RU2205154C1 - Способ очистки загрязненных вод - Google Patents
Способ очистки загрязненных вод Download PDFInfo
- Publication number
- RU2205154C1 RU2205154C1 RU2002109766/12A RU2002109766A RU2205154C1 RU 2205154 C1 RU2205154 C1 RU 2205154C1 RU 2002109766/12 A RU2002109766/12 A RU 2002109766/12A RU 2002109766 A RU2002109766 A RU 2002109766A RU 2205154 C1 RU2205154 C1 RU 2205154C1
- Authority
- RU
- Russia
- Prior art keywords
- water
- pressure
- electrocoagulation
- mpa
- purification
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 238000009297 electrocoagulation Methods 0.000 claims abstract description 32
- 238000000746 purification Methods 0.000 claims abstract description 16
- 238000000926 separation method Methods 0.000 claims description 13
- 238000002329 infrared spectrum Methods 0.000 claims description 9
- 239000003643 water by type Substances 0.000 claims description 9
- 230000005670 electromagnetic radiation Effects 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000005345 coagulation Methods 0.000 abstract description 20
- 230000015271 coagulation Effects 0.000 abstract description 20
- 239000002351 wastewater Substances 0.000 abstract description 13
- 239000003651 drinking water Substances 0.000 abstract description 2
- 235000020188 drinking water Nutrition 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 239000003344 environmental pollutant Substances 0.000 abstract 1
- 231100000719 pollutant Toxicity 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 14
- 239000012535 impurity Substances 0.000 description 14
- 238000002161 passivation Methods 0.000 description 7
- 230000005484 gravity Effects 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000005188 flotation Methods 0.000 description 4
- 238000004065 wastewater treatment Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000006385 ozonation reaction Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 239000008213 purified water Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000002594 sorbent Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/463—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/005—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion by thermal diffusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/02—Separation of non-miscible liquids
- B01D17/0208—Separation of non-miscible liquids by sedimentation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/06—Separation of liquids from each other by electricity
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/40—Devices for separating or removing fatty or oily substances or similar floating material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/32—Hydrocarbons, e.g. oil
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/001—Runoff or storm water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/008—Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/06—Pressure conditions
- C02F2301/063—Underpressure, vacuum
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/06—Pressure conditions
- C02F2301/066—Overpressure, high pressure
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/08—Multistage treatments, e.g. repetition of the same process step under different conditions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Junction Field-Effect Transistors (AREA)
- Physical Water Treatments (AREA)
Abstract
Изобретение относится к области очистки воды и может быть использовано для очистки загрязненных сточных вод различного происхождения и в водоподготовке для технологических нужд и питьевого водоснабжения. Способ очистки загрязненных вод заключается в проведении процесса электрокоагуляции, который осуществляют повторяющимися циклами. При осуществлении каждого из циклов в электрокоагулятор подают порцию загрязненной воды и сначала над поверхностью воды создают давление, лежащее в пределах от 0,01 до 0,1 мПа. Затем в процессе электрокоагуляции повышают давление до значений, лежащих в пределах от 0,1 до 2,5 мПа. После этого отводят порцию обработанной воды и снижают давление до первоначального значения. Указанные циклы повторяют с частотой, лежащей в пределах от 0,01 до 0,0001 Гц. Технический эффект - поддержание тока коагуляции на заданном уровне, стабилизация процесса, высокая степень очистки загрязненных вод для широкого спектра содержащихся в них примесей. 2 з.п. ф-лы, 2 ил., 3 табл.
Description
Изобретение относится к области очистки воды и может быть использовано для очистки загрязненных сточных вод различного происхождения и в водоподготовке для технологических нужд и питьевого водоснабжения.
В настоящее время проблема очистки загрязненных вод приобретает все большее значение. Как правило, все сточные воды содержат широкий спектр примесей, в том числе нефтепродукты, и определить преимущественное содержание какого-либо компонента достаточно сложно.
