RU2205154C1 - Способ очистки загрязненных вод - Google Patents

Способ очистки загрязненных вод Download PDF

Info

Publication number
RU2205154C1
RU2205154C1 RU2002109766/12A RU2002109766A RU2205154C1 RU 2205154 C1 RU2205154 C1 RU 2205154C1 RU 2002109766/12 A RU2002109766/12 A RU 2002109766/12A RU 2002109766 A RU2002109766 A RU 2002109766A RU 2205154 C1 RU2205154 C1 RU 2205154C1
Authority
RU
Russia
Prior art keywords
water
pressure
electrocoagulation
mpa
purification
Prior art date
Application number
RU2002109766/12A
Other languages
English (en)
Inventor
В.В. Дмитриев
М.В. Абросимов
Original Assignee
Дмитриев Виктор Владимирович
Абросимов Михаил Викторович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитриев Виктор Владимирович, Абросимов Михаил Викторович filed Critical Дмитриев Виктор Владимирович
Priority to RU2002109766/12A priority Critical patent/RU2205154C1/ru
Priority to EP02798392A priority patent/EP1496018A4/en
Priority to PCT/RU2002/000563 priority patent/WO2003086982A1/ru
Priority to US10/511,503 priority patent/US20050218081A1/en
Priority to AU2002364358A priority patent/AU2002364358A1/en
Application granted granted Critical
Publication of RU2205154C1 publication Critical patent/RU2205154C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/005Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion by thermal diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/06Separation of liquids from each other by electricity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/001Runoff or storm water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/063Underpressure, vacuum
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/066Overpressure, high pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Physical Water Treatments (AREA)

Abstract

Изобретение относится к области очистки воды и может быть использовано для очистки загрязненных сточных вод различного происхождения и в водоподготовке для технологических нужд и питьевого водоснабжения. Способ очистки загрязненных вод заключается в проведении процесса электрокоагуляции, который осуществляют повторяющимися циклами. При осуществлении каждого из циклов в электрокоагулятор подают порцию загрязненной воды и сначала над поверхностью воды создают давление, лежащее в пределах от 0,01 до 0,1 мПа. Затем в процессе электрокоагуляции повышают давление до значений, лежащих в пределах от 0,1 до 2,5 мПа. После этого отводят порцию обработанной воды и снижают давление до первоначального значения. Указанные циклы повторяют с частотой, лежащей в пределах от 0,01 до 0,0001 Гц. Технический эффект - поддержание тока коагуляции на заданном уровне, стабилизация процесса, высокая степень очистки загрязненных вод для широкого спектра содержащихся в них примесей. 2 з.п. ф-лы, 2 ил., 3 табл.

