RU2538156C2 - Способ сжижения фракции, обогащенной углеводородами - Google Patents
Способ сжижения фракции, обогащенной углеводородами Download PDFInfo
- Publication number
- RU2538156C2 RU2538156C2 RU2011144360/06A RU2011144360A RU2538156C2 RU 2538156 C2 RU2538156 C2 RU 2538156C2 RU 2011144360/06 A RU2011144360/06 A RU 2011144360/06A RU 2011144360 A RU2011144360 A RU 2011144360A RU 2538156 C2 RU2538156 C2 RU 2538156C2
- Authority
- RU
- Russia
- Prior art keywords
- fraction
- cooled
- temperature level
- hydrocarbons
- liquid
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 25
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 25
- 239000007788 liquid Substances 0.000 claims abstract description 37
- 239000003507 refrigerant Substances 0.000 claims abstract description 31
- 230000006835 compression Effects 0.000 claims abstract description 17
- 238000007906 compression Methods 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 238000001816 cooling Methods 0.000 claims abstract description 11
- 238000009835 boiling Methods 0.000 claims abstract description 9
- 238000000926 separation method Methods 0.000 claims abstract description 6
- 239000007792 gaseous phase Substances 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 230000005514 two-phase flow Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 230000002265 prevention Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000012080 ambient air Substances 0.000 description 3
- 230000002631 hypothermal effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
- F25J1/0055—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0212—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Изобретение относится к способу сжижения фракции, обогащенной углеводородами. Согласно способу, охлаждение и сжижение фракции, обогащённой углеводородами, происходит путём опосредованного теплообмена с холодильной смесью циркуляционного контура холодильной смеси. Холодильная смесь сжимается в две ступени, а после каждой ступени сжатия разделяется на газообразную и жидкую фракции. Газообразная фракция последней ступени сжатия охлаждается до самого низкого температурного уровня, в то время как жидкая фракция одной из промежуточных ступеней сжатия охлаждается до температурного уровня выше самого низкого температурного уровня. Жидкая фракция, охлаждаемая до температурного уровня выше самого низкого температурного уровня, охлаждается перед опосредованным теплообменом со сжижаемой фракцией, обогащённой углеводородами. Причем указанное охлаждение жидкой фракции, охлаждаемой до более высокого температурного уровня, происходит путём опосредованного теплообмена с кипящими фракциями или одной кипящей фракцией, происходящей со стадии разделения на газообразную и жидкую фракции, которая следует за последующей ступенью сжатия. Изобретение направлено на предотвращение нежелательного образования двухфазного потока и связанных с этим недостатков. 5 з.п. ф-лы, 2 ил.
Description
Изобретение относится к способу сжижения фракции, обогащенной углеводородами, причем охлаждение и сжижение фракции, обогащенной углеводородами, происходит путем косвенного теплообмена с холодильной смесью циркуляционного контура холодильной смеси, холодильная смесь сжимается по меньшей мере в две ступени, а после каждой ступени сжатия разделяется на газообразную и жидкую фракции, причем газообразная фракция последней ступени сжатия охлаждается до самого низкого температурного уровня, в то время как жидкая фракция промежуточных ступеней или по меньшей мере одной из них охлаждается до температурного уровня выше самого низкого температурного уровня.
В процессах сжижения природного газа производительностью 30000-3 млн. т. сжижаемого природного газа (LNG) в год зачастую используются смешанные циркуляционные контуры только с одним компрессором в контуре, они называются также процессами сжижения SMR (Single Mixed Refrigerant - единственный смешанный хладагент).
Подобный способ сжижения фракции, обогащенной углеводородами, более подробно будет показан на основе процесса сжижения, изображенного на фиг.1.
Компрессор циркуляционного контура, необходимый для этого процесса сжижения, содержит две ступени V1 и V2 сжатия. Холодильная смесь, сжатая на первой ступени V1 сжатия, обычно сжатие происходит до 10-40 бар, предпочтительно до 15-25 бар, в дополнительном охладителе или теплообменнике Е1, предпочтительно частично конденсируется под действием окружающего воздуха или воды и по трубопроводу 1 подается в сепаратор D1. В последнем происходит разделение на газообразную, а также жидкую фракции. Газообразная фракция по трубопроводу 2 подается на вторую ступень V2 сжатия и в ней сжимается до желательного конечного давления, обычно 25-80 бар, предпочтительно до 30-50 бар.