Известные в настоящее время методы очистки сточных вод обеспечивают либо низкую степень очистки воды при достаточной производительности способа, либо достаточно высокую степень очистки, но только в отношении отдельных примесей, либо высокую производительность при удовлетворительном качестве, но с высокими энергетическими и экономическими затратами.
Одним из самых распространенных способов очистки загрязненных вод является процесс электрокоагуляции под вакуумом, в процессе которого или после него осуществляют дополнительные физические и/или химические воздействия, направленные на повышение качества очищенной воды.
Известен способ очистки нефтезагрязненных сточных вод (патент РФ 2146655), согласно которому осуществляют электрокоагуляцию под вакуумом, после чего воду подвергают сепарации в ИК-спектре с удельной мощностью нагрева 0,1-10,0 кВт/м3 и при давлении 2-70 кПа. При этом процесс электрокоагуляции осуществляют в непрерывном потоке очищаемых сточных вод.
В процессе электрокоагуляции под вакуумом повышается степень дестабилизации коллоидной системы за счет изменения парциального давления нефтепродуктов. При этом снижается растворимость нефтепродуктов в воде и происходит выделение углеводородов с образованием оптически неоднородной жидкости, состоящей из основной фазы (воды) и мелкодисперсной гетерогенной фазы с существенно различными коэффициентами поглощения излучения ИК-спектра. Мелкодисперсная фаза углеводородов интенсивно нагревается за счет поглощения излучения ИК-спектра с последующим перегревом воды в вакууме до образования паровой фазы на межфазной границе вода - углеводороды вокруг частиц углеводородов. При этом в воде остаются углеводороды, обладающие высокой степенью растворимости, удаление которых достигается последующим озонированием.
Однако в процессе электрокоагуляции происходит уменьшение тока коагуляции в зависимости от времени работы электродов, выполненных в виде пластин, иными словами, происходит "пассивация" пластин. По общепринятому мнению считается, что пассивация происходит за счет появления оксидной пленки на поверхности пластин, что приводит к увеличению сопротивления и, следовательно, к уменьшению тока коагуляции, приводящего в результате к снижению эффективности всего процесса очистки сточных вод.
Также известен способ очистки нефтесодержащих сточных вод (патент РФ 2140880), заключающийся в том, что осуществляют электрокоагуляцию под вакуумом, после чего последовательно при давлении 2-70 кПа проводят сепарацию воды в гравитационном поле при отношении площади вакуумируемой поверхности воды к ее объему 0,2-1,0 и флотацию в поле электромагнитного излучения ИК-спектра при длине волны 8•10-7-5•10-5 м.
При проведении сепарации в гравитационном поле нефтезагрязненных сточных вод, содержащих взвеси, твердые частицы и углеводороды с существенно различающимися удельными весами и отличными от удельного веса воды, происходит формирование потоков масс выделяемых примесей в противоположных направлениях. Тяжелые примеси (взвеси, песок и т.п.) движутся в объеме воды в направлении поля гравитации и собираются на дне с помощью известных приспособлений, а легкие примеси собираются на поверхности воды.
После сепарации воды от примесей с различными удельными весами проводят флотацию в поле электромагнитного излучения ИК-спектра и выделение примесей с близкими по значению удельных весов, но с различными теплофизическими свойствами, отличными от свойств воды. Сущность флотационной обработки состоит в том, что мелкодисперсная гетерогенная фаза интенсивно нагревается за счет поглощения энергии магнитного поля в указанном диапазоне длин волн ИК-спектра до температуры, обеспечивающей перегрев воды с образованием паровой фазы на межфазной границе.
Для описанного способа очистки также характерно снижение тока коагуляции, приводящего, как и в описанном ранее способе, к снижению эффективности процесса очистки.
Также известен способ очистки нефтесодержащих сточных вод (патент РФ 2120411), принятый за прототип, заключающийся в электрокоагуляции сточных вод, которую осуществляют под вакуумом при давлении от 10 до 50 кПа, и последующем пропускании воды через сорбент, в качестве которого используют полиакриламидное волокно. Для повышения степени очистки в описанном способе на его заключительной стадии осуществляют озонирование воды.
