NO334515B1 - Fiber optic sensor package - Google Patents
Fiber optic sensor package Download PDFInfo
- Publication number
- NO334515B1 NO334515B1 NO20021257A NO20021257A NO334515B1 NO 334515 B1 NO334515 B1 NO 334515B1 NO 20021257 A NO20021257 A NO 20021257A NO 20021257 A NO20021257 A NO 20021257A NO 334515 B1 NO334515 B1 NO 334515B1
- Authority
- NO
- Norway
- Prior art keywords
- strain
- sensor
- bragg grating
- sensor package
- fiber
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 44
- 239000013307 optical fiber Substances 0.000 claims abstract description 30
- 229920006254 polymer film Polymers 0.000 claims abstract description 12
- 230000003287 optical effect Effects 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 5
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims description 3
- 239000011151 fibre-reinforced plastic Substances 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 2
- 229920005570 flexible polymer Polymers 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 238000004590 computer program Methods 0.000 claims 1
- 238000010030 laminating Methods 0.000 claims 1
- 239000002861 polymer material Substances 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 11
- 102100038032 F-box only protein 17 Human genes 0.000 description 7
- 101000878584 Homo sapiens F-box only protein 17 Proteins 0.000 description 7
- 239000003351 stiffener Substances 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 102100022116 F-box only protein 2 Human genes 0.000 description 2
- 101000824158 Homo sapiens F-box only protein 2 Proteins 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
- G01L1/242—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
- G01L1/246—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35309—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
- G01D5/35316—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35383—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
- G01D5/35387—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using wavelength division multiplexing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Transform (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
En fiberoptisk strekksensor for måling av strekk langs minst én akse, samt sensorpakke og systemer inneholdende denne, omfattende en optisk fiber med minst ett Bragg-gitter, hvilket Bragg-gitter utgjør et sensorelement som er følsomt for mekanisk strekk, der Bragg-gitteret (-ene) er festet til en polymerfilm med en definert retning i forhold til minst ett ytre element på strekksensoren, f. eks. en ytterkant på filmen, der den optiske fiberen danner en i det vesentlige sirkulær løkke på filmen i hvilken løkke Bragg-gitteret(-ene) er plassert i en lineær del av løkken.A fiber optic stretch sensor for measuring stretch along at least one axis, as well as sensor packets and systems containing it, comprising an optical fiber having at least one Bragg grating, which Bragg grating constitutes a mechanical element sensitive element, wherein the Bragg grating (- one) is attached to a polymer film having a defined direction relative to at least one outer element of the tensile sensor, e.g. an outer edge of the film, wherein the optical fiber forms a substantially circular loop of the film in which the Bragg grid (s) is located in a linear portion of the loop.
Description
Oppfinnelsen er knyttet til fagfeltet tøyningsmåling på overflater slik som angitt i de selvstendige kravenes ingress. Nærmere bestemt er den knyttet til en fiberoptisk Bragg-gitter tøyningssensor for måling av tøyning langs minst én akse, feks på store strukturer som skip, broer og oljeborings- og produksjonsplattformer. The invention is linked to the field of strain measurement on surfaces as indicated in the preamble of the independent claims. More specifically, it is connected to a fiber optic Bragg grating strain sensor for measuring strain along at least one axis, for example on large structures such as ships, bridges and oil drilling and production platforms.
BAKGRUNN FOR OPPFINNELSEN BACKGROUND OF THE INVENTION
I mange tøynings- og stressovervåkningsanvendelser har fiberoptiske tøyningssensorer fordelaktige egenskaper fremfor elektriske strekklapper. Men den optiske fiberen er sårbar overfor mekaniske påvirkninger, og må pakkes for å sikre lang levetid i praktisk anvendelse. Den gjeldende oppfinnelsen angir metoder for å pakke en fiberoptisk tøyningssensor for å beskytte den følsomme delen av sensoren og for å kunne utstyre sensoren med en solid signalkabel. In many strain and stress monitoring applications, fiber optic strain sensors have advantageous properties over electrical strain gauges. But the optical fiber is vulnerable to mechanical influences, and must be packaged to ensure a long service life in practical use. The present invention provides methods for packaging a fiber optic strain sensor to protect the sensitive part of the sensor and to be able to provide the sensor with a solid signal cable.
