Watts 1,200 Watts Interval 200-600 mils 320 Mils C2H2 flow 200-2,000 seem 500 seem He flow 0-10,000 seem 400 seem B2H6 mixture flow 1,000-15,000 seem 13,000 seem Ar flow 0-10,000 seem 3,000 seem The deposited boron-containing amorphous carbon film can have a uniformity of less than 2.0% Properties (R/2 %). The deposited boron-containing amorphous carbon film may have a refractive index greater than 1.8 (RI (63 3 nm)), for example about 2.3 2. The deposited boron-containing amorphous carbon film may have a smaller The k value of 0.1 (K (at 633 nm)), for example about 0.02. The deposited boron-containing amorphous carbon film may have a stress (MPa) of about 〇 to about -500 MPa, such as -50 MPa. The deposited boron-containing amorphous carbon film may have a density (g/cc) greater than 1.5 g/cc, such as about 1.86 g/cc or higher (such as 1.95 g/cc). FIG. 2 is a process flow diagram. The process flow diagram illustrates an embodiment of a method 2 of depositing a boron-containing amorphous carbon film in accordance with the embodiment described at 15 201216331. The method 200 begins at block 202, which provides a substrate in the interior of the process chamber. The process chamber can be the process chamber 100 illustrated in the figure. Substrate 19 (as shown in Figure 3) has a substantially planar surface 191. Alternatively, the substrate 19A may have a patterned structure, i.e., a surface having grooves, holes or vias formed therein. Substrate 19A can also have a substantially planar surface having a structure formed thereon or therein at a desired height. Although the substrate 19A is illustrated as a single body, it will be appreciated that the substrate 190 can contain features for forming semiconductor components such as metal contacts, trench isolation, gates, bit lines, or any other interconnect features. - or more materials. Substrate 19A may comprise one or more metals I, one or more erbium electrical materials, semiconductor materials, and combinations thereof, for fabricating semiconductor components. For example, the substrate 19G may comprise an oxide material, a nitride material, a polycrystalline material or the like, depending on the application. In an embodiment where a memory application is desired, the substrate 19Q may comprise (iv) a substrate material, an oxide material, and a nitride. The material 'with or without polycrystalline silicon may be sandwiched between the materials. In another embodiment, the substrate may comprise a plurality of alternating oxide and nitride materials (i.e., oxide-nitride-oxide (-)) (not shown) deposited on the surface of the substrate. In various embodiments, substrate _T includes a plurality of alternating oxide and nitride materials, "two more oxides or nitride materials", polycrystalline or non-known:: alternating oxides, and Multi-alternating oxides: doped: undoped yttrium and doped yttrium in the sacred father's day. Undoped polycrystals 16 201216331 矽, or alternating with doped amorphous 矽Doping amorphous; the substrate may be any substrate or material surface, and the film treatment is performed on the surface of the substrate or material. For example, the substrate 190 may be, for example, crystalline germanium, cerium oxide, cerium oxynitride. , tantalum nitride, yttrium, tantalum, tungsten, titanium nitride, doped or undoped polycrystalline, doped or undoped shi wafers and patterned or unpatterned wafers, insulator overlays A