Ко второй ступени V2 сжатия также подключен дополнительный охладитель Е2, в котором сжатая фракция хладагента предпочтительно охлаждается под действием окружающего воздуха или воды. По трубопроводу 4 эта фракция хладагента затем подается в дополнительный сепаратор D2.
Газообразная фракция хладагента, отведенная от головной части сепаратора D2 по трубопроводу 5, подается в основной теплообменник Е, в нем под действием нагреваемых технологических потоков охлаждается и отводится с холодного конца теплообменника Е по трубопроводу 7. Теплообменник Е предпочтительно выполнен в виде многопоточного теплообменника, в частности, пластинчатого или витого теплообменника.
По трубопроводу 20 сжижаемая фракция, обогащенная углеводородами, в случае которой речь идет, например, о потоке природного газа, подается в теплообменник Е. После сжижения сжиженный поток продукта по трубопроводу 21 отводится из теплообменника Е и подается для его дальнейшего использования или на промежуточное хранение.
Фракция хладагента, отведенная из теплообменника Е по трубопроводу 7, расширяется в клапане с образованием холода и по трубопроводу 8 в противоток охлаждаемой и сжижаемой фракции 20, обогащенной углеводородами, пропускается через теплообменник Е. Затем эта фракция хладагента по участкам 8 и 8' трубопровода подается на первую ступень V1 сжатия.
Жидкая фракция, отведенная из отстойника сепаратора D1 по трубопроводу 3, после охлаждения в теплообменнике Е по трубопроводу 9 отводится из него, расширяется в клапане b с образованием холода, а затем по трубопроводу 10 в противоток охлаждаемой и сжижаемой фракции, обогащенной углеводородами, пропускается через теплообменник Е. Затем эта фракция хладагента смешивается с вышеописанной фракцией хладагента в трубопроводе 7 и вместе с ней по трубопроводу 8' подается на первую ступень V1 сжатия.
Жидкая фракция, образующаяся в отстойнике второго сепаратора D2, расширяется в клапане с образованием холода до давления в первом сепараторе D1 и снова оказывается впереди него.
Жидкая фракция хладагента, отведенная из сепаратора D1 по трубопроводу 3, обычно находится в состоянии кипения. Однако кипящая холодильная жидкость, как правило, испытывает падение давления за счет трения и/или в результате увеличения протяженности трубопровода. Это падение давления неизбежно приводит к частичной газации легких компонентов этой фракции хладагента. Поэтому происходит нежелательное образование двухфазного потока. Это может привести к нестабильности динамики потока в трубопроводах и/или к ошибочному распределению - под этим следует понимать неравные составляющие газа и жидкости в параллельных траекториях течения, например теплообменников - в последующем оборудовании.
Задачей настоящего изобретения является создание такого способа сжижения фракции, обогащенной углеводородами, который лишен вышеупомянутых недостатков.
Для решения этой задачи предлагается способ сжижения фракции, обогащенной углеводородами, отличающийся тем, что жидкая фракция, охлаждаемая до температурного уровня, находящегося выше самого низкого температурного уровня, охлаждается перед косвенным теплообменом со сжижаемой фракцией, обогащенной углеводородами.
Благодаря предусматриваемому охлаждению, или переохлаждению, жидкой фракции хладагента можно эффективно противодействовать образованию двухфазного потока и недостаткам, связанным с этим.