I systemer for tøyningsmåling er det avgjørende å kjenne den nøyaktige orienteringen av tøyningssensoren i forhold til strukturen som overvåkes, og det er nyttig om sensorene er pakket på en slik måte at installasjonen i felt forenkles ved at pakken har kanter å sikte langs som er vel definerte i forhold til sensorens orientering i pakken. I en del tilfeller tilsier anvendelsen en én-akset tøyningsmåling, i hvilke tilfeller en enkel tøyningssensor benyttes. I andre tilfeller er det nødvendig med en mer omfattende karakterisering av den plane tøyningen i overflaten, hvilket gjør det nødvendig å måle tøyning langs to eller tre akser. Ved multiaksielle tøyningsmålinger er det nødvendig å kunne orientere de ulike tøyningssensorene i velkjente orienteringer i forhold til hverandre. In systems for strain measurement, it is crucial to know the exact orientation of the strain sensor in relation to the structure being monitored, and it is useful if the sensors are packaged in such a way that installation in the field is simplified by the package having edges to aim along which are well defined in relation to the orientation of the sensor in the package. In some cases, the application requires a one-axis strain measurement, in which cases a simple strain sensor is used. In other cases, a more comprehensive characterization of the plane strain in the surface is required, which makes it necessary to measure strain along two or three axes. For multiaxial strain measurements, it is necessary to be able to orient the various strain sensors in well-known orientations in relation to each other.
Flerakset tøyningsmåling har konvensjonelt sett vært gjort med en rosett av elektriske strekklapper med måleretning i en vinkelavstand på 45 eller 60 grader. Et eksempel på en utførelse av en slik elektrisk strekklapprosett er vist i US 5.726.744, WO 00/28294 og US 6.125.216. Multiaxial strain measurement has conventionally been done with a rosette of electric strain gauges with a measuring direction at an angular distance of 45 or 60 degrees. An example of an embodiment of such an electric stretch flap prosthesis is shown in US 5,726,744, WO 00/28294 and US 6,125,216.
Fiberoptiske rosetter med ulike geometriske egenskaper har vært foreslått. En kjent utførelse er vist i WO 00/28294 i hvilken tre fiberoptiske Bragg-gitter er inkorporert i en fiber som er ordnet i et sløyfemønster. Utførelsen har den ulempe at fiberen krysser over seg selv. Det er velkjent i fagfeltet at slike krysninger utgjør svake punkter der fiberen med sannsynlighet kommer til å knekke hvis den utsettes for trykk. Et tilsvarende problem oppstår i løsningen beskrevet i EP 1148324, der fiberen er forbundet med en film eller folie. I området der fiberen forlater filmen er den ekstra utsatt for spenninger og bøyninger som kan skade fiberen. Fiber optic rosettes with different geometric properties have been proposed. A known embodiment is shown in WO 00/28294 in which three fiber optic Bragg gratings are incorporated in a fiber arranged in a loop pattern. The design has the disadvantage that the fiber crosses over itself. It is well known in the field that such crossings constitute weak points where the fiber is likely to break if it is subjected to pressure. A similar problem arises in the solution described in EP 1148324, where the fiber is connected with a film or foil. In the area where the fiber leaves the film, it is extra exposed to stresses and bends that can damage the fiber.
En alternativ geometri er foreslått i US 6.125.216 i hvilken fiberen er ordnet i et trekantmønster med Bragg-gitrene plassert langs de rette kantene i trekanten. Denne utførelsen er anbrakt nær en fiberende, hvilket hindrer seriekobling av den foreslåtte rosetten med andre sensorer. Det er videre velkjent i fagfeltet at skarpe svinger på optisk fiber fører til optiske tap i tillegg til redusert levetid som følge av oppsprekking i glasset som over tid kan utvikles til fullstendige brudd i fiberen. Dermed er det ønskelig å unngå svinger med radius under l-2cm. An alternative geometry is proposed in US 6,125,216 in which the fiber is arranged in a triangular pattern with the Bragg gratings placed along the straight edges of the triangle. This design is placed close to a fiber end, which prevents serial connection of the proposed rosette with other sensors. It is also well known in the field that sharp bends on optical fiber lead to optical losses in addition to a reduced lifespan as a result of cracking in the glass, which over time can develop into complete breaks in the fiber. Thus, it is desirable to avoid bends with a radius of less than 1-2 cm.
En strategi som tillater skarpe svinger er utviklet i WO 00/28294. Her foreslår oppfinnerne å benytte et liknende trekantmønster som nevnt over, men som benytter fiber som har fått redusert diameter mellom Bragg-gitrene. Mens dette løser problemet med optiske tap, etterlates fiberen ytterligere mekanisk svekket ved avsmalningene. A strategy that allows sharp turns is developed in WO 00/28294. Here, the inventors propose to use a similar triangular pattern as mentioned above, but which uses fibers that have had a reduced diameter between the Bragg gratings. While this solves the problem of optical losses, it leaves the fiber further mechanically weakened at the tapers.