material that combines cerium (SOI), carbon-doped cerium oxide, cerium nitride, doped cerium, lanthanum, gallium arsenide, glass, sapphire, low-k dielectric, and the combination described above. Flowing the hydrocarbon-containing gas mixture into the processing space 166. The hydrocarbon-containing gas mixture can be The body panel 130 flows into the processing space 126 via the showerhead 120. The gas mixture can include at least one hydrocarbon and an inert gas. Although the preferred precursor is a vapor at room temperature to meter and control the material to the chamber. Simplified with transport, the hydrocarbon may be any liquid or gas. Preferably, the carbon source is a gaseous hydrocarbon such as a linear hydrocarbon. In the embodiment - the hydrocarbon has the formula CxHy, wherein X is between 1 and 20 and y is between i and 2 。. Suitable hydrocarbons include one or more of the following compounds, such as alkane methane (ch4), keyuan (C2h6), C. Dilute (c3H6), propane ((4)), butadiene (6) and its isomers, isobutylate, pentyl-12) and its isomers, isopentane and neopentane, hexane (C6HM) and their isomers 2_decylpentane, 3-methylpentane, 2,3-dimethyldin and 2'2-dimethylbutane, and the like: suitable hydrocarbons may include alkenes ( Such as women, Agui, their isomers, sputum and their isomers and the like, and two fresh categories (all 17 20121633 1 such as butadiene, isopentene, pentadiene, hexadiene and the like), and the dentures (including - acetophenone, di-ethylene, z-ethene, tetrafluoroethylene, - gas) Ethylene, ethylene ethoxide, trichloroethylene, tetraethethylene and the like. In addition, acetylenes (such as acetylene (c^2), propyne (c3H4), butene (C#8), vinyl acetylene And the above derivatives) can be used as a carbon precursor. Additional aromatic hydrocarbons (such as benzene stupid ethylene, phenyl stupid, stupid, acetophenone, methyl benzoate, phenyl acetate, phenol) can be used. , cresol, furan and the like), terpinene, isopropyl benzene, 1,1,3,3-tetramethylbutyl, tert-butyl ether, t-butylethylene, methacrylic acid An oxime ester with a tert-butyl decyl ether, a compound having the chemical formula C3H2 and CSH4, a halogenated aromatic compound (including fluorinated benzene, difluorinated benzene, tetrafluorobenzene, hexafluorobenzene, and the like In the examples, C^2 is preferred because a more stable intermediate species can be formed, and a more stable intermediate species can tolerate larger tables. Mobility. If desired, a suitable diluent gas (such as helium (He), argon (Ar), hydrogen (H2), nitrogen (A), ammonia (NH3), or a combination of the above, and the like) may be added to the gas mixture. Ar, He and are used to control the density and deposition rate of the amorphous carbon layer. In some cases, the addition of / and Μ% can be used to control the hydrogen ratio of the amorphous carbon layer, as discussed below. Or 'diluted gas may not be used during deposition. An inert gas such as argon (Ar) and/or helium (He) may be supplied to the process chamber 1〇〇 along with the hydrocarbon-containing gas mixture. Other inert gases such as nitrogen (N2) and nitric oxide (NO) may also be used to control the density and deposition rate of the amorphous carbon layer. In addition, various other process gases can be added to the gas 201216331 mixture to improve the properties of the material. In one embodiment, the process gas may be a reactive milk such as hydrogen (H2), ammonia (NH3), hydrogen (H2), and nitrogen (a mixture of NOs, a combination of the above. The addition of Η2 and/or ΝΗ3 can be used to control the hydrogen ratio of the % of the amorphous carbon layer (eg, carbon to gas ratio). # The ratio of hydrogen in the amorphous carbon film provides the properties of the layer (such as reflectivity). Control. In block 206, the boron-containing gas mixture is flowed into the internal processing space 126. The boron-containing gas mixture can be flowed from the gas panel 130 through the showerhead 120 into the processing space 126. In one embodiment, the boron-containing gas mixture Containing a boron-containing compound and an inert gas. Examples of the boron-containing compound include monoborane (Β2%), trimethylborane (ΤΜΒ or B(CH3)3), triethylborane (TEB), mercaptoborane , dimethylborane, ethylborane, diethylboron and similar compounds. In one embodiment, the percentage of boron-containing compound in the total shed gas mixture is from about 2% to about 20%. In another embodiment, the percentage of the boron-containing compound in the total boron-containing gas mixture The ratio is from about 5% to about 1%. The exemplary boron-containing gas mixture may include 5 〇/〇 B2H6/95°/〇N2, 5% B2H6/95°/.He, 10% B2H6/90% He, 5 % B2H6/95% Ar, 10% B2H6/90% Ar, or 5% B2H6/95% H2. Not limited by theory, but the inventors have discovered that the use of hydrazine (rather than the use of nitrogen) can be improved Mechanical film properties (such as modulus and hardness) It is conceivable that when different concentrations of boron-containing gas mixtures are used, the flow rate required to achieve specific film properties can be varied accordingly. For example, using 5% diboron In the case where the alkane is used as a source of a boron-containing gas, the flow rate of the boron-containing gas mixture may range from about 5,000 seem to about 15,000 seem, for example, about 13,000 201216331, which is a source of a boron-containing gas, and another seeker is in the ^?7'\ The flow rate of the boron-containing gas mixture may range from about 4 〇〇〇 sccm to about 1 〇〇〇〇 seem, such as from about 6000 sccm to about 7 〇〇〇 sccm. In the block diagram, a lamp is generated in the internal processing space 126. In order to deposit a butterfly-containing amorphous carbon film 3 () 4 on the substrate 190. Figure 2 shows here - an embodiment in which the RF plasma will be activated before The carbonitride gas mixture and the boron-containing gas mixture are introduced into the internal processing space 126. In this case, the hydrocarbon-containing gas mixture can be introduced into the processing space 126 for a longer period of time, such as about 5 seconds and about. Between 30 seconds, for example about 15 seconds, the time may depend on the size of the substrate. The flow of the hydrocarbon-containing gas mixture prior to the introduction of the boron-containing gas provides continuous thermal and pressure stability of the processing space 126. . Although the hydrocarbon-containing gas mixture is allowed to flow, the side-containing gas mixture then flows into the processing space 126 for about 5 seconds to about 5 seconds before the RF plasma is initiated, for example, about 1 $ $ 〇, about 2 seconds ( As long as the flow is just long enough for the boron-containing gas mixture to begin to reach the treatment space of $126, the flow time can be varied. The hydrocarbon-containing