Как было отмечено выше, сточные воды содержат примеси, различающиеся по удельному весу и теплофизическим свойствам. Указанный способ имеет ограниченную сферу применения, т.к. в нем не предусмотрено дифференцированного воздействия на различные примеси, что приводит к недостаточно высокой эффективности очистки сточных вод. Поэтому этот способ может быть применен к сточным водам, состав которых известен и достаточно стабилен.
Кроме того, использование в качестве сорбента полиакриламидного волокна требует частой остановки процесса и замены сорбента, т.к. полиакриламидное волокно является расходуемым материалом и в процессе эксплуатации само становится источником вторичного загрязнения.
Озонирование является малоэффективной операцией для очистки, однако затраты на ее проведение весьма существенны, что приводит к удорожанию технологии при недостаточно высокой степени очистки и малой производительности оборудования.
Наряду с перечисленными выше особенностями способа имеет место снижение эффективности очистки сточных вод, обусловленное пассивацией работы пластин в процессе электрокоагуляции, о чем было подробно сказано выше.
Как и в описанных ранее известных способах электрокоагуляцию осуществляют при постоянном давлении в непрерывном потоке очищаемой воды.
В основу изобретения положена задача разработать способ очистки загрязненных вод, в котором за счет поддержания тока коагуляции на заданном уровне достигалась бы стабилизация процесса электрокоагуляции, что обеспечивало бы высокую степень очистки загрязненных вод для широкого спектра содержащихся в них примесей.
Поставленная задача решается тем, что в способе очистки загрязненных вод, включающем электрокоагуляцию названных вод, согласно изобретению процесс электрокоагуляции осуществляют повторяющимися циклами, при осуществлении каждого из которых в электрокоагулятор подают порцию загрязненной воды, над поверхностью которой сначала создают давление, лежащее в пределах от 0,01 до 0,1 мПа, а затем в процессе электрокоагуляции повышают давление до значений, лежащих в пределах от 0,1 до 2,5 мПа, после чего отводят порцию обработанной воды и снижают давление до первоначального значения, при этом указанные циклы повторяют с частотой, лежащей в пределах от 0,01 до 0,0001 Гц.
За счет цикличного изменения в процессе электрокоагуляции давления происходит очистка пластины анода от прилипания электролизного газа, что приводит к исключению процесса пассивации анода и стабилизации величины тока коагуляции на уровне значения, имеющего место в начале процесса электрокоагуляции.
По сравнению с известным способом, в котором пассивация анода происходит в среднем через 3 суток непрерывной работы установки, в предлагаемом способе ток коагуляции уменьшается лишь на 10%, что позволяет повысить производительность установки без ухудшения качества очищенной воды.
Целесообразно, чтобы после электрокоагуляции осуществляли гравитационную сепарацию обработанной воды при давлении 0,1-2,5 мПа или осуществляли сепарацию воды в ИК-спектре электромагнитного излучения с удельной мощностью нагрева 0,1÷10 кВт/м3.
Указанные технологические приемы, осуществляемые после процесса электрокоагуляции, проведенного патентуемым способом, а именно с изменяющимся давлением, позволяют получить заданные показатели очистки вод в 5-6 раз быстрее, чем в известных способах.
В дальнейшем изобретение поясняется описанием конкретного варианта выполнения, примерами и сопровождающими чертежами, на которых:
фиг. 1 изображает график изменения - давления в процессе электрокоагуляции;
фиг.2 - график изменения тока коагуляции.
фиг. 1 изображает график изменения - давления в процессе электрокоагуляции;
фиг.2 - график изменения тока коагуляции.
Патентуемый способ очистки загрязненных вод осуществляется следующим образом.
В электрокоагулятор, представляющий собой герметичную емкость с установленными в ее нижней части электродами, с помощью вакуумного насоса подают загрязненную воду, над поверхностью которой сначала создают давление, величина которого лежит в пределах от 0,01 до 0,1 мПа.