En strategi som unngår skarpe svinger er beskrevet i US 5.726.744, i hvilken oppfinnerne foreslår å anordne fiberen langs en sirkulær bane. Imidlertid kan vi demonstrere at det å bøye et tøynings sensitivt Bragg-gitter vil føre til kryss-følsomhet i den forstand at deler av den følsomme gitterlengden vil plukke opp tøyning langs den ortogonale retningen av den tiltenkte måleretningen. Denne kryssfølsomheten kan beregnes på følgende måte for et uapodisert gitter med lengde 2b som følger en bue med radius R. I ethvert punkt langs gitteret er det lokale bidraget til tøyningsresponsen i x-retning cosd, mens den kryssfølsomme responsen er sinØ. Ved å integrere disse uttrykkene over lengden av gitteret finner vi der vi har integrert langs buen fra 0= 0 til 0= b/ R for å finne bidraget fra en halvdel av gitterets lengde og multiplisert med to for å finne et totale bidraget antatt symmetri. Den målte verdien vil være summen av de to bidragene. Vi kan finne et enkelt uttrykk for effekten av bøyning dersom vi dividerer jy/jx, substituerer b/ R=2øog videre substituerer 1-cos 2^=2 sin2^og sin2^= 2 sin ^cos ^. Da er A strategy that avoids sharp turns is described in US 5,726,744, in which the inventors propose to arrange the fiber along a circular path. However, we can demonstrate that bending a strain-sensitive Bragg grating will lead to cross-sensitivity in the sense that parts of the sensitive grating length will pick up strain along the orthogonal direction of the intended measurement direction. This cross-sensitivity can be calculated as follows for an unapodized grating of length 2b following an arc of radius R. At any point along the grating, the local contribution to the strain response in the x-direction is cosd, while the cross-sensitive response is sinØ. By integrating these expressions over the length of the lattice we find where we have integrated along the arc from 0= 0 to 0= b/ R to find the contribution from one half of the length of the lattice and multiplied by two to find a total contribution assuming symmetry. The measured value will be the sum of the two contributions. We can find a simple expression for the effect of bending if we divide jy/jx, substitute b/ R=2ø and further substitute 1-cos 2^=2 sin2^and sin2^= 2 sin ^cos ^. Then
Ved å sette inn vanlige verdier for gitterlengde og bøyeradier finner vi at denne effekten vil ha potensielt store konsekvenser for måling av små tøyninger dersom det er store perpendikulære tøyninger tilstede. Det er derfor viktig for ytelsen til Bragg-gitter tøyningssensorer at gitrene er montert langs rette linjer. By inserting common values for lattice length and bending radii, we find that this effect will have potentially large consequences for the measurement of small strains if there are large perpendicular strains present. It is therefore important for the performance of Bragg grating strain sensors that the gratings are mounted along straight lines.
Som følge av den termiske egenresponsen til sensoren og den termiske utvidelsen av strukturen på hvilken sensorene er montert, er det vanligvis ønskelig å måle tempera-turen, eller i det minste finne et mål på sensorens iboende termiske respons, for derigjennom å muliggjøre termisk kompenserte tøyningsverdier. Dette gjøres konvensjonelt med et tøyningsisolert Bragg-gitter multiplekset på samme fiber som tøynings-sensoren(e). Teknikker for å tøyningsisolere gitter anbrakt nær en ende av en optisk fiber er beskrevet av Haran et al i US 6.125.216. For å kunne multiplekse flere rosetter på en enkeltfiber er det nødvendig å kunne danne en i-linjen temperatur-sensor, dvs en tøyningsisolerende pakke fra hvilken begge fiberender er tilgjengelige for skjøting. Due to the thermal intrinsic response of the sensor and the thermal expansion of the structure on which the sensors are mounted, it is usually desirable to measure the temperature, or at least find a measure of the sensor's inherent thermal response, thereby enabling thermally compensated strain values . This is conventionally done with a strain-isolated Bragg grating multiplexed on the same fiber as the strain sensor(s). Techniques for strain isolating gratings placed near an end of an optical fiber are described by Haran et al in US 6,125,216. In order to be able to multiplex several rosettes on a single fiber, it is necessary to be able to form an in-line temperature sensor, i.e. a strain-insulating package from which both fiber ends are accessible for splicing.