gas mixture and the side-containing gas mixture can continue to flow until the desired thickness of boron-containing amorphous carbon is reached. Film 304. Alternatively, RF plasma can be produced prior to introduction of the boron containing gas mixture into internal processing space 126. The thickness of the boron non-hybrid and the film 304 may vary depending on the treatment stage, and the amorphous carbon-containing germanium 3〇4 may have a thickness of about 1 〇〇A to about 2 0000 Å; About 30 (U to about 5000A. The pattern of the amorphous carbon-containing 〇4 can be patterned using the standard first-resistance patterning technique. 201216331 A boron-containing amorphous carbon film can be used in a solution of hydrogen peroxide and sulfuric acid. 4 Removal. - An exemplary solution containing hydrogen peroxide and sulfuric acid is called P. sulphate solution (Piranha SQlu - or (4) pkanha etch. # can use oxygen and dentate (such as 1 or chlorine) Silver etching chemical reagents (such as Cl2 / 〇 2, CF4 / 〇 2, cl2 / 〇 2 / CF4) remove the amorphous carbon film 304. Figure 4 is a process flow diagram, the process flow chart is used for Another embodiment of the method of depositing a boron-containing amorphous carbon film according to the embodiments described herein. 5X illustrates a schematic cross-sectional view of a substrate structure according to embodiments described herein, the substrate The structure has a boron-containing amorphous carbon film 3〇4 as a hard mask layer on the undoped amorphous carbon film 5() 2. The method 400 illustrated in FIG. 4 is similar to the first method. 2, the method illustrated in FIG. 2, except that the undoped amorphous carbon film 502 is deposited on the surface ι91 of the substrate before the amorphous carbon film 304 is deposited on the undoped amorphous carbon film 5〇2. In block 402, substrate 19 is positioned in internal processing space 126 of process chamber 1 . In block 404, the hydrocarbon-containing gas mixture is flowed into internal processing space 126. Hydrocarbon-containing gas The mixture can be similar to the hydrocarbon-containing gas mixture used in method 200. In block 406, rf plasma is produced in internal processing space 126 to deposit undoped amorphous carbon on surface 191 of substrate 190 ( The boron-free film can be used in the absence of a boron-containing gas mixture to flow; the non-aza amorphous carbon film 502. In one embodiment, the undoped # crystal carbon film 502 can have about 5〇A to about 1〇〇〇A thickness, unbonded 21 201216331 Amorphous % film 502 can be used as a substrate! 9〇 and subsequent deposition of boron-containing amorphous carbon film 304 between the transition layer (Figure 5 It has been observed as carbon during the deposition of the subsequent boron-containing amorphous carbon film 304. The boron-containing gas (such as diborane) is decomposed and forms amorphous boron ruthenium on the heated substrate (even if the plasma is not activated), wherein the amorphous ray is difficult to remove. The deposited unsubstituted amorphous carbon film 502 may prevent amorphous germanium from being directly formed on the substrate during subsequent boron-containing amorphous carbon deposition. In another embodiment, the undoped amorphous carbon layer 5〇2 may have about 3〇〇a to A thicker thickness of about 5000 A, for example, about 2 A to about 3 A, so that the subsequent side-containing amorphous carbon