RU2538156C2 - Способ сжижения фракции, обогащенной углеводородами - Google Patents

Способ сжижения фракции, обогащенной углеводородами Download PDF

Info

Publication number
RU2538156C2
RU2538156C2 RU2011144360/06A RU2011144360A RU2538156C2 RU 2538156 C2 RU2538156 C2 RU 2538156C2 RU 2011144360/06 A RU2011144360/06 A RU 2011144360/06A RU 2011144360 A RU2011144360 A RU 2011144360A RU 2538156 C2 RU2538156 C2 RU 2538156C2
Authority
RU
Russia
Prior art keywords
fraction
cooled
temperature level
hydrocarbons
liquid
Prior art date
Application number
RU2011144360/06A
Other languages
English (en)
Other versions
RU2011144360A (ru
Inventor
Хайнц БАУЭР
Даниэль ГАРТЕ
Original Assignee
Линде Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Линде Акциенгезелльшафт filed Critical Линде Акциенгезелльшафт
Publication of RU2011144360A publication Critical patent/RU2011144360A/ru
Application granted granted Critical
Publication of RU2538156C2 publication Critical patent/RU2538156C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу сжижения фракции, обогащенной углеводородами. Согласно способу, охлаждение и сжижение фракции, обогащённой углеводородами, происходит путём опосредованного теплообмена с холодильной смесью циркуляционного контура холодильной смеси. Холодильная смесь сжимается в две ступени, а после каждой ступени сжатия разделяется на газообразную и жидкую фракции. Газообразная фракция последней ступени сжатия охлаждается до самого низкого температурного уровня, в то время как жидкая фракция одной из промежуточных ступеней сжатия охлаждается до температурного уровня выше самого низкого температурного уровня. Жидкая фракция, охлаждаемая до температурного уровня выше самого низкого температурного уровня, охлаждается перед опосредованным теплообменом со сжижаемой фракцией, обогащённой углеводородами. Причем указанное охлаждение жидкой фракции, охлаждаемой до более высокого температурного уровня, происходит путём опосредованного теплообмена с кипящими фракциями или одной кипящей фракцией, происходящей со стадии разделения на газообразную и жидкую фракции, которая следует за последующей ступенью сжатия. Изобретение направлено на предотвращение нежелательного образования двухфазного потока и связанных с этим недостатков. 5 з.п. ф-лы, 2 ил.