Formålet med den herværende oppfinnelsen er å fremstille er pakke for fiberoptiske Bragg-gitter tøyningssensorer som letter installasjon i relativt røffe omgivelser, som enkelt kan opplinjeres mot akser i strukturen og som kan kobles til en utlesningsenhet via en solid fiberoptisk kabel. Videre har pakken egenskaper som tillater pre-orientering av de tøyningsfølsomme Bragg-gitrene i en rosett med en vinkelavstand på feks 45 eller 60 grader uten å introdusere skarpe svinger eller krysning av fiberen, hvilket ville redusere levetiden til sensorene, samtidig som metoden unngår å introdusere kryssfølsomhet gjennom bøying av Bragg-gitteret. En typisk anvendelse for slike sensorer er strukturovervåkning av store strukturer som skip, broer samt oljeborings- og produksj onsplattformer. The purpose of the present invention is to produce a package for fiber optic Bragg grating strain sensors that facilitate installation in relatively rough environments, which can be easily aligned to axes in the structure and which can be connected to a readout unit via a solid fiber optic cable. Furthermore, the package has features that allow pre-orientation of the strain-sensitive Bragg gratings in a rosette with an angular spacing of, say, 45 or 60 degrees without introducing sharp bends or crossing of the fiber, which would reduce the lifetime of the sensors, while the method avoids introducing cross-sensitivity through bending of the Bragg grating. A typical application for such sensors is structural monitoring of large structures such as ships, bridges and oil drilling and production platforms.
SAMMENDRAG AV OPPFINNELSEN SUMMARY OF THE INVENTION
I følge den herværende oppfinnelsen beskrives en fiberoptisk tøyningssensor med ett eller flere tøyningsfølsomme Bragg-gitre inkorporert i en enkel optisk fiber, hvilken fiber er montert på en polymerfilm i en i det vesentlige sirkulær bane, hvilken bane avviker fra en sirkel langs Bragg-gitterets lengde, hvilket gitter er montert i en rett linje. Oppfinnelsen er kjennetegnet slik som angitt i det uavhengige patentkravet. According to the present invention, a fiber optic strain sensor is described with one or more strain-sensitive Bragg gratings incorporated in a single optical fiber, which fiber is mounted on a polymer film in a substantially circular path, which path deviates from a circle along the length of the Bragg grating , which lattice is mounted in a straight line. The invention is characterized as stated in the independent patent claim.
Ifølge en foretrukket utførelse av oppfinnelsen er den optiske fiberen utstyrt med et tøyningsisolert Bragg-gitter for måling av temperatur, for derigjennom å fremskaffe informasjon nødvendig for å kompensere tøyningsverdiene målt av det/de tøynings-følsomme Bragg-gitter for termiske effekter. According to a preferred embodiment of the invention, the optical fiber is equipped with a strain-isolated Bragg grating for measuring temperature, thereby providing information necessary to compensate the strain values measured by the strain-sensitive Bragg grating for thermal effects.
I en utførelse er tøyningsisoleringen dannet ved å montere det temperaturfølsomme Bragg-gitteret i en løkke på fiberen, hvilken løkke er plassert i en fure mellom to stive plater. Utgangene fra furen bør forsegles. In one embodiment, the strain isolation is formed by mounting the temperature-sensitive Bragg grating in a loop on the fiber, which loop is placed in a groove between two rigid plates. The exits from the furrow should be sealed.
Ifølge et videre aspekt ved oppfinnelsen beskrives en sensorpakke for fiberoptiske tøyningssensorer egnet for relativt barske omgivelser i hvilken den optiske fiberen er skjøtt til en solid kabel, og hvor enden av kabelen, skjøtene, tøyningsisolasjonspakken og en ende av polymerfilmen med påmontert Bragg-gitter er inkorporert i en strekkavlaster støpt i en fleksibel polymer. Strekkavlasteren har fortrinnsvis en plan underside for å lette fiksering til overflaten av en struktur. According to a further aspect of the invention, a sensor package for fiber optic strain sensors suitable for relatively harsh environments is described in which the optical fiber is spliced to a solid cable, and where the end of the cable, the splices, the strain isolation package and an end of the polymer film with an attached Bragg grating are incorporated in a strain relief cast in a flexible polymer. The strain relief preferably has a flat underside to facilitate fixation to the surface of a structure.
Strekkavlasteren kan videre ha en tykkelsesprofil som tillater innlegging av polymerfilmen med tøyningssensor(er) og strekkavlasteren under et lag av fiberforsterket polymer for ytterligere mekanisk beskyttelse. The strain relief can further have a thickness profile that allows the insertion of the polymer film with strain sensor(s) and the strain relief under a layer of fiber-reinforced polymer for additional mechanical protection.
I praktisk anvendelse av sensorpakken ville den være festet til overflaten av en struktur. En ende av den optiske fiberen i kabelen ville være koblet til et system for belysning og signalavlesning. Signalene fra Bragg-gitrene kunne tolkes ved