film (Fig. 5) to be deposited on the undoped amorphous carbon layer 502 can Depleted during the main surname process with good hard mask performance (eg good (3) control and feature profile) while having a sufficiently thick amorphous carbon layer 'which can be thick enough using conventional oxygen plasma The amorphous carbon layer is easily ashed 'so that the underlying layer can be patterned without damaging the underlying layer. This multilayer hard mask approach can be applied to a variety of applications such as deep oxide (four) etch, DRAM capacitor mode, and line and/or space. In the case of online and space surname applications (such as shallow = isolated money engraved hard mask, question pole hard mask and bit line surname hard mask), the film stack can have about 3 〇〇A to the age of compensation The non-crystalline carbon film 502 is incorporated with about 3. . "Which amorphous carbon is contained in about 1 〇 _ depending on the etching selectivity of the dense and sparse regions, and the thickness of the layers can be φ. The granitic carbon film is tempered, and once the desired thickness is deposited on the substrate 190 The undoped non-502' can process the process chamber + by stabilizing 22 201216331 with Φ(iv) RF f slurry to continuously flow the carbon-nitrogen-containing gas mixture into the processing space 1 26. Introducing the boron-containing gas mixture into the processing space 126 Thereafter, the RF electric charge can be continued. In one example, the boron-containing gas mixture flows into the processing space! 26 after initiation of RF electropolymerization for a period of from about 5 seconds to about 5 seconds, such as from about 1 second to about 2 seconds. (The flow time may vary as long as the flow is just long enough for the boron-containing gas mixture to begin to reach the processing space 丨 26.) After depositing the undoped amorphous carbon film 502, in block 408, a boron-containing gas mixture (similar) The boron-containing gas mixture used in the method 2) flows into the internal processing space 丨26 of the process chamber. In one embodiment, the treatment for depositing the undoped amorphous carbon film 5〇2 can be maintained. Condition The rotten gas mixture flows into the internal processing space 126 of the process chamber. Alternatively, as described above, the RF plasma can be turned off while introducing the boron-containing gas mixture into the internal processing space 126, while allowing the argon-containing argon. The compound gas mixture continues to flow into the processing space 126. In block 410, a boron-containing amorphous carbon film 304 is deposited on the undoped amorphous carbon film 5?2 in the presence of RF plasma. In one embodiment The boron-containing amorphous carbon film 304 may have a thickness of from about 100 A to about 20,000 A, for example, from about 300 A to about 5000 A. The deposited boron-containing amorphous carbon film 3〇4 may provide a mask faceting comparison# Impedance (this is important for maintaining CD control and feature profile during the main etch process) and better etch selectivity than traditional amorphous carbon hard masks (this is based on up to 7X blanket film testing). The contact-containing amorphous carbon film 3G4 is removed using a solution containing hydrogen peroxide and sulfuric acid. - 23 Hydrogen peroxide and sulfuric acid. 201216331 Exemplary solution is called Piranha s〇luti〇n or cypress Etchant (Piranha etch) The undoped (boron-free) amorphous carbon film 5〇2 may be removed using a hydrogen-containing plasma, an oxygen-containing plasma, or a combination thereof. It may also be used to contain oxygen and dentate (for example, gas or gas). The etch chemistry (eg, Cl2/〇2 CF4/〇2, C12/Q2/CF4) removes the amorphous carbon film 3Q4.