Description

Изобретение относится к способу сжижения фракции, обогащенной углеводородами, причем охлаждение и сжижение фракции, обогащенной углеводородами, происходит путем косвенного теплообмена с холодильной смесью циркуляционного контура холодильной смеси, холодильная смесь сжимается по меньшей мере в две ступени, а после каждой ступени сжатия разделяется на газообразную и жидкую фракции, причем газообразная фракция последней ступени сжатия охлаждается до самого низкого температурного уровня, в то время как жидкая фракция промежуточных ступеней или по меньшей мере одной из них охлаждается до температурного уровня выше самого низкого температурного уровня.
В процессах сжижения природного газа производительностью 30000-3 млн. т. сжижаемого природного газа (LNG) в год зачастую используются смешанные циркуляционные контуры только с одним компрессором в контуре, они называются также процессами сжижения SMR (Single Mixed Refrigerant - единственный смешанный хладагент).
Подобный способ сжижения фракции, обогащенной углеводородами, более подробно будет показан на основе процесса сжижения, изображенного на фиг.1.
Компрессор циркуляционного контура, необходимый для этого процесса сжижения, содержит две ступени V1 и V2 сжатия. Холодильная смесь, сжатая на первой ступени V1 сжатия, обычно сжатие происходит до 10-40 бар, предпочтительно до 15-25 бар, в дополнительном охладителе или теплообменнике Е1, предпочтительно частично конденсируется под действием окружающего воздуха или воды и по трубопроводу 1 подается в сепаратор D1. В последнем происходит разделение на газообразную, а также жидкую фракции. Газообразная фракция по трубопроводу 2 подается на вторую ступень V2 сжатия и в ней сжимается до желательного конечного давления, обычно 25-80 бар, предпочтительно до 30-50 бар.
Ко второй ступени V2 сжатия также подключен дополнительный охладитель Е2, в котором сжатая фракция хладагента предпочтительно охлаждается под действием окружающего воздуха или воды. По трубопроводу 4 эта фракция хладагента затем подается в дополнительный сепаратор D2.
Газообразная фракция хладагента, отведенная от головной части сепаратора D2 по трубопроводу 5, подается в основной теплообменник Е, в нем под действием нагреваемых технологических потоков охлаждается и отводится с холодного конца теплообменника Е по трубопроводу 7. Теплообменник Е предпочтительно выполнен в виде многопоточного теплообменника, в частности, пластинчатого или витого теплообменника.
По трубопроводу 20 сжижаемая фракция, обогащенная углеводородами, в случае которой речь идет, например, о потоке природного газа, подается в теплообменник Е. После сжижения сжиженный поток продукта по трубопроводу 21 отводится из теплообменника Е и подается для его дальнейшего использования или на промежуточное хранение.
Фракция хладагента, отведенная из теплообменника Е по трубопроводу 7, расширяется в клапане с образованием холода и по трубопроводу 8 в противоток охлаждаемой и сжижаемой фракции 20, обогащенной углеводородами, пропускается через теплообменник Е. Затем эта фракция хладагента по участкам 8 и 8' трубопровода подается на первую ступень V1 сжатия.
Жидкая фракция, отведенная из отстойника сепаратора D1 по трубопроводу 3, после охлаждения в теплообменнике Е по трубопроводу 9 отводится из него, расширяется в клапане b с образованием холода, а затем по трубопроводу 10 в противоток охлаждаемой и сжижаемой фракции, обогащенной углеводородами, пропускается через теплообменник Е. Затем эта фракция хладагента смешивается с вышеописанной фракцией хладагента в трубопроводе 7 и вместе с ней по трубопроводу 8' подается на первую ступень V1 сжатия.
Жидкая фракция, образующаяся в отстойнике второго сепаратора D2, расширяется в клапане с образованием холода до давления в первом сепараторе D1 и снова оказывается впереди него.
Жидкая фракция хладагента, отведенная из сепаратора D1 по трубопроводу 3, обычно находится в состоянии кипения. Однако кипящая холодильная жидкость, как правило, испытывает падение давления за счет трения и/или в результате увеличения протяженности трубопровода. Это падение давления неизбежно приводит к частичной газации легких компонентов этой фракции хладагента. Поэтому происходит нежелательное образование двухфазного потока. Это может привести к нестабильности динамики потока в трубопроводах и/или к ошибочному распределению - под этим следует понимать неравные составляющие газа и жидкости в параллельных траекториях течения, например теплообменников - в последующем оборудовании.
Задачей настоящего изобретения является создание такого способа сжижения фракции, обогащенной углеводородами, который лишен вышеупомянутых недостатков.
Для решения этой задачи предлагается способ сжижения фракции, обогащенной углеводородами, отличающийся тем, что жидкая фракция, охлаждаемая до температурного уровня, находящегося выше самого низкого температурного уровня, охлаждается перед косвенным теплообменом со сжижаемой фракцией, обогащенной углеводородами.
Благодаря предусматриваемому охлаждению, или переохлаждению, жидкой фракции хладагента можно эффективно противодействовать образованию двухфазного потока и недостаткам, связанным с этим.
Другие предпочтительные варианты выполнения способа сжижения фракции, обогащенной углеводородами, согласно изобретению представляющие собой предмет зависимых пунктов формулы изобретения, отличаются тем, что