Затем в процессе электрокоагуляции повышают давление над поверхностью воды до значения, величина которого лежит в пределах от 0,1 до 2,5 мПа.
Минимальное значение давления определяется технологическими возможностями вакуумного оборудования, а максимальное значение - прочностными характеристиками оборудования технологической установки.
В том случае, если осуществляют очистку сильно загрязненных вод, то минимальное значение давления устанавливают 0,01 мПа, а максимальное - 0,1 мПа. При очистке слабо загрязненных вод минимальное значение давления выбирают равным 0,1 мПа, а максимальное - 2,5 мПа.
Оптимальные значения нижнего и верхнего значений давления определяются экспериментально для конкретного типа загрязненных вод.
После достижения максимального значения давления из электрокоагулятора осуществляют отвод обработанной воды, завершая один цикл процесса очистки.
Затем вновь снижают давление в электрокоагуляторе до минимального значения и повторяют процесс в описанной выше последовательности.
Таким образом, в отличие от известных способов, патентуемый способ осуществляют повторяющимися циклами, в каждом их которых при обработке одной порции загрязненной воды давление изменяют от минимального до максимального, что иллюстрируется графиком, приведенным на фиг.1.
Известно, что в процессе электрокоагуляции происходит укрупнение содержащихся в загрязненных водах частиц примесей и оседание их в нижнюю часть емкости, а также уменьшение тока коагуляции в зависимости от времени работы электродов.
Как было описано выше, считается, что снижение тока коагуляции происходит за счет появления оксидной пленки на поверхности пластин, приводящей к увеличению электрического сопротивления.
Однако авторами экспериментально была установлена и иная причина уменьшения тока коагуляции, которая в большей степени влияет на эффективность процесса очистки загрязненных вод, чем появление на поверхности электродов оксидной пленки.
Это объясняется тем, что перед началом процесса электрокоагуляции пластины анода и катода гладкие; в процессе эксплуатации пластина анода вырабатывается, причем неравномерно, и ее поверхность становится шероховатой. За счет электролиза воды во впадинах образуются пузырьки газа, которые создают газовую завесу и частично отделяют поверхность анода от воды. В связи с тем, что проводимость газа существенно меньше проводимости воды, а также за счет уменьшения активной площади поверхности анода происходит снижение тока коагуляции.
При низком давлении происходит увеличение пузырьков газа. Эти пузырьки увеличиваются в объеме, приобретают большую плавучесть и отрываются от поверхности анода. Таким образом поверхность анода очищается, и его активная площадь увеличивается, что приводит к повышению тока коагуляции.
Через определенное время вновь начинается активное образование пузырьков газа, приводящее к уменьшению тока коагуляции.
Для исключения указанного эффекта увеличивают давление, что приводит к сжиманию пузырьков воздуха и, как следствие, к увеличению активной площади анода.
За счет цикличного изменения давления происходит очистка пластины анода от прилипания электролизного газа, что приводит к исключению процесса пассивации анода и стабилизации величины тока коагуляции на уровне значения, имеющего место в начале процесса электрокоагуляции.
Частота изменения давления определяется производительностью установки и контролируется по значению тока коагуляции, - чем выше производительность установки, тем больше частота изменения давления.
Экспериментально установлено, что частота изменения давления лежит в пределах от 0,01 до 0,0001 Гц.
При значении давления ниже 0,01 мПа происходит интенсивное газовыделение, что существенно изменяет динамику движения потоков при массопереносе частиц примесей, т.к. коэффициент газонаполнения выше 0,3.
При значении давления выше 2,5 мПа практически не происходит удаление газов, что останавливает процессы окисления-восстановления в приэлектродном пространстве.
Для иллюстрации преимуществ предлагаемого способа на фиг.2 приведен график изменения плотности тока коагуляции в зависимости от времени работы установки, на котором приведены кривые изменения плотности тока в соответствии с предлагаемьм способом (сплошная линия) и в соответствии со способом по прототипу (пунктирная линия). По оси ординат отложены значения плотности тока коагуляции ρ= Jk/Sп, где Jk - ток коагуляции, Sп - площадь пластины электрода.