Другие предпочтительные варианты выполнения способа сжижения фракции, обогащенной углеводородами, согласно изобретению представляющие собой предмет зависимых пунктов формулы изобретения, отличаются тем, что
- жидкая фракция, охлаждаемая до более высокого температурного уровня, охлаждается перед косвенным теплообменом со сжижаемой фракцией, обогащенной углеводородами, до температуры на 2-15°С, предпочтительно 4-7°С, ниже температуры сжатой холодильной смеси при разделении на газообразную и жидкую фазы,
- охлаждение жидкой фракции, охлаждаемой до более высокого температурного уровня, происходит путем косвенного теплообмена с кипящими фракциями или одной кипящей фракцией, являющейся результатом идущего за последующей ступенью сжатия разделения на газообразную и жидкую фракции,
- теплообмен между сжижаемой фракцией, обогащенной углеводородами, и холодильной смесью происходит в многопоточном теплообменнике, выполненном предпочтительно в виде пластинчатого или витого теплообменника, а
- по крайней мере периодически по меньшей мере часть потока той фракции, которая охлаждается до самого низкого температурного уровня, расширяется и подмешивается к расширенной жидкой фракции той фракции, которая охлаждается до температурного уровня выше самого низкого температурного уровня.
Способ сжижения фракции, обогащенной углеводородами согласно изобретению, а также его другие варианты выполнения более подробно поясняются ниже на примере выполнения, изображенном на фиг.2. При описании примера выполнения, изображенного на фиг.2, ниже речь пойдет лишь об отличиях от технологического процесса, изображенного на фиг.1.
Теперь согласно изобретению предусмотрен теплообменник Е3, обеспечивающий теплообмен между жидкими фракциями, отводимыми из сепараторов D1 и D2 по трубопроводам 3 и 6. Поскольку жидкая фракция, отводимая по трубопроводу 6 из сепаратора D2, расширяется до давления в сепараторе D1, жидкая фракция в результате частичного испарения охлаждается до температуры ниже температура процесса, достигаемая в дополнительных охладителях Е1 и Е2. Теперь охлажденная таким образом жидкая фракция в трубопроводе 6 после клапана охлаждает или же переохлаждает, в теплообменнике Е3 жидкую фракцию, отводимую из сепаратора D1 по трубопроводу 3.
При этом происходит охлаждение, или переохлаждение, жидкой фракции 3 на 2-15°С, предпочтительно на 4-7°С ниже температуры процесса, достигаемой в дополнительных охладителях Е1 и Е2.
Теперь охлажденная таким образом жидкая фракция, отводимая из сепаратора D1 по трубопроводу 3, может подаваться в теплообменник Е и пропускаться через него без возникновения вышеописанных отрицательных эффектов.
Теплообменник Е3 предпочтительно выполнен в виде противоточного, например прямотрубного, теплообменника. Предпочтительным образом на практике теплообменник Е3 выполняется таким образом, чтобы он устанавливался под клапаном с и над сепаратором D1. Этот перепад между клапаном с, теплообменником Е3 и сепаратором D1 способствует поддержанию стабильности двухфазного течения потока 6 после расширения.
Предлагается усовершенствованный вариант выполнения способа сжижения фракции, обогащенной углеводородами, согласно изобретению, по крайней мере с периодическим расширением по меньшей мере части потока той фракции, которая охлаждается до самого низкого температурного уровня, и с подмешиванием к расширенной жидкой фракции той фракции, которая охлаждается до температурного уровня выше самого низкого температурного уровня. Такой технологический процесс реализуется, например, за счет того, что частичные потоки холодильной смеси при соответствующей промежуточной температуре отводятся по трубопроводам 11 и/или 12 с холодного конца теплообменника Е, расширяются в клапане d или е и подмешиваются к соответствующей жидкой фракции 9. Соответствующая промежуточная температура имеет место тогда, когда фракция хладагента 5 обнаруживает переохлаждение по меньшей мере порядка 5°С, предпочтительно по меньшей мере порядка 10°С, относительно состояния кипения. На практике в большинстве случаев предусмотрен клапан d или е. Такой технологический процесс обеспечивает улучшение регулирования температуры, или температурного профиля, в теплообменнике Е.
Вариант выполнения, изображенный на фиг.2, благодаря реализованной в нем интеграции переохлаждения жидкой фракции 3 в компрессор V1/V2 имеет то преимущество, что перед подачей в теплообменник Е температура жидкой фракции 3 может устанавливаться ниже той температуры, которая могла бы быть реализована в случае охлаждения под действием окружающего воздуха или охлаждающей воды без необходимости в дополнительном охлаждении с помощью отдельной холодильной установки и/или другого холодного технологического потока.