Description

Изобретение относится к области очистки воды и может быть использовано для очистки загрязненных сточных вод различного происхождения и в водоподготовке для технологических нужд и питьевого водоснабжения.
В настоящее время проблема очистки загрязненных вод приобретает все большее значение. Как правило, все сточные воды содержат широкий спектр примесей, в том числе нефтепродукты, и определить преимущественное содержание какого-либо компонента достаточно сложно.
Известные в настоящее время методы очистки сточных вод обеспечивают либо низкую степень очистки воды при достаточной производительности способа, либо достаточно высокую степень очистки, но только в отношении отдельных примесей, либо высокую производительность при удовлетворительном качестве, но с высокими энергетическими и экономическими затратами.
Одним из самых распространенных способов очистки загрязненных вод является процесс электрокоагуляции под вакуумом, в процессе которого или после него осуществляют дополнительные физические и/или химические воздействия, направленные на повышение качества очищенной воды.
Известен способ очистки нефтезагрязненных сточных вод (патент РФ 2146655), согласно которому осуществляют электрокоагуляцию под вакуумом, после чего воду подвергают сепарации в ИК-спектре с удельной мощностью нагрева 0,1-10,0 кВт/м3 и при давлении 2-70 кПа. При этом процесс электрокоагуляции осуществляют в непрерывном потоке очищаемых сточных вод.
В процессе электрокоагуляции под вакуумом повышается степень дестабилизации коллоидной системы за счет изменения парциального давления нефтепродуктов. При этом снижается растворимость нефтепродуктов в воде и происходит выделение углеводородов с образованием оптически неоднородной жидкости, состоящей из основной фазы (воды) и мелкодисперсной гетерогенной фазы с существенно различными коэффициентами поглощения излучения ИК-спектра. Мелкодисперсная фаза углеводородов интенсивно нагревается за счет поглощения излучения ИК-спектра с последующим перегревом воды в вакууме до образования паровой фазы на межфазной границе вода - углеводороды вокруг частиц углеводородов. При этом в воде остаются углеводороды, обладающие высокой степенью растворимости, удаление которых достигается последующим озонированием.
Однако в процессе электрокоагуляции происходит уменьшение тока коагуляции в зависимости от времени работы электродов, выполненных в виде пластин, иными словами, происходит "пассивация" пластин. По общепринятому мнению считается, что пассивация происходит за счет появления оксидной пленки на поверхности пластин, что приводит к увеличению сопротивления и, следовательно, к уменьшению тока коагуляции, приводящего в результате к снижению эффективности всего процесса очистки сточных вод.
Также известен способ очистки нефтесодержащих сточных вод (патент РФ 2140880), заключающийся в том, что осуществляют электрокоагуляцию под вакуумом, после чего последовательно при давлении 2-70 кПа проводят сепарацию воды в гравитационном поле при отношении площади вакуумируемой поверхности воды к ее объему 0,2-1,0 и флотацию в поле электромагнитного излучения ИК-спектра при длине волны 8•10-7-5•10-5 м.
При проведении сепарации в гравитационном поле нефтезагрязненных сточных вод, содержащих взвеси, твердые частицы и углеводороды с существенно различающимися удельными весами и отличными от удельного веса воды, происходит формирование потоков масс выделяемых примесей в противоположных направлениях. Тяжелые примеси (взвеси, песок и т.п.) движутся в объеме воды в направлении поля гравитации и собираются на дне с помощью известных приспособлений, а легкие примеси собираются на поверхности воды.
После сепарации воды от примесей с различными удельными весами проводят флотацию в поле электромагнитного излучения ИК-спектра и выделение примесей с близкими по значению удельных весов, но с различными теплофизическими свойствами, отличными от свойств воды. Сущность флотационной обработки состоит в том, что мелкодисперсная гетерогенная фаза интенсивно нагревается за счет поглощения энергии магнитного поля в указанном диапазоне длин волн ИК-спектра до температуры, обеспечивающей перегрев воды с образованием паровой фазы на межфазной границе.
Для описанного способа очистки также характерно снижение тока коагуляции, приводящего, как и в описанном ранее способе, к снижению эффективности процесса очистки.
Также известен способ очистки нефтесодержащих сточных вод (патент РФ 2120411), принятый за прототип, заключающийся в электрокоагуляции сточных вод, которую осуществляют под вакуумом при давлении от 10 до 50 кПа, и последующем пропускании воды через сорбент, в качестве которого используют полиакриламидное волокно. Для повышения степени очистки в описанном способе на его заключительной стадии осуществляют озонирование воды.
Как было отмечено выше, сточные воды содержат примеси, различающиеся по удельному весу и теплофизическим свойствам. Указанный способ имеет ограниченную сферу применения, т.к. в нем не предусмотрено дифференцированного воздействия на различные примеси, что приводит к недостаточно высокой эффективности очистки сточных вод. Поэтому этот способ может быть применен к сточным водам, состав которых известен и достаточно стабилен.
Кроме того, использование в качестве сорбента полиакриламидного волокна требует частой остановки процесса и замены сорбента, т.к. полиакриламидное волокно является расходуемым материалом и в процессе эксплуатации само становится источником вторичного загрязнения.