Как видно из приведенного графика, пассивация анода происходит через 3,5 суток непрерывного проведения способа, в то время как в соответствии с предлагаемым способом за указанное время плотность тока коагуляции уменьшается всего на 10%, что наглядно доказывает преимущества предлагаемого способа по сравнению с известным.
В соответствии с предлагаемым способом после электрокоагуляции проводят гравитационную сепарацию воды при давлении 0,1-2,5 мПа или осуществляют сепарацию воды в ИК-спектре электромагнитного излучения с удельной мощностью нагрева 0,1÷10 кВт/м3.
Первую из названных операций осуществляют в том случае, если имеются достаточные емкости для длительного отстаивания воды после проведения электрокоагуляции.
В том случае, если процесс сепарации необходимо ускорить, используют вторую из названных операций. При этом для создания поля электромагнитного излучения ИК-спектра используют кварцевые термоизлучатели, формирующие лучистый поток в области инфракрасного излучения при длинах волн, наиболее эффективно воздействующих на процесс флотации и обеспечивающие максимальный коэффициент поглощения энергии излучения для мелкодисперсной гетерогенной фазы и минимальный для воды.
Для сравнительного анализа предлагаемого и известного способов ниже приводятся результаты испытания процесса очистки загрязненных вод одинакового состава в адекватных условиях.
В таблице 1 представлены результаты сравнительных испытаний способов очистки нефтесодержащих сточных вод.
Из таблицы 1 видно, что предлагаемый способ позволяет осуществлять очистку вод с относительно небольшой степенью загрязненности (например, ливневые стоки от АЗС, являющиеся основным ориентиром для оценки эффективности способов очистки), так и сильно загрязненных вод (например, льяльные стоки судов). Содержание нефтепродуктов после гравитационного разделения в соответствии с предлагаемым способом достигает величины 0,3 мг/л через 2 часа, в то время по прототипу такие же показатели достигаются через 12 часов; для сильно загрязненных вод степень очистки 0,05 мг/л по способу в соответствии с прототипом вообще не достигается.
В таблице 2 результаты очистки нефтесодержащих сточных вод при различных давлениях.
Как видно из приведенной таблицы 2, через 12 часов гравитационного разделения показатели по предлагаемому способу в 2 раза выше, чем по известному способу. При этом наилучшие показатели достигаются при значении давления в начале процесса 0,05 мПа.
В таблице 3 приведены результаты очистки загрязненных вод при различных давлениях.
Как видно из приведенных результатов испытаний, после 12 часов гравитационного разделения воды по предлагаемому способу выявляются только следы примесей (<2,0 мг/л), в то время как по известному способу содержание примесей приближается к 5 мг/л.
Таким образом, благодаря цикличному изменению давления в процессе электрокоагуляции повышается производительность способа при достижении высоких показателей по очистке загрязненных вод.
Claims (3)
1. Способ очистки загрязненных вод, включающий электрокоагуляцию названных вод, отличающийся тем, что процесс электрокоагуляции осуществляют повторяющимися циклами, при осуществлении каждого из которых в электрокоагулятор подают порцию загрязненной воды, над поверхностью которой сначала создают давление, лежащее в пределах от 0,01 до 0,1 мПа, а затем в процессе электрокоагуляции повышают давление до значений, лежащих в пределах от 0,1 до 2,5 мПа, после чего отводят порцию обработанной воды и снижают давление до первоначального значения, при этом указанные циклы повторяют с частотой, лежащей в пределах от 0,01 до 0,0001 Гц.
2. Способ по п. 1, отличающийся тем, что после электрокоагуляции осуществляют гравитационную сепарацию обработанной воды при давлении 0,1-2,5 мПа.