- жидкая фракция, охлаждаемая до более высокого температурного уровня, охлаждается перед косвенным теплообменом со сжижаемой фракцией, обогащенной углеводородами, до температуры на 2-15°С, предпочтительно 4-7°С, ниже температуры сжатой холодильной смеси при разделении на газообразную и жидкую фазы,
- охлаждение жидкой фракции, охлаждаемой до более высокого температурного уровня, происходит путем косвенного теплообмена с кипящими фракциями или одной кипящей фракцией, являющейся результатом идущего за последующей ступенью сжатия разделения на газообразную и жидкую фракции,
- теплообмен между сжижаемой фракцией, обогащенной углеводородами, и холодильной смесью происходит в многопоточном теплообменнике, выполненном предпочтительно в виде пластинчатого или витого теплообменника, а
- по крайней мере периодически по меньшей мере часть потока той фракции, которая охлаждается до самого низкого температурного уровня, расширяется и подмешивается к расширенной жидкой фракции той фракции, которая охлаждается до температурного уровня выше самого низкого температурного уровня.
Способ сжижения фракции, обогащенной углеводородами согласно изобретению, а также его другие варианты выполнения более подробно поясняются ниже на примере выполнения, изображенном на фиг.2. При описании примера выполнения, изображенного на фиг.2, ниже речь пойдет лишь об отличиях от технологического процесса, изображенного на фиг.1.
Теперь согласно изобретению предусмотрен теплообменник Е3, обеспечивающий теплообмен между жидкими фракциями, отводимыми из сепараторов D1 и D2 по трубопроводам 3 и 6. Поскольку жидкая фракция, отводимая по трубопроводу 6 из сепаратора D2, расширяется до давления в сепараторе D1, жидкая фракция в результате частичного испарения охлаждается до температуры ниже температура процесса, достигаемая в дополнительных охладителях Е1 и Е2. Теперь охлажденная таким образом жидкая фракция в трубопроводе 6 после клапана охлаждает или же переохлаждает, в теплообменнике Е3 жидкую фракцию, отводимую из сепаратора D1 по трубопроводу 3.
При этом происходит охлаждение, или переохлаждение, жидкой фракции 3 на 2-15°С, предпочтительно на 4-7°С ниже температуры процесса, достигаемой в дополнительных охладителях Е1 и Е2.
Теперь охлажденная таким образом жидкая фракция, отводимая из сепаратора D1 по трубопроводу 3, может подаваться в теплообменник Е и пропускаться через него без возникновения вышеописанных отрицательных эффектов.
Теплообменник Е3 предпочтительно выполнен в виде противоточного, например прямотрубного, теплообменника. Предпочтительным образом на практике теплообменник Е3 выполняется таким образом, чтобы он устанавливался под клапаном с и над сепаратором D1. Этот перепад между клапаном с, теплообменником Е3 и сепаратором D1 способствует поддержанию стабильности двухфазного течения потока 6 после расширения.
Предлагается усовершенствованный вариант выполнения способа сжижения фракции, обогащенной углеводородами, согласно изобретению, по крайней мере с периодическим расширением по меньшей мере части потока той фракции, которая охлаждается до самого низкого температурного уровня, и с подмешиванием к расширенной жидкой фракции той фракции, которая охлаждается до температурного уровня выше самого низкого температурного уровня. Такой технологический процесс реализуется, например, за счет того, что частичные потоки холодильной смеси при соответствующей промежуточной температуре отводятся по трубопроводам 11 и/или 12 с холодного конца теплообменника Е, расширяются в клапане d или е и подмешиваются к соответствующей жидкой фракции 9. Соответствующая промежуточная температура имеет место тогда, когда фракция хладагента 5 обнаруживает переохлаждение по меньшей мере порядка 5°С, предпочтительно по меньшей мере порядка 10°С, относительно состояния кипения. На практике в большинстве случаев предусмотрен клапан d или е. Такой технологический процесс обеспечивает улучшение регулирования температуры, или температурного профиля, в теплообменнике Е.
Вариант выполнения, изображенный на фиг.2, благодаря реализованной в нем интеграции переохлаждения жидкой фракции 3 в компрессор V1/V2 имеет то преимущество, что перед подачей в теплообменник Е температура жидкой фракции 3 может устанавливаться ниже той температуры, которая могла бы быть реализована в случае охлаждения под действием окружающего воздуха или охлаждающей воды без необходимости в дополнительном охлаждении с помощью отдельной холодильной установки и/или другого холодного технологического потока.
Принцип действия, изображенный на фиг.2, обеспечивает желательное разделение между переохлаждением хладагента 3, реализуемым в теплообменнике Е3, и эксплуатацией других элементов оборудования. Это разделение имеет значение, в частности, при инициировании процесса сжижения, поскольку холодные технологические потоки обычно становятся доступными только после инициирования процесса, т.е. они не могут использоваться для переохлаждения с самого начала.
Способ сжижения фракции, обогащенной углеводородами, согласно изобретению при незначительных дополнительных конструктивных затратах следует предусмотреть только один дополнительный теплообменник Е3, обеспечивает устранение вышеупомянутых проблем, возникающих в случае процессов сжижения, относящихся к уровню техники.

