RU2007135253A - METHOD FOR SEPARATION OF METAL IRON FROM OXIDE - Google Patents

METHOD FOR SEPARATION OF METAL IRON FROM OXIDE Download PDF

Info

Publication number
RU2007135253A
RU2007135253A RU2007135253/02A RU2007135253A RU2007135253A RU 2007135253 A RU2007135253 A RU 2007135253A RU 2007135253/02 A RU2007135253/02 A RU 2007135253/02A RU 2007135253 A RU2007135253 A RU 2007135253A RU 2007135253 A RU2007135253 A RU 2007135253A
Authority
RU
Russia
Prior art keywords
iron
finely dispersed
high density
liquid
metal
Prior art date
Application number
RU2007135253/02A
Other languages
Russian (ru)
Other versions
RU2403289C2 (en
Inventor
ШЕЕЛЕ Йоахим ФОН (SE)
ШЕЕЛЕ Йоахим ФОН
Original Assignee
Линде АГ (DE)
Линде Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Линде АГ (DE), Линде Аг filed Critical Линде АГ (DE)
Publication of RU2007135253A publication Critical patent/RU2007135253A/en
Application granted granted Critical
Publication of RU2403289C2 publication Critical patent/RU2403289C2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/567Manufacture of steel by other methods operating in a continuous way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0026Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide in the flame of a burner or a hot gas stream
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

1. Способ преобразования мелкодисперсного губчатого железа низкой плотности в агломераты высокой плотности с увеличенным содержанием металлического железа, пригодные для использования в качестве шихты для производства стали, который включает в себя следующие стадии: ! подача мелкодисперсного материала в факел кислородно-топливной горелки, имеющей напряженность горения, обеспечивающую полное расплавление мелкодисперсного материала, где горелка вырабатывает мощность Р по меньшей мере равную Р=kmin·θ (кВт), где kmin составляет по меньшей мере 1500 кВт·с/кг и θ (кг/с) представляет собой массовый расход вводимого мелкодисперсного материала, таким образом позволяя осуществить разделение металлосодержащего мелкодисперсного материала на металлическую и окисную части; ! разделение двух фаз на жидкий шлак и жидкое железо в соответствующей печи или камере; и ! преобразование жидкого железа в агломераты высокой плотности. ! 2. Способ по п.1, отличающийся тем, что содержит дополнительную стадию обработки жидкого шлака для последующего использования. ! 3. Способ по п.1 или 2, отличающийся тем, что жидкое железо превращают в агломераты высокой плотности посредством разделения выходящего потока жидкого железа на капли подходящего размера и последующего охлаждения этих капель в охлаждающей среде. ! 4. Способ по п.3, отличающийся тем, что по меньшей мере 90% полученных кусков высокой плотности имеют размер от 10 до 40 мм. ! 5. Способ по п.1, отличающийся тем, что мелкодисперсный материал имеет диаметр меньше, чем приблизительно 10 мм, и предпочтительно меньше, чем 6 мм. ! 6. Способ по п.1, отличающийся тем, что мелкодисперсный материал является п1. A method of converting finely divided low-density sponge iron into high-density agglomerates with an increased content of metallic iron, suitable for use as a charge for steel production, which includes the following steps:! the supply of finely dispersed material into the flame of an oxygen-fuel burner having a burning intensity providing complete melting of the finely dispersed material, where the burner generates a power P of at least equal to P = kmin · θ (kW), where kmin is at least 1500 kW · s / kg and θ (kg / s) represents the mass flow rate of the finely divided material introduced, thereby allowing the separation of the metal-containing finely divided material into metal and oxide parts; ! separation of the two phases into liquid slag and liquid iron in an appropriate furnace or chamber; and! conversion of liquid iron into high density agglomerates. ! 2. The method according to claim 1, characterized in that it contains an additional stage of processing liquid slag for subsequent use. ! 3. The method according to claim 1 or 2, characterized in that the liquid iron is converted into high density agglomerates by separating the output liquid iron stream into droplets of a suitable size and subsequent cooling of these drops in a cooling medium. ! 4. The method according to claim 3, characterized in that at least 90% of the obtained pieces of high density have a size of from 10 to 40 mm ! 5. The method according to claim 1, characterized in that the finely dispersed material has a diameter of less than about 10 mm, and preferably less than 6 mm ! 6. The method according to claim 1, characterized in that the finely divided material is p

Claims (11)