3. Способ по п. 1, отличающийся тем, что после электрокоагуляции осуществляют сепарацию в ИК-спектре электромагнитного излучения с удельной мощностью нагрева 0,1÷10 кВт/м3.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2002109766/12A RU2205154C1 (ru) | 2002-04-16 | 2002-04-16 | Способ очистки загрязненных вод |
EP02798392A EP1496018A4 (en) | 2002-04-16 | 2002-12-27 | PROCESS FOR PURIFYING CONTAMINATED WATER |
PCT/RU2002/000563 WO2003086982A1 (fr) | 2002-04-16 | 2002-12-27 | Procede de purification des eaux contaminees |
US10/511,503 US20050218081A1 (en) | 2002-04-16 | 2002-12-27 | Method for cleaning polluted water |
AU2002364358A AU2002364358A1 (en) | 2002-04-16 | 2002-12-27 | Method for cleaning polluted water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2002109766/12A RU2205154C1 (ru) | 2002-04-16 | 2002-04-16 | Способ очистки загрязненных вод |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2205154C1 true RU2205154C1 (ru) | 2003-05-27 |
Family
ID=20255577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2002109766/12A RU2205154C1 (ru) | 2002-04-16 | 2002-04-16 | Способ очистки загрязненных вод |
Country Status (5)
Country | Link |
---|---|
US (1) | US20050218081A1 (ru) |
EP (1) | EP1496018A4 (ru) |
AU (1) | AU2002364358A1 (ru) |
RU (1) | RU2205154C1 (ru) |
WO (1) | WO2003086982A1 (ru) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080185293A1 (en) * | 2002-03-27 | 2008-08-07 | Giselher Klose | Method and Apparatus for Decontamination of Fluid with One or More High Purity Electrodes |
US7695607B2 (en) * | 2002-03-27 | 2010-04-13 | Ars Usa Llc | Method and apparatus for decontamination of fluid |
US7691253B2 (en) * | 2002-03-27 | 2010-04-06 | Ars Usa Llc | Method and apparatus for decontamination of fluid |
ES2351292B1 (es) * | 2008-09-26 | 2011-11-21 | Watermin S.A. | Dispositivo y procedimiento para la formación de compuestos químicos insolubles. |
CA2760560A1 (en) * | 2010-12-01 | 2012-06-01 | Premier Tech Technologies Ltee | A self-cleaning electro-reaction unit for wastewater treatment and related process |
RU2452689C1 (ru) * | 2011-02-24 | 2012-06-10 | Олег Савельевич Кочетов | Система оборотного водоснабжения для мойки автомашин |
US9174859B2 (en) * | 2011-11-24 | 2015-11-03 | Eco Watertech, Inc. | Method for treating waste waters |
US8828240B1 (en) | 2012-11-20 | 2014-09-09 | Benjamin A. Schranze | Residential wastewater purification system |
EP3293152A1 (en) * | 2016-09-09 | 2018-03-14 | Höganäs AB (publ) | Device and process for electrocoagulation |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH615895A5 (ru) * | 1976-09-27 | 1980-02-29 | Sulzer Ag | |
DE8328904U1 (de) * | 1983-10-06 | 1986-08-21 | Hidrotronic Watercleaning Systems, Ltd., Zug | Vorrichtung zum Reinigen von Wasser |
US4623436A (en) * | 1985-01-10 | 1986-11-18 | Showakoki Co., Ltd. | Method and apparatus for removing impurities from liquids |
US5531865A (en) * | 1992-08-19 | 1996-07-02 | Cole; Leland G. | Electrolytic water purification process |
DE4236723C1 (de) * | 1992-10-30 | 1994-04-28 | Wt Wassertechn Gmbh | Vorrichtung zur Reinigung und Aufbereitung von Schmutzwässern mittels Elektroflotation |
US5597479A (en) * | 1995-01-25 | 1997-01-28 | Aqua-Ion Systems, Inc. | Electro-coalescence/magnetic separation (ECMS) system and components for removal of contaminants from water streams, including desalinization |