提供以下的非限制實例,以進一步說明在此所述的實 施例1而,不意圖使實例皆為專有的且不意圖使實例 會限制在此所述的實施例的範4。使用能從美國加州聖 大克勞拉市的應用材料公司商業上取得的PR0DUCER se™製程腔室來沉積表二與表四的示範性膜。表二圖示 根據在此所述的實施例的用於含硼非晶碳膜(樣品2_9) 的處理條件與機械性質。樣品i是不含有㈣控制。表 三圖示對於表二的樣品Μ而言碳、氫、硼與氮在所沉 積的臈中的百分比。原子百分比(at %)對於各個元素各 自具有以下不確定性(at· %)與偵測限制(at %) : 〇(±3, 3) N(±3, 3) C(±4’ 4)、B(±5, 4)與 H(±4, 4)。應力的單 位是]ViPa,密度的單位是g/cc,流速的單位是%⑽,間 隔的單位是mUs,壓力的單位是τ〇ΓΓ,厚度的單位是A, 並且溫度的單位是。C。 >几積速率的單位是A/minuts 表二 樣品# 溫度 HF 壓力 間隔 c2H2 He B2H6 Ar 在633 的k 密度 應力 1 400 1400 3.5 - 1 310 600 400 -〇J 14000 〇.317l| 1.6103 -414 24 201216331 2 400 1400 3.5 310 600 400 1400 14000 0.5026 1.6103 -207 3 400 1400 3.5 310 600 400 2500 14000 0.4714 1.6811 -230 4 400 1400 3.5 310 600 400 4500 14000 0.2855 1.8272 -333 5 400 1680 5 320 500 400 5000 0 0.174 1.717 -103 6 400 1680 5 320 500 400 9000 0 0.0401 1.9408 -162 7 400 1400 3.5 310 600 400 1400 14000 0.3239 1.604 -330 8 400 1400 3.5 310 600 400 2500 14000 0.1601 1.6103 -263 9 400 1400 3.5 310 600 400 4500 14000 0.1033 1.6103 -205 表三 樣品# %C % Η %Β %Ν 1 64.5 35.5 2 71.2 28.8 3 66.6 25.4 8 4 50.5 27.5 22 5 50 31 19 6 40.2 23.5 36.3 7 65 26.5 8.5 8 44.5 28.4 15.1 12 9 36.8 26.2 22 15 表四圖示根據在此所述的實施例的用於含硼非晶碳膜 (樣品10-16)的處理條件與機械性質。表五圖示對於表四 的樣品10-16而言碳、氫、硼與氮在所沉積的膜中的百 分比。原子百分比(at. %)對於各個元素各自具有以下不 確定性(at. %)與偵測限制(at. %) : 0(±3, 3)、N(±3, 3)、 C(±4, 4)、B(±5, 4)、與 H(±5, 0.3)。 25 201216331 表四 樣品# 溫度 HF 壓力 間隔 c7h7 H2 B2Hfi Ar 時間 厚度 DR η 633 k633 應力 密度 10 400 1400 7 320 0 500 400 5000 3000 30 1650 3301 2.35 0.123 -342 1.8183 11 400 1400 7 320 0 500 400 9000 3000 30 1959 3919 2.37 0.017 -313 1.9025 12 400 1400 7 320 0 500 400 13000 3000 30 2200 4400 -187 1.869 13 400 1400 7 320 0 500 400 3000 3000 30 1496 2992 2.37 0.469 -311 1.8647 14 400 1400 7 320 0 500 400 7000 3000 30 1587 3175 2.48 0.057 -592 2.0184 15 400 1400 7 320 0 500 400 13000 3000 30 2074 4148 2.46 0.012 -90 1.9794 16 400 1680 5 320 0 500 400 9000 0 25 1516 3639 2.32 0.04 -162 1.9408 表五 樣品# %C % Η %Β 10 46.1 24 29.9 11 31.8 23.5 44.7 12 27.5 22 50.5 13 63 19 18 14 36.5 19.5 44 15 29.5 17.5 53 16 35.5 23 41.5 第6圖是一圖表600,該圖表圖示已知的未摻雜非晶 碳膜對根據在此所述的實施例所沉積的含硼非晶碳膜的 蝕刻選擇性。y軸圖示沉積在氧化物上方的各個膜的毯 覆蝕刻選擇性。如第’6圖所示,B:a-c對於毯覆蝕刻選擇 26 201216331 性相較於比較實例具有兩倍改善。 第7圖是一圖表700,該圖表圖示已知的未播雜非日 碳膜對根據在此所述的實施例所沉積的含删非晶碳膜= 毯㈣刻選擇性。y軸圖示已知的未摻雜非晶碳膜對含 爛非晶碳膜的毯覆㈣選擇性。χ軸圖示待㈣的材料。 如第7圖所示’ B:a-C對於下方材料(包括摻雜侧的石夕、 氧化矽、氮化矽與非晶矽(a_Si))的毯覆蝕刻選擇性相較 於比較實例具有約兩倍改善。 儘管上述說明是導向本發明的實施例,可在不悖離本 發明的基本範疇下設想出本發明的其他與進一步實施 例,並且本發明的範疇是由隨附的申請專利範圍來決定。 【圖式簡單說明】 因此,可詳細理解本發明之上述特徵結構之方式即 上文簡要概述之本發明之更特定描述可參照實施例進 行,其中一些實施例圖示在附圖中。但是應注意的是, 附圖僅圖示本發明的典型實施例,因此附圖不應被視為 會對本發明範疇構成限制,此是因為本發明可允許其他 等效實施例。 第1圖圖示設備的示意圖,該設備可用於實施在此所 述的實施例; 第2圖是製程流程圖,該製程流程圖圖示用於根據在 此所述的實施例沉積含硼非晶碳膜的方法的一實施例; 27 201216331 第3圖圖示根據在此所述的實施例的基材結構的示意 剖視圖,該基材結構具有作為硬罩幕層的含硼非晶碳層; 第4圖是製程流程圖,該製程流程圖圖示用於根據在 此所述的實施例沉積含硼非晶碳膜的方法的—實施例; 第5圖圖示根據在此所述的實施例的基材結構的示意 剖視圖,該基材結構在未摻雜非晶碳膜上方具有作為硬 罩幕層的含硼非晶碳層; 第6圖是一圖表,該圖表圖示已知的未摻雜非晶碳膜 對根據在此所述的實施例所沉積的含硼非晶碳膜的毯覆 蝕刻選擇性;及 第7圖疋一圖表’該圖表圖示已知的未掺雜非晶碳膜 對根據在此所述的實施例所沉積的含硼非晶碳膜的毯覆 蝕刻選擇性。 然而’應瞭解,附圖僅圖示本發明的示範性實施例, 因此附圖不應被視為會對本發明範_構成限制,此是因 為本發明可允許其他等效實施例。 