1. Способ преобразования мелкодисперсного губчатого железа низкой плотности в агломераты высокой плотности с увеличенным содержанием металлического железа, пригодные для использования в качестве шихты для производства стали, который включает в себя следующие стадии:1. The method of converting finely dispersed sponge iron of low density into high density agglomerates with an increased content of metallic iron, suitable for use as a charge for the production of steel, which includes the following stages: подача мелкодисперсного материала в факел кислородно-топливной горелки, имеющей напряженность горения, обеспечивающую полное расплавление мелкодисперсного материала, где горелка вырабатывает мощность Р по меньшей мере равную Р=kmin·θ (кВт), где kmin составляет по меньшей мере 1500 кВт·с/кг и θ (кг/с) представляет собой массовый расход вводимого мелкодисперсного материала, таким образом позволяя осуществить разделение металлосодержащего мелкодисперсного материала на металлическую и окисную части;the supply of finely dispersed material into the flame of an oxygen-fuel burner having a burning intensity providing complete melting of the finely dispersed material, where the burner generates a power P of at least equal to P = k min · θ (kW), where k min is at least 1500 kW · s / kg and θ (kg / s) represents the mass flow rate of the introduced fine material, thus allowing the separation of the metal-containing fine material into metal and oxide parts; разделение двух фаз на жидкий шлак и жидкое железо в соответствующей печи или камере; иseparation of the two phases into liquid slag and liquid iron in an appropriate furnace or chamber; and преобразование жидкого железа в агломераты высокой плотности.conversion of liquid iron into high density agglomerates. 2. Способ по п.1, отличающийся тем, что содержит дополнительную стадию обработки жидкого шлака для последующего использования.2. The method according to claim 1, characterized in that it contains an additional stage of processing liquid slag for subsequent use. 3. Способ по п.1 или 2, отличающийся тем, что жидкое железо превращают в агломераты высокой плотности посредством разделения выходящего потока жидкого железа на капли подходящего размера и последующего охлаждения этих капель в охлаждающей среде.3. The method according to claim 1 or 2, characterized in that the liquid iron is converted into high density agglomerates by separating the output liquid iron stream into droplets of a suitable size and subsequent cooling of these drops in a cooling medium. 4. Способ по п.3, отличающийся тем, что по меньшей мере 90% полученных кусков высокой плотности имеют размер от 10 до 40 мм.4. The method according to claim 3, characterized in that at least 90% of the obtained pieces of high density have a size of from 10 to 40 mm 5. Способ по п.1, отличающийся тем, что мелкодисперсный материал имеет диаметр меньше, чем приблизительно 10 мм, и предпочтительно меньше, чем 6 мм.5. The method according to claim 1, characterized in that the finely dispersed material has a diameter of less than about 10 mm, and preferably less than 6 mm 6. Способ по п.1, отличающийся тем, что мелкодисперсный материал является побочным продуктом от процесса прямого восстановления железа.6. The method according to claim 1, characterized in that the finely dispersed material is a by-product of the direct reduction of iron. 7. Способ по п.1, отличающийся тем, что содержание металла в мелкодисперсном материале составляет по меньшей мере 5%, более предпочтительно по меньшей мере 20%, и наиболее предпочтительно по меньшей мере 50 мас.%.7. The method according to claim 1, characterized in that the metal content in the finely divided material is at least 5%, more preferably at least 20%, and most preferably at least 50 wt.%. 8. Способ по п.1, отличающийся тем, что не включает активных средств для осуществления химического превращения.8. The method according to claim 1, characterized in that it does not include active agents for the implementation of chemical conversion. 9. Способ по п.1, отличающийся тем, что вместе с мелкодисперсным материалом добавляют углеродосодержащий материал для увеличения выхода железа и/или увеличения содержания углерода в металлическом продукте.9. The method according to claim 1, characterized in that together with the finely dispersed material, carbon-containing material is added to increase the yield of iron and / or increase the carbon content in the metal product. 10. Способ по п.1, отличающийся тем, что горелка вырабатывает мощность Р, по меньшей мере равную Р=kmin·θ (кВт), где kmin составляет по меньшей мере 2500 кВт·с/кг и θ (кг/с) представляет собой массовый расход инжектируемого мелкодисперсного материала.10. The method according to claim 1, characterized in that the burner generates a power P at least equal to P = k min · θ (kW), where k min is at least 2500 kW · s / kg and θ (kg / s ) represents the mass flow rate of the injected fine material. 11. Способ по п.1, отличающийся тем, что напряженность горения факела, определяемая как мощность горелки деленная на площадь наименьшего круга, окружающего основание факела, составляет по меньшей мере 10 кВт/см2, предпочтительно по меньшей мере 20 кВт/см2.11. The method according to claim 1, characterized in that the torch burning intensity, defined as the burner power divided by the area of the smallest circle surrounding the base of the torch, is at least 10 kW / cm 2 , preferably at least 20 kW / cm 2 .
RU2007135253A 2005-04-08 2006-04-03 Method for separating metallic iron from oxide RU2403289C2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0500782 2005-04-08
SE0500782-8 2005-04-08

Publications (2)

Publication Number Publication Date
RU2007135253A true RU2007135253A (en) 2009-05-20
RU2403289C2 RU2403289C2 (en) 2010-11-10