Принцип действия, изображенный на фиг.2, обеспечивает желательное разделение между переохлаждением хладагента 3, реализуемым в теплообменнике Е3, и эксплуатацией других элементов оборудования. Это разделение имеет значение, в частности, при инициировании процесса сжижения, поскольку холодные технологические потоки обычно становятся доступными только после инициирования процесса, т.е. они не могут использоваться для переохлаждения с самого начала.
Способ сжижения фракции, обогащенной углеводородами, согласно изобретению при незначительных дополнительных конструктивных затратах следует предусмотреть только один дополнительный теплообменник Е3, обеспечивает устранение вышеупомянутых проблем, возникающих в случае процессов сжижения, относящихся к уровню техники.
Claims (6)
1. Способ сжижения фракции, обогащённой углеводородами, где охлаждение и сжижение фракции, обогащённой углеводородами, происходит путём опосредованного теплообмена с холодильной смесью циркуляционного контура холодильной смеси, холодильная смесь сжимается по меньшей мере в две ступени, а после каждой ступени сжатия разделяется на газообразную и жидкую фракции, причём газообразная фракция последней ступени сжатия охлаждается до самого низкого температурного уровня, в то время как жидкая фракция по меньшей мере одной из промежуточных ступеней сжатия охлаждается до температурного уровня выше самого низкого температурного уровня, отличающийся тем, что жидкая фракция (3), охлаждаемая до температурного уровня выше самого низкого температурного уровня, охлаждается (ЕЗ) перед опосредованным теплообменом (Е) со сжижаемой фракцией (20), обогащённой углеводородами, причем указанное охлаждение (ЕЗ) жидкой фракции (3), охлаждаемой до более высокого температурного уровня, происходит путём опосредованного теплообмена с кипящими фракциями или одной кипящей фракцией (6), происходящей со стадии разделения (D2) на газообразную и жидкую фракции, которая следует за последующей ступенью сжатия (V2).
2. Способ по п.1, отличающийся тем, что жидкая фракция (3), охлаждаемая до более высокого температурного уровня, охлаждается (ЕЗ) перед опосредованным теплообменом (Е) со сжижаемой фракцией (20), обогащённой углеводородами, до температуры на 2-15°С, предпочтительно, 4-7°С, ниже температуры сжатой холодильной смеси при разделении (D1) на газообразную и жидкую фазы.
3. Способ по п.1 или 2, отличающийся тем, что теплообмен между сжижаемой фракцией (20), обогащённой углеводородами, и холодильной смесью (3, 5, 7, 9) происходит в многопоточном теплообменнике (Е), выполненном предпочтительно в виде пластинчатого или витого теплообменника.
4. Способ по п.1, отличающийся тем, что теплообмен между сжижаемой фракцией (20), обогащённой углеводородами, и холодильной смесью (3, 5, 7, 9) происходит в многопоточном теплообменнике (Е), выполненном предпочтительно в виде пластинчатого или витого теплообменника.
5. Способ по одному из пп.1, 2 или 4, отличающийся тем, что, по крайней мере периодически, по меньшей мере часть (11, 12) потока той фракции (5, 7), которая охлаждается (Е) до самого низкого температурного уровня, расширяется и подмешивается к расширенной жидкой фракции той фракции (9), которая охлаждается (Е) до температурного уровня выше самого низкого температурного уровня.