Озонирование является малоэффективной операцией для очистки, однако затраты на ее проведение весьма существенны, что приводит к удорожанию технологии при недостаточно высокой степени очистки и малой производительности оборудования.
Наряду с перечисленными выше особенностями способа имеет место снижение эффективности очистки сточных вод, обусловленное пассивацией работы пластин в процессе электрокоагуляции, о чем было подробно сказано выше.
Как и в описанных ранее известных способах электрокоагуляцию осуществляют при постоянном давлении в непрерывном потоке очищаемой воды.
В основу изобретения положена задача разработать способ очистки загрязненных вод, в котором за счет поддержания тока коагуляции на заданном уровне достигалась бы стабилизация процесса электрокоагуляции, что обеспечивало бы высокую степень очистки загрязненных вод для широкого спектра содержащихся в них примесей.
Поставленная задача решается тем, что в способе очистки загрязненных вод, включающем электрокоагуляцию названных вод, согласно изобретению процесс электрокоагуляции осуществляют повторяющимися циклами, при осуществлении каждого из которых в электрокоагулятор подают порцию загрязненной воды, над поверхностью которой сначала создают давление, лежащее в пределах от 0,01 до 0,1 мПа, а затем в процессе электрокоагуляции повышают давление до значений, лежащих в пределах от 0,1 до 2,5 мПа, после чего отводят порцию обработанной воды и снижают давление до первоначального значения, при этом указанные циклы повторяют с частотой, лежащей в пределах от 0,01 до 0,0001 Гц.
За счет цикличного изменения в процессе электрокоагуляции давления происходит очистка пластины анода от прилипания электролизного газа, что приводит к исключению процесса пассивации анода и стабилизации величины тока коагуляции на уровне значения, имеющего место в начале процесса электрокоагуляции.
По сравнению с известным способом, в котором пассивация анода происходит в среднем через 3 суток непрерывной работы установки, в предлагаемом способе ток коагуляции уменьшается лишь на 10%, что позволяет повысить производительность установки без ухудшения качества очищенной воды.
Целесообразно, чтобы после электрокоагуляции осуществляли гравитационную сепарацию обработанной воды при давлении 0,1-2,5 мПа или осуществляли сепарацию воды в ИК-спектре электромагнитного излучения с удельной мощностью нагрева 0,1÷10 кВт/м3.
Указанные технологические приемы, осуществляемые после процесса электрокоагуляции, проведенного патентуемым способом, а именно с изменяющимся давлением, позволяют получить заданные показатели очистки вод в 5-6 раз быстрее, чем в известных способах.
В дальнейшем изобретение поясняется описанием конкретного варианта выполнения, примерами и сопровождающими чертежами, на которых:
фиг. 1 изображает график изменения - давления в процессе электрокоагуляции;
фиг.2 - график изменения тока коагуляции.
Патентуемый способ очистки загрязненных вод осуществляется следующим образом.
В электрокоагулятор, представляющий собой герметичную емкость с установленными в ее нижней части электродами, с помощью вакуумного насоса подают загрязненную воду, над поверхностью которой сначала создают давление, величина которого лежит в пределах от 0,01 до 0,1 мПа.
Затем в процессе электрокоагуляции повышают давление над поверхностью воды до значения, величина которого лежит в пределах от 0,1 до 2,5 мПа.
Минимальное значение давления определяется технологическими возможностями вакуумного оборудования, а максимальное значение - прочностными характеристиками оборудования технологической установки.
В том случае, если осуществляют очистку сильно загрязненных вод, то минимальное значение давления устанавливают 0,01 мПа, а максимальное - 0,1 мПа. При очистке слабо загрязненных вод минимальное значение давления выбирают равным 0,1 мПа, а максимальное - 2,5 мПа.
Оптимальные значения нижнего и верхнего значений давления определяются экспериментально для конкретного типа загрязненных вод.
После достижения максимального значения давления из электрокоагулятора осуществляют отвод обработанной воды, завершая один цикл процесса очистки.
Затем вновь снижают давление в электрокоагуляторе до минимального значения и повторяют процесс в описанной выше последовательности.
Таким образом, в отличие от известных способов, патентуемый способ осуществляют повторяющимися циклами, в каждом их которых при обработке одной порции загрязненной воды давление изменяют от минимального до максимального, что иллюстрируется графиком, приведенным на фиг.1.
Известно, что в процессе электрокоагуляции происходит укрупнение содержащихся в загрязненных водах частиц примесей и оседание их в нижнюю часть емкости, а также уменьшение тока коагуляции в зависимости от времени работы электродов.
Как было описано выше, считается, что снижение тока коагуляции происходит за счет появления оксидной пленки на поверхности пластин, приводящей к увеличению электрического сопротивления.
Однако авторами экспериментально была установлена и иная причина уменьшения тока коагуляции, которая в большей степени влияет на эффективность процесса очистки загрязненных вод, чем появление на поверхности электродов оксидной пленки.