US5658450A (en) * | 1995-07-03 | 1997-08-19 | Tamarkin; Semyon | Method of and device for industrial waste water treatment |
RU2120411C1 (ru) * | 1998-01-27 | 1998-10-20 | Общество с ограниченной ответственностью "ЮРТИС" | Способ очистки нефтесодержащих сточных вод |
RU2146655C1 (ru) * | 1998-08-04 | 2000-03-20 | АОЗТ "Лесоакадемик" | Способ очистки нефтезагрязненных сточных вод |
RU2140880C1 (ru) * | 1998-09-14 | 1999-11-10 | АОЗТ "Лесоакадемик" | Способ очистки нефтезагрязненных сточных вод |
US6689271B2 (en) * | 1998-11-23 | 2004-02-10 | Kaspar Wire Works, Inc. | Process and apparatus for electrocoagulative treatment of industrial waste water |
US6719894B2 (en) * | 2000-08-11 | 2004-04-13 | Ira B. Vinson | Process for electrocoagulating waste fluids |
US6582592B2 (en) * | 2001-06-12 | 2003-06-24 | Hydrotreat, Inc. | Apparatus for removing dissolved metals from wastewater by electrocoagulation |
US7087176B2 (en) * | 2002-11-11 | 2006-08-08 | Ira B. Vinson | High pressure process and apparatus for the electrocoagulative treatment of aqueous and viscous fluids |
-
2002
- 2002-04-16 RU RU2002109766/12A patent/RU2205154C1/ru not_active IP Right Cessation
- 2002-12-27 WO PCT/RU2002/000563 patent/WO2003086982A1/ru not_active Application Discontinuation
- 2002-12-27 US US10/511,503 patent/US20050218081A1/en not_active Abandoned
- 2002-12-27 EP EP02798392A patent/EP1496018A4/en not_active Withdrawn
- 2002-12-27 AU AU2002364358A patent/AU2002364358A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP1496018A1 (en) | 2005-01-12 |
US20050218081A1 (en) | 2005-10-06 |
EP1496018A4 (en) | 2005-06-29 |
WO2003086982A1 (fr) | 2003-10-23 |
AU2002364358A1 (en) | 2003-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6746593B2 (en) | High volume electrolytic water treatment system and process for treating wastewater | |
US7252752B2 (en) | Method and apparatus for removing contaminants from conduits and fluid columns | |
RU2205154C1 (ru) | Способ очистки загрязненных вод | |
US4351734A (en) | Spark cell ozone generator | |
MXPA00004951A (es) | Metodo y aparato para el tratamiento de agua de desperdicio. | |
CN106977027B (zh) | 一种油田采出污水的深度处理系统及方法 | |
CN1233231A (zh) | 减少或防止形成水垢的方法 | |
EP2300375B1 (en) | Apparatus and method for treatment of wastewater | |
JP2000093967A (ja) | 液体処理方法及び液体処理装置 | |
US4316805A (en) | Oil separation and recovery process and apparatus | |
WO2010028097A1 (en) | Electrocoagulation devices and methods of use | |
KR100406190B1 (ko) | 처리조를 이중으로 가지는 필터형 상향류식 여과기 | |
CA2880227C (en) | System and method for oil sands tailings treatment | |
RU2326820C1 (ru) | Способ очистки и стерилизации жидких или газообразных сред и устройство для его осуществления | |
TWI286998B (en) | Equipment for treating wastewater | |
KR20150057298A (ko) | 플라즈마 수중 방전 기법을 이용한 오염토양처리 장치 및 방법 | |
US8273240B2 (en) | Method and apparatus for treating wastewater containing emulsified oil | |
RU2146655C1 (ru) | Способ очистки нефтезагрязненных сточных вод | |
RU2140880C1 (ru) | Способ очистки нефтезагрязненных сточных вод | |
JP2002250792A (ja) | 放射性廃液処理装置 | |
RU2317949C2 (ru) | Устройство для очистки сточных вод | |
JP2005074316A (ja) | コンプレッサードレンの処理装置 | |
KR102568017B1 (ko) | 전기분해구조를 갖는 오폐수 처리장치 | |
JP3922443B2 (ja) | 電解浮上分離装置 | |
RU2798481C1 (ru) | Устройство и способ обработки жидкой среды |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20080417 |