Claims (6)

1. Способ сжижения фракции, обогащённой углеводородами, где охлаждение и сжижение фракции, обогащённой углеводородами, происходит путём опосредованного теплообмена с холодильной смесью циркуляционного контура холодильной смеси, холодильная смесь сжимается по меньшей мере в две ступени, а после каждой ступени сжатия разделяется на газообразную и жидкую фракции, причём газообразная фракция последней ступени сжатия охлаждается до самого низкого температурного уровня, в то время как жидкая фракция по меньшей мере одной из промежуточных ступеней сжатия охлаждается до температурного уровня выше самого низкого температурного уровня, отличающийся тем, что жидкая фракция (3), охлаждаемая до температурного уровня выше самого низкого температурного уровня, охлаждается (ЕЗ) перед опосредованным теплообменом (Е) со сжижаемой фракцией (20), обогащённой углеводородами, причем указанное охлаждение (ЕЗ) жидкой фракции (3), охлаждаемой до более высокого температурного уровня, происходит путём опосредованного теплообмена с кипящими фракциями или одной кипящей фракцией (6), происходящей со стадии разделения (D2) на газообразную и жидкую фракции, которая следует за последующей ступенью сжатия (V2).
2. Способ по п.1, отличающийся тем, что жидкая фракция (3), охлаждаемая до более высокого температурного уровня, охлаждается (ЕЗ) перед опосредованным теплообменом (Е) со сжижаемой фракцией (20), обогащённой углеводородами, до температуры на 2-15°С, предпочтительно, 4-7°С, ниже температуры сжатой холодильной смеси при разделении (D1) на газообразную и жидкую фазы.
3. Способ по п.1 или 2, отличающийся тем, что теплообмен между сжижаемой фракцией (20), обогащённой углеводородами, и холодильной смесью (3, 5, 7, 9) происходит в многопоточном теплообменнике (Е), выполненном предпочтительно в виде пластинчатого или витого теплообменника.
4. Способ по п.1, отличающийся тем, что теплообмен между сжижаемой фракцией (20), обогащённой углеводородами, и холодильной смесью (3, 5, 7, 9) происходит в многопоточном теплообменнике (Е), выполненном предпочтительно в виде пластинчатого или витого теплообменника.
5. Способ по одному из пп.1, 2 или 4, отличающийся тем, что, по крайней мере периодически, по меньшей мере часть (11, 12) потока той фракции (5, 7), которая охлаждается (Е) до самого низкого температурного уровня, расширяется и подмешивается к расширенной жидкой фракции той фракции (9), которая охлаждается (Е) до температурного уровня выше самого низкого температурного уровня.
6. Способ по п.3, отличающийся тем, что, по крайней мере периодически, по меньшей мере часть (11, 12) потока той фракции (5, 7), которая охлаждается (Е) до самого низкого температурного уровня, расширяется и подмешивается к расширенной жидкой фракции той фракции (9), которая охлаждается (Е) до температурного уровня выше самого низкого температурного уровня.
RU2011144360/06A 2009-04-02 2010-03-30 Способ сжижения фракции, обогащенной углеводородами RU2538156C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009016046A DE102009016046A1 (de) 2009-04-02 2009-04-02 Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
DE102009016046.9 2009-04-02
PCT/EP2010/002034 WO2010112206A2 (de) 2009-04-02 2010-03-30 Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion

Publications (2)

Publication Number Publication Date
RU2011144360A RU2011144360A (ru) 2013-05-10
RU2538156C2 true RU2538156C2 (ru) 2015-01-10

Family

ID=42675003

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011144360/06A RU2538156C2 (ru) 2009-04-02 2010-03-30 Способ сжижения фракции, обогащенной углеводородами

Country Status (11)

Country Link
CN (1) CN102575896B (ru)
AR (1) AR076136A1 (ru)
AU (1) AU2010230576B2 (ru)
BR (1) BRPI1013386A2 (ru)
CL (1) CL2011002391A1 (ru)
DE (1) DE102009016046A1 (ru)
MY (1) MY161644A (ru)
NO (1) NO20111413A1 (ru)
PE (1) PE20120848A1 (ru)
RU (1) RU2538156C2 (ru)
WO (1) WO2010112206A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724091C2 (ru) * 2017-09-28 2020-06-19 Эр Продактс Энд Кемикалз, Инк. Устройство для сжижения потока углеводородного сырья (варианты)
US10753676B2 (en) 2017-09-28 2020-08-25 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling process

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011010633A1 (de) * 2011-02-08 2012-08-09 Linde Ag Verfahren zum Abkühlen eines ein- oder mehrkomponentigen Stromes
DE102014018412A1 (de) * 2014-12-09 2016-06-09 Linde Aktiengesellschaft Abfackelfreies Anfahren eines Erdgasverflüssigungsprozesses
DE102015004125A1 (de) * 2015-03-31 2016-10-06 Linde Aktiengesellschaft Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
US10323880B2 (en) 2016-09-27 2019-06-18 Air Products And Chemicals, Inc. Mixed refrigerant cooling process and system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057108A1 (en) * 1997-06-12 1998-12-17 Costain Oil, Gas & Process Limited Two-staged refrigeration cycle using a multiconstituant refrigerant