Это объясняется тем, что перед началом процесса электрокоагуляции пластины анода и катода гладкие; в процессе эксплуатации пластина анода вырабатывается, причем неравномерно, и ее поверхность становится шероховатой. За счет электролиза воды во впадинах образуются пузырьки газа, которые создают газовую завесу и частично отделяют поверхность анода от воды. В связи с тем, что проводимость газа существенно меньше проводимости воды, а также за счет уменьшения активной площади поверхности анода происходит снижение тока коагуляции.
При низком давлении происходит увеличение пузырьков газа. Эти пузырьки увеличиваются в объеме, приобретают большую плавучесть и отрываются от поверхности анода. Таким образом поверхность анода очищается, и его активная площадь увеличивается, что приводит к повышению тока коагуляции.
Через определенное время вновь начинается активное образование пузырьков газа, приводящее к уменьшению тока коагуляции.
Для исключения указанного эффекта увеличивают давление, что приводит к сжиманию пузырьков воздуха и, как следствие, к увеличению активной площади анода.
За счет цикличного изменения давления происходит очистка пластины анода от прилипания электролизного газа, что приводит к исключению процесса пассивации анода и стабилизации величины тока коагуляции на уровне значения, имеющего место в начале процесса электрокоагуляции.
Частота изменения давления определяется производительностью установки и контролируется по значению тока коагуляции, - чем выше производительность установки, тем больше частота изменения давления.
Экспериментально установлено, что частота изменения давления лежит в пределах от 0,01 до 0,0001 Гц.
При значении давления ниже 0,01 мПа происходит интенсивное газовыделение, что существенно изменяет динамику движения потоков при массопереносе частиц примесей, т.к. коэффициент газонаполнения выше 0,3.
При значении давления выше 2,5 мПа практически не происходит удаление газов, что останавливает процессы окисления-восстановления в приэлектродном пространстве.
Для иллюстрации преимуществ предлагаемого способа на фиг.2 приведен график изменения плотности тока коагуляции в зависимости от времени работы установки, на котором приведены кривые изменения плотности тока в соответствии с предлагаемьм способом (сплошная линия) и в соответствии со способом по прототипу (пунктирная линия). По оси ординат отложены значения плотности тока коагуляции ρ= Jk/Sп, где Jk - ток коагуляции, Sп - площадь пластины электрода.
Как видно из приведенного графика, пассивация анода происходит через 3,5 суток непрерывного проведения способа, в то время как в соответствии с предлагаемым способом за указанное время плотность тока коагуляции уменьшается всего на 10%, что наглядно доказывает преимущества предлагаемого способа по сравнению с известным.
В соответствии с предлагаемым способом после электрокоагуляции проводят гравитационную сепарацию воды при давлении 0,1-2,5 мПа или осуществляют сепарацию воды в ИК-спектре электромагнитного излучения с удельной мощностью нагрева 0,1÷10 кВт/м3.
Первую из названных операций осуществляют в том случае, если имеются достаточные емкости для длительного отстаивания воды после проведения электрокоагуляции.
В том случае, если процесс сепарации необходимо ускорить, используют вторую из названных операций. При этом для создания поля электромагнитного излучения ИК-спектра используют кварцевые термоизлучатели, формирующие лучистый поток в области инфракрасного излучения при длинах волн, наиболее эффективно воздействующих на процесс флотации и обеспечивающие максимальный коэффициент поглощения энергии излучения для мелкодисперсной гетерогенной фазы и минимальный для воды.
Для сравнительного анализа предлагаемого и известного способов ниже приводятся результаты испытания процесса очистки загрязненных вод одинакового состава в адекватных условиях.
В таблице 1 представлены результаты сравнительных испытаний способов очистки нефтесодержащих сточных вод.
Из таблицы 1 видно, что предлагаемый способ позволяет осуществлять очистку вод с относительно небольшой степенью загрязненности (например, ливневые стоки от АЗС, являющиеся основным ориентиром для оценки эффективности способов очистки), так и сильно загрязненных вод (например, льяльные стоки судов). Содержание нефтепродуктов после гравитационного разделения в соответствии с предлагаемым способом достигает величины 0,3 мг/л через 2 часа, в то время по прототипу такие же показатели достигаются через 12 часов; для сильно загрязненных вод степень очистки 0,05 мг/л по способу в соответствии с прототипом вообще не достигается.
В таблице 2 результаты очистки нефтесодержащих сточных вод при различных давлениях.
Как видно из приведенной таблицы 2, через 12 часов гравитационного разделения показатели по предлагаемому способу в 2 раза выше, чем по известному способу. При этом наилучшие показатели достигаются при значении давления в начале процесса 0,05 мПа.
В таблице 3 приведены результаты очистки загрязненных вод при различных давлениях.
Как видно из приведенных результатов испытаний, после 12 часов гравитационного разделения воды по предлагаемому способу выявляются только следы примесей (<2,0 мг/л), в то время как по известному способу содержание примесей приближается к 5 мг/л.
Таким образом, благодаря цикличному изменению давления в процессе электрокоагуляции повышается производительность способа при достижении высоких показателей по очистке загрязненных вод.