6. Способ по п.3, отличающийся тем, что, по крайней мере периодически, по меньшей мере часть (11, 12) потока той фракции (5, 7), которая охлаждается (Е) до самого низкого температурного уровня, расширяется и подмешивается к расширенной жидкой фракции той фракции (9), которая охлаждается (Е) до температурного уровня выше самого низкого температурного уровня.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009016046A DE102009016046A1 (de) | 2009-04-02 | 2009-04-02 | Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion |
DE102009016046.9 | 2009-04-02 | ||
PCT/EP2010/002034 WO2010112206A2 (de) | 2009-04-02 | 2010-03-30 | Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011144360A RU2011144360A (ru) | 2013-05-10 |
RU2538156C2 true RU2538156C2 (ru) | 2015-01-10 |
Family
ID=42675003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011144360/06A RU2538156C2 (ru) | 2009-04-02 | 2010-03-30 | Способ сжижения фракции, обогащенной углеводородами |
Country Status (11)
Country | Link |
---|---|
CN (1) | CN102575896B (ru) |
AR (1) | AR076136A1 (ru) |
AU (1) | AU2010230576B2 (ru) |
BR (1) | BRPI1013386A2 (ru) |
CL (1) | CL2011002391A1 (ru) |
DE (1) | DE102009016046A1 (ru) |
MY (1) | MY161644A (ru) |
NO (1) | NO20111413A1 (ru) |
PE (1) | PE20120848A1 (ru) |
RU (1) | RU2538156C2 (ru) |
WO (1) | WO2010112206A2 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2724091C2 (ru) * | 2017-09-28 | 2020-06-19 | Эр Продактс Энд Кемикалз, Инк. | Устройство для сжижения потока углеводородного сырья (варианты) |
US10753676B2 (en) | 2017-09-28 | 2020-08-25 | Air Products And Chemicals, Inc. | Multiple pressure mixed refrigerant cooling process |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011010633A1 (de) * | 2011-02-08 | 2012-08-09 | Linde Ag | Verfahren zum Abkühlen eines ein- oder mehrkomponentigen Stromes |
DE102014018412A1 (de) * | 2014-12-09 | 2016-06-09 | Linde Aktiengesellschaft | Abfackelfreies Anfahren eines Erdgasverflüssigungsprozesses |
DE102015004125A1 (de) * | 2015-03-31 | 2016-10-06 | Linde Aktiengesellschaft | Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion |
US10323880B2 (en) | 2016-09-27 | 2019-06-18 | Air Products And Chemicals, Inc. | Mixed refrigerant cooling process and system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998057108A1 (en) * | 1997-06-12 | 1998-12-17 | Costain Oil, Gas & Process Limited | Two-staged refrigeration cycle using a multiconstituant refrigerant |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4325231A (en) * | 1976-06-23 | 1982-04-20 | Heinrich Krieger | Cascade cooling arrangement |
FR2540612A1 (fr) * | 1983-02-08 | 1984-08-10 | Air Liquide | Procede et installation de refroidissement d'un fluide, notamment de liquefaction de gaz naturel |
US4525185A (en) * | 1983-10-25 | 1985-06-25 | Air Products And Chemicals, Inc. | Dual mixed refrigerant natural gas liquefaction with staged compression |
DE19722490C1 (de) * | 1997-05-28 | 1998-07-02 | Linde Ag | Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes |
GB2326464B (en) * | 1997-06-12 | 2001-06-06 | Costain Oil Gas & Process Ltd | Refrigeration cycle using a mixed refrigerant |
US6347531B1 (en) * | 1999-10-12 | 2002-02-19 | Air Products And Chemicals, Inc. | Single mixed refrigerant gas liquefaction process |
US6347532B1 (en) * | 1999-10-12 | 2002-02-19 | Air Products And Chemicals, Inc. | Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures |
US6742357B1 (en) * | 2003-03-18 | 2004-06-01 | Air Products And Chemicals, Inc. | Integrated multiple-loop refrigeration process for gas liquefaction |
US20080173043A1 (en) * | 2005-03-09 | 2008-07-24 | Sander Kaart | Method For the Liquefaction of a Hydrocarbon-Rich Stream |