Family

ID=37073737

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007135253A RU2403289C2 (en) 2005-04-08 2006-04-03 Method for separating metallic iron from oxide

Country Status (3)

Country Link
RU (1) RU2403289C2 (en)
WO (1) WO2006107256A1 (en)
ZA (1) ZA200708105B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063836A (en) * 2020-10-27 2020-12-11 芜湖海创实业有限责任公司 Electroplating sludge treatment system and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034482A2 (en) 2007-09-14 2009-03-19 Barrick Gold Corporation Process for recovering platinum group metals using reductants
EP2664681A1 (en) * 2012-05-16 2013-11-20 Siemens VAI Metals Technologies GmbH Method and device for inserting particulate material into the fluidised bed of a reduction unit
EP3220083A1 (en) 2016-03-16 2017-09-20 Linde Aktiengesellschaft Treatment of particulate waste
EP3220084A1 (en) 2016-03-16 2017-09-20 Linde Aktiengesellschaft Treatment of particulate waste

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1154817B (en) * 1957-04-27 1963-09-26 Ontario Research Foundation Process for reducing iron ore by introducing finely crushed iron ore, flux, fuel, oxygen and / or air through burners into a reaction chamber
US3888956A (en) * 1968-02-05 1975-06-10 Uddeholms Ab Method of making granulate
NO172570C (en) * 1991-07-08 1993-08-11 Elkem As PROCEDURE FOR THE PREPARATION OF GRANULATES
DE4310931C2 (en) * 1993-04-02 1999-04-15 Air Prod Gmbh Method and device for disposing of dusts by burning / slagging in a cupola furnace
AT406482B (en) * 1995-07-19 2000-05-25 Voest Alpine Ind Anlagen METHOD FOR THE PRODUCTION OF LIQUID PIPE IRON OR STEEL PRE-PRODUCTS AND SYSTEM FOR IMPLEMENTING THE METHOD
AT403696B (en) * 1996-06-20 1998-04-27 Voest Alpine Ind Anlagen MELTING CARBURETTOR AND SYSTEM FOR THE PRODUCTION OF A METAL MELT
AT404362B (en) * 1996-12-17 1998-11-25 Voest Alpine Ind Anlagen METHOD AND MELTING CARBURETOR FOR PRODUCING LIQUID METAL
SE518531C2 (en) * 2000-05-05 2002-10-22 Aga Ab Methods for recycling metals
SE522953C2 (en) * 2001-02-22 2004-03-16 Aga Ab Method and apparatus for treating sludge by means of a burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063836A (en) * 2020-10-27 2020-12-11 芜湖海创实业有限责任公司 Electroplating sludge treatment system and method

Also Published As

Publication number Publication date
RU2403289C2 (en) 2010-11-10
ZA200708105B (en) 2008-09-25
WO2006107256A1 (en) 2006-10-12

Similar Documents

Publication Publication Date Title
RU2007135253A (en) METHOD FOR SEPARATION OF METAL IRON FROM OXIDE
JPS5827937A (en) Moving arc plasma reactor for chemical and metallurgical use
JP2017526820A (en) Process for melting lithium ion batteries
RU2010133224A (en) COMBINED DEVICE FROM A BURNER AND TURNS FOR ELECTRIC ARC FURNACES
JPS60116706A (en) Manufacture of carbon-containing molten iron from sponge iron
CN106744960B (en) A method of oxidation of coal titanium or/and titanium carbide are prepared with carburetted hydrogen gas reduction
CN114854995B (en) Method for smelting lead-containing concentrate by hydrogen base and treating lead-based solid waste
JP2018104812A (en) Apparatus and method for producing molten iron
JP4908456B2 (en) Copper smelting method
WO2022194285A1 (en) Comprehensive utilization method for columbite
RU2009104671A (en) METHOD FOR PRODUCING BLOCK FOAM GLASS
JPS5950013A (en) Manufacture of calcium carbide
JPS5976836A (en) Manufacture of aluminum-silicon alloy
JP2024521978A (en) Plasma arc process and apparatus for the production of fumed silica
Samal et al. Plasma Processing of Iron Ore
MX2017013924A (en) Copper rotation-suspension smelting process and copper rotation-suspension smelting device.
JP6696981B2 (en) Plasma and oxygen gas combustion furnace
JPS5589414A (en) Refining method of molten steel
US1043371A (en) Method of purifying metals.
JPH0416504A (en) Method for purifying silicon
US975625A (en) Process of extracting iron from its ores.
US834656A (en) Metallurgical process for the extraction of metals from their ores and the conversion of iron into steel.
RU2318876C1 (en) Apparatus for direct reduction of metals
RU2448164C2 (en) Melting method of oxide materials in fluidised slag bed
EA200500424A1 (en) PRODUCTION OF METALS AND ALLOYS USING SOLID CARBON OBTAINED FROM CARBON-CONTAINING GAS

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120404