Claims (3)

1. Способ очистки загрязненных вод, включающий электрокоагуляцию названных вод, отличающийся тем, что процесс электрокоагуляции осуществляют повторяющимися циклами, при осуществлении каждого из которых в электрокоагулятор подают порцию загрязненной воды, над поверхностью которой сначала создают давление, лежащее в пределах от 0,01 до 0,1 мПа, а затем в процессе электрокоагуляции повышают давление до значений, лежащих в пределах от 0,1 до 2,5 мПа, после чего отводят порцию обработанной воды и снижают давление до первоначального значения, при этом указанные циклы повторяют с частотой, лежащей в пределах от 0,01 до 0,0001 Гц.
2. Способ по п. 1, отличающийся тем, что после электрокоагуляции осуществляют гравитационную сепарацию обработанной воды при давлении 0,1-2,5 мПа.
3. Способ по п. 1, отличающийся тем, что после электрокоагуляции осуществляют сепарацию в ИК-спектре электромагнитного излучения с удельной мощностью нагрева 0,1÷10 кВт/м3.
RU2002109766/12A 2002-04-16 2002-04-16 Способ очистки загрязненных вод RU2205154C1 (ru)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2002109766/12A RU2205154C1 (ru) 2002-04-16 2002-04-16 Способ очистки загрязненных вод
EP02798392A EP1496018A4 (en) 2002-04-16 2002-12-27 PROCESS FOR PURIFYING CONTAMINATED WATER
PCT/RU2002/000563 WO2003086982A1 (fr) 2002-04-16 2002-12-27 Procede de purification des eaux contaminees
US10/511,503 US20050218081A1 (en) 2002-04-16 2002-12-27 Method for cleaning polluted water
AU2002364358A AU2002364358A1 (en) 2002-04-16 2002-12-27 Method for cleaning polluted water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002109766/12A RU2205154C1 (ru) 2002-04-16 2002-04-16 Способ очистки загрязненных вод

Publications (1)

Publication Number Publication Date
RU2205154C1 true RU2205154C1 (ru) 2003-05-27

Family

ID=20255577

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002109766/12A RU2205154C1 (ru) 2002-04-16 2002-04-16 Способ очистки загрязненных вод

Country Status (5)