【主要元件符號說明】 100 製程腔室 101 側壁 102 真空泵 106 功率供應器 110 控制器 112 CPU 114 支援電路 116 記憶體 118 訊號匯流排 120 喷頭 28 201216331 122 底壁 124 頂壁 126 處理空間 128 穿孔 130 氣體面板 132 製程系統 138 匹配網路 140 RF功率源 150 載座 160 桿 170 加熱構件 172 溫度感測器 190 基材 191 表面 192 表面 200 方法 202-208 方塊 304 含硼非晶碳膜 400 方法 402-410 方塊 502 未摻雜非晶碳層 600 圖表 700 圖表 29The following non-limiting examples are provided to further illustrate the embodiment 1 described herein, and are not intended to be exhaustive or to limit the scope of the embodiments described herein. Exemplary membranes of Tables 2 and 4 were deposited using a PR0DUCER seTM process chamber commercially available from Applied Materials, Inc. of Santa Clara, Calif. Table 2 illustrates the processing conditions and mechanical properties for the boron-containing amorphous carbon film (Sample 2-9) according to the examples described herein. Sample i is not contained in (iv) control. Table 3 shows the percentage of carbon, hydrogen, boron and nitrogen in the deposited enthalpy for the sample enthalpy of Table 2. The atomic percentage (at %) has the following uncertainty (at %) and detection limit (at %) for each element: 〇(±3, 3) N(±3, 3) C(±4' 4) , B (±5, 4) and H (± 4, 4). The unit of stress is]ViPa, the unit of density is g/cc, the unit of flow rate is %(10), the unit of interval is mUs, the unit of pressure is τ〇ΓΓ, the unit of thickness is A, and the unit of temperature is. C. > The unit of several product rate is A/minuts Table 2 sample # Temperature HF Pressure interval c2H2 He B2H6 Ar k density stress at 633 1 400 1400 3.5 - 1 310 600 400 -〇J 14000 〇.317l| 1.6103 -414 24 201216331 2 400 1400 3.5 310 600 400 1400 14000 0.5026 1.6103 -207 3 400 1400 3.5 310 600 400 2500 14000 0.4714 1.6811 -230 4 400 1400 3.5 310 600 400 4500 14000 0.2855 1.8272 -333 5 400 1680 5 320 500 400 5000 0 0.174 1.717 -103 6 400 1680 5 320 500 400 9000 0 0.0401 1.9408 -162 7 400 1400 3.5 310 600 400 1400 14000 0.3239 1.604 -330 8 400 1400 3.5 310 600 400 2500 14000 0.1601 1.6103 -263 9 400 1400 3.5 310 600 400 4500 14000 0.1033 1.6103 -205 Table 3 Sample # %C % Η %Β %Ν 1 64.5 35.5 2 71.2 28.8 3 66.6 25.4 8 4 50.5 27.5 22 5 50 31 19 6 40.2 23.5 36.3 7 65 26.5 8.5 8 44.5 28.4 15.1 12 9 36.8 26.2 22 15 Table 4 illustrates the processing conditions and mechanical properties for the boron-containing amorphous carbon film (samples 10-16) in accordance with the embodiments described herein. Table 5 shows the percentage of carbon, hydrogen, boron and nitrogen in the deposited film for samples 10-16 of Table 4. The atomic percentage (at. %) has the following uncertainties (at. %) and detection limits (at. %) for each element: 0 (±3, 3), N (±3, 3), C (± 4, 4), B (±5, 4), and H (±5, 0.3). 25 201216331 Table IV Sample # Temperature HF Pressure Interval c7h7 H2 B2Hfi Ar Time Thickness DR η 633 k633 Stress Density 10 400 1400 7 320 0 500 400 5000 3000 30 1650 3301 2.35 0.123 -342 1.8183 11 400 1400 7 320 0 500 400 9000 3000 30 1959 3919 2.37 0.017 -313 1.9025 12 400 1400 7 320 0 500 400 13000 3000 30 2200 4400 -187 1.869 13 400 1400 7 320 0 500 400 3000 3000 30 1496 2992 2.37 0.469 -311 1.8647 14 400 1400 7 320 0 500 400 7000 3000 30 1587 3175 2.48 0.057 -592 2.0184 15 400 1400 7 320 0 500 400 13000 3000 30 2074 4148 2.46 0.012 -90 1.9794 16 400 1680 5 320 0 500 400 9000 0 25 1516 3639 2.32 0.04 -162 1.9408 Table 5 sample# %C % Η %Β 10 46.1 24 29.9 11 31.8 23.5 44.7 12 27.5 22 50.5 13 63 19 18 14 36.5 19.5 44 15 29.5 17.5 53 16 35.5 23 41.5 Figure 6 is a chart 600 showing the known The etch selectivity of the doped amorphous carbon film to the boron-containing amorphous carbon