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325231A (en) * 1976-06-23 1982-04-20 Heinrich Krieger Cascade cooling arrangement
FR2540612A1 (fr) * 1983-02-08 1984-08-10 Air Liquide Procede et installation de refroidissement d'un fluide, notamment de liquefaction de gaz naturel
US4525185A (en) * 1983-10-25 1985-06-25 Air Products And Chemicals, Inc. Dual mixed refrigerant natural gas liquefaction with staged compression
DE19722490C1 (de) * 1997-05-28 1998-07-02 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
GB2326464B (en) * 1997-06-12 2001-06-06 Costain Oil Gas & Process Ltd Refrigeration cycle using a mixed refrigerant
US6347531B1 (en) * 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Single mixed refrigerant gas liquefaction process
US6347532B1 (en) * 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures
US6742357B1 (en) * 2003-03-18 2004-06-01 Air Products And Chemicals, Inc. Integrated multiple-loop refrigeration process for gas liquefaction
US20080173043A1 (en) * 2005-03-09 2008-07-24 Sander Kaart Method For the Liquefaction of a Hydrocarbon-Rich Stream
CN201417042Y (zh) * 2009-04-27 2010-03-03 赵德泉 简化的混合制冷剂液化流程的设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057108A1 (en) * 1997-06-12 1998-12-17 Costain Oil, Gas & Process Limited Two-staged refrigeration cycle using a multiconstituant refrigerant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724091C2 (ru) * 2017-09-28 2020-06-19 Эр Продактс Энд Кемикалз, Инк. Устройство для сжижения потока углеводородного сырья (варианты)
US10753676B2 (en) 2017-09-28 2020-08-25 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling process
US10852059B2 (en) 2017-09-28 2020-12-01 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling system

Also Published As

Publication number Publication date
RU2011144360A (ru) 2013-05-10
AU2010230576B2 (en) 2016-02-18
NO20111413A1 (no) 2011-10-18
WO2010112206A3 (de) 2012-10-11
MY161644A (en) 2017-04-28
PE20120848A1 (es) 2012-07-11
AR076136A1 (es) 2011-05-18
DE102009016046A1 (de) 2010-10-07
CN102575896A (zh) 2012-07-11
CL2011002391A1 (es) 2012-02-10
WO2010112206A2 (de) 2010-10-07
AU2010230576A1 (en) 2011-09-15
CN102575896B (zh) 2015-04-22
BRPI1013386A2 (pt) 2016-03-29

Similar Documents

Publication Publication Date Title
KR101894076B1 (ko) 천연가스의 액화 시스템 및 액화 방법
RU2538156C2 (ru) Способ сжижения фракции, обогащенной углеводородами
RU2723471C2 (ru) Способ изъятия хладагента из системы для сжижения природного газа, способ изменения объема производства сжиженного или переохлажденного природного газа в системе для сжижения природного газа, система для сжижения природного газа
AU2007286291B2 (en) Method and apparatus for cooling a hydrocarbon stream
US11578914B2 (en) Method of cooling boil-off gas and apparatus therefor
CN107917577B (zh) 多压力混合的制冷剂冷却方法和系统
JP6702919B2 (ja) 混合冷媒冷却プロセスおよびシステム
RU2537480C2 (ru) Способ сжижения потока с высоким содержанием углеводородов
RU2580566C2 (ru) Способ охлаждения одно- или многокомпонентного потока
US20220275998A1 (en) Method of Cooling Boil-Off Gas and Apparatus Therefor
US20100307193A1 (en) Method and apparatus for cooling and separating a hydrocarbon stream
CA2935708A1 (en) A method to recover and process methane and condensates from flare gas systems
RU2797608C1 (ru) Способ сжижения природного газа "АРКТИЧЕСКИЙ МИКС"
RU2803363C1 (ru) Способ сжижения природного газа
US20170059241A1 (en) Gas liquefaction system and methods
CN115930549A (zh) 用于液化天然气的集成脱氮
US20210080174A1 (en) Method of cooling a natural gas feed stream and recovering a natural gas liquid stream from the natural gas feed stream

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190331