Country Link
US (1) US20050218081A1 (ru)
EP (1) EP1496018A4 (ru)
AU (1) AU2002364358A1 (ru)
RU (1) RU2205154C1 (ru)
WO (1) WO2003086982A1 (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080185293A1 (en) * 2002-03-27 2008-08-07 Giselher Klose Method and Apparatus for Decontamination of Fluid with One or More High Purity Electrodes
US7695607B2 (en) * 2002-03-27 2010-04-13 Ars Usa Llc Method and apparatus for decontamination of fluid
US7691253B2 (en) * 2002-03-27 2010-04-06 Ars Usa Llc Method and apparatus for decontamination of fluid
ES2351292B1 (es) * 2008-09-26 2011-11-21 Watermin S.A. Dispositivo y procedimiento para la formación de compuestos químicos insolubles.
CA2760560A1 (en) * 2010-12-01 2012-06-01 Premier Tech Technologies Ltee A self-cleaning electro-reaction unit for wastewater treatment and related process
RU2452689C1 (ru) * 2011-02-24 2012-06-10 Олег Савельевич Кочетов Система оборотного водоснабжения для мойки автомашин
US9174859B2 (en) * 2011-11-24 2015-11-03 Eco Watertech, Inc. Method for treating waste waters
US8828240B1 (en) 2012-11-20 2014-09-09 Benjamin A. Schranze Residential wastewater purification system
EP3293152A1 (en) * 2016-09-09 2018-03-14 Höganäs AB (publ) Device and process for electrocoagulation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH615895A5 (ru) * 1976-09-27 1980-02-29 Sulzer Ag
DE8328904U1 (de) * 1983-10-06 1986-08-21 Hidrotronic Watercleaning Systems, Ltd., Zug Vorrichtung zum Reinigen von Wasser
US4623436A (en) * 1985-01-10 1986-11-18 Showakoki Co., Ltd. Method and apparatus for removing impurities from liquids
US5531865A (en) * 1992-08-19 1996-07-02 Cole; Leland G. Electrolytic water purification process
DE4236723C1 (de) * 1992-10-30 1994-04-28 Wt Wassertechn Gmbh Vorrichtung zur Reinigung und Aufbereitung von Schmutzwässern mittels Elektroflotation
US5597479A (en) * 1995-01-25 1997-01-28 Aqua-Ion Systems, Inc. Electro-coalescence/magnetic separation (ECMS) system and components for removal of contaminants from water streams, including desalinization
US5658450A (en) * 1995-07-03 1997-08-19 Tamarkin; Semyon Method of and device for industrial waste water treatment
RU2120411C1 (ru) * 1998-01-27 1998-10-20 Общество с ограниченной ответственностью "ЮРТИС" Способ очистки нефтесодержащих сточных вод
RU2146655C1 (ru) * 1998-08-04 2000-03-20 АОЗТ "Лесоакадемик" Способ очистки нефтезагрязненных сточных вод
RU2140880C1 (ru) * 1998-09-14 1999-11-10 АОЗТ "Лесоакадемик" Способ очистки нефтезагрязненных сточных вод
US6689271B2 (en) * 1998-11-23 2004-02-10 Kaspar Wire Works, Inc. Process and apparatus for electrocoagulative treatment of industrial waste water
US6719894B2 (en) * 2000-08-11 2004-04-13 Ira B. Vinson Process for electrocoagulating waste fluids
US6582592B2 (en) * 2001-06-12 2003-06-24 Hydrotreat, Inc. Apparatus for removing dissolved metals from wastewater by electrocoagulation
US7087176B2 (en) * 2002-11-11 2006-08-08 Ira B. Vinson High pressure process and apparatus for the electrocoagulative treatment of aqueous and viscous fluids

Also Published As

Publication number Publication date
EP1496018A1 (en) 2005-01-12
US20050218081A1 (en) 2005-10-06
EP1496018A4 (en) 2005-06-29
WO2003086982A1 (fr) 2003-10-23
AU2002364358A1 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
US6746593B2 (en) High volume electrolytic water treatment system and process for treating wastewater
US7252752B2 (en) Method and apparatus for removing contaminants from conduits and fluid columns
RU2205154C1 (ru) Способ очистки загрязненных вод
US4351734A (en) Spark cell ozone generator
MXPA00004951A (es) Metodo y aparato para el tratamiento de agua de desperdicio.
CN106977027B (zh) 一种油田采出污水的深度处理系统及方法
CN1233231A (zh) 减少或防止形成水垢的方法
EP2300375B1 (en) Apparatus and method for treatment of wastewater
JP2000093967A (ja) 液体処理方法及び液体処理装置
US4316805A (en) Oil separation and recovery process and apparatus
WO2010028097A1 (en) Electrocoagulation devices and methods of use
KR100406190B1 (ko) 처리조를 이중으로 가지는 필터형 상향류식 여과기
CA2880227C (en) System and method for oil sands tailings treatment
RU2326820C1 (ru) Способ очистки и стерилизации жидких или газообразных сред и устройство для его осуществления
TWI286998B (en) Equipment for treating wastewater
KR20150057298A (ko) 플라즈마 수중 방전 기법을 이용한 오염토양처리 장치 및 방법
US8273240B2 (en) Method and apparatus for treating wastewater containing emulsified oil
RU2146655C1 (ru) Способ очистки нефтезагрязненных сточных вод
RU2140880C1 (ru) Способ очистки нефтезагрязненных сточных вод
JP2002250792A (ja) 放射性廃液処理装置
RU2317949C2 (ru) Устройство для очистки сточных вод
JP2005074316A (ja) コンプレッサードレンの処理装置
KR102568017B1 (ko) 전기분해구조를 갖는 오폐수 처리장치
JP3922443B2 (ja) 電解浮上分離装置
RU2798481C1 (ru) Устройство и способ обработки жидкой среды

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080417