film deposited according to the embodiments described herein. The y-axis illustrates the blanket etch selectivity of each film deposited over the oxide. As shown in Fig. 6, B: a-c has twice the improvement for blanket etching option 26 201216331 compared to the comparative example. Figure 7 is a graph 700 showing the known non-stained non-daily carbon film selective for the amorphous carbon-containing film = blanket (four) deposited according to the embodiments described herein. The y-axis illustrates the selectivity of the known undoped amorphous carbon film to the blanket (4) containing the ruined amorphous carbon film. The x-axis shows the material to be used (4). As shown in Fig. 7, 'B:aC has a blanket etching selectivity for the underlying material (including the doped side of the stone, yttrium oxide, tantalum nitride, and amorphous germanium (a_Si)) compared to the comparative example. Double improvement. While the above description is directed to the embodiments of the present invention, other and further embodiments of the present invention may be devised without departing from the scope of the invention, and the scope of the invention is determined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS A more detailed description of the present invention, which is set forth in the foregoing description of the embodiments of the invention, It is to be understood, however, that the appended claims 1 is a schematic diagram of an apparatus that can be used to implement the embodiments described herein; FIG. 2 is a process flow diagram illustrating the deposition of boron-containing non-deposits in accordance with embodiments described herein An embodiment of a method of crystallizing a carbon film; 27 201216331 Figure 3 illustrates a schematic cross-sectional view of a substrate structure having a boron-containing amorphous carbon layer as a hard mask layer, in accordance with embodiments described herein Figure 4 is a process flow diagram illustrating an embodiment of a method for depositing a boron-containing amorphous carbon film in accordance with embodiments described herein; Figure 5 illustrates an embodiment according to what is described herein. A schematic cross-sectional view of a substrate structure of the embodiment having a boron-containing amorphous carbon layer as a hard mask layer over the undoped amorphous carbon film; FIG. 6 is a diagram showing the known The undoped amorphous carbon film has a blanket etch selectivity for the boron-containing amorphous carbon film deposited according to the embodiments described herein; and FIG. 7 is a graph 'the diagram illustrates the known undoped A hetero-amorphous carbon film for a boron-containing amorphous carbon film deposited according to the embodiments described herein Cover etch selectivity. It is to be understood, however, that the appended claims [Main component symbol description] 100 Process chamber 101 Side wall 102 Vacuum pump 106 Power supply 110 Controller 112 CPU 114 Support circuit 116 Memory 118 Signal bus 120 Nozzle 28 201216331 122 Bottom wall 124 Top wall 126 Processing space 128 Perforation 130 Gas Panel 132 Process System 138 Matching Network 140 RF Power Source 150 Carrier 160 Rod 170 Heating Member 172 Temperature Sensor 190 Substrate 191 Surface 192 Surface 200 Method 202-208 Block 304 Boron-Containing Amorphous Carbon Film 400 Method 402- 410 Box 502 Undoped Amorphous Carbon Layer 600 Chart 700 Chart 29