CN201417042Y (zh) * | 2009-04-27 | 2010-03-03 | 赵德泉 | 简化的混合制冷剂液化流程的设备 |
-
2009
- 2009-04-02 DE DE102009016046A patent/DE102009016046A1/de not_active Withdrawn
-
2010
- 2010-03-18 AR ARP100100874A patent/AR076136A1/es not_active Application Discontinuation
- 2010-03-30 PE PE2011001669A patent/PE20120848A1/es not_active Application Discontinuation
- 2010-03-30 WO PCT/EP2010/002034 patent/WO2010112206A2/de active Application Filing
- 2010-03-30 CN CN201080015211.2A patent/CN102575896B/zh not_active Expired - Fee Related
- 2010-03-30 RU RU2011144360/06A patent/RU2538156C2/ru not_active IP Right Cessation
- 2010-03-30 AU AU2010230576A patent/AU2010230576B2/en not_active Ceased
- 2010-03-30 MY MYPI2011004663A patent/MY161644A/en unknown
- 2010-03-30 BR BRPI1013386A patent/BRPI1013386A2/pt not_active Application Discontinuation
-
2011
- 2011-09-27 CL CL2011002391A patent/CL2011002391A1/es unknown
- 2011-10-18 NO NO20111413A patent/NO20111413A1/no not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998057108A1 (en) * | 1997-06-12 | 1998-12-17 | Costain Oil, Gas & Process Limited | Two-staged refrigeration cycle using a multiconstituant refrigerant |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2724091C2 (ru) * | 2017-09-28 | 2020-06-19 | Эр Продактс Энд Кемикалз, Инк. | Устройство для сжижения потока углеводородного сырья (варианты) |
US10753676B2 (en) | 2017-09-28 | 2020-08-25 | Air Products And Chemicals, Inc. | Multiple pressure mixed refrigerant cooling process |
US10852059B2 (en) | 2017-09-28 | 2020-12-01 | Air Products And Chemicals, Inc. | Multiple pressure mixed refrigerant cooling system |
Also Published As
Publication number | Publication date |
---|---|
RU2011144360A (ru) | 2013-05-10 |
AU2010230576B2 (en) | 2016-02-18 |
NO20111413A1 (no) | 2011-10-18 |
WO2010112206A3 (de) | 2012-10-11 |
MY161644A (en) | 2017-04-28 |
PE20120848A1 (es) | 2012-07-11 |
AR076136A1 (es) | 2011-05-18 |
DE102009016046A1 (de) | 2010-10-07 |
CN102575896A (zh) | 2012-07-11 |
CL2011002391A1 (es) | 2012-02-10 |
WO2010112206A2 (de) | 2010-10-07 |
AU2010230576A1 (en) | 2011-09-15 |
CN102575896B (zh) | 2015-04-22 |
BRPI1013386A2 (pt) | 2016-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101894076B1 (ko) | 천연가스의 액화 시스템 및 액화 방법 | |
RU2538156C2 (ru) | Способ сжижения фракции, обогащенной углеводородами | |
RU2723471C2 (ru) | Способ изъятия хладагента из системы для сжижения природного газа, способ изменения объема производства сжиженного или переохлажденного природного газа в системе для сжижения природного газа, система для сжижения природного газа | |
AU2007286291B2 (en) | Method and apparatus for cooling a hydrocarbon stream | |
US11578914B2 (en) | Method of cooling boil-off gas and apparatus therefor | |
CN107917577B (zh) | 多压力混合的制冷剂冷却方法和系统 | |
JP6702919B2 (ja) | 混合冷媒冷却プロセスおよびシステム | |
RU2537480C2 (ru) | Способ сжижения потока с высоким содержанием углеводородов | |
RU2580566C2 (ru) | Способ охлаждения одно- или многокомпонентного потока | |
US20220275998A1 (en) | Method of Cooling Boil-Off Gas and Apparatus Therefor | |
US20100307193A1 (en) | Method and apparatus for cooling and separating a hydrocarbon stream | |
CA2935708A1 (en) | A method to recover and process methane and condensates from flare gas systems | |
RU2797608C1 (ru) | Способ сжижения природного газа "АРКТИЧЕСКИЙ МИКС" | |
RU2803363C1 (ru) | Способ сжижения природного газа | |
US20170059241A1 (en) | Gas liquefaction system and methods | |
CN115930549A (zh) | 用于液化天然气的集成脱氮 | |
US20210080174A1 (en) | Method of cooling a natural gas feed stream and recovering a natural gas liquid stream from the natural gas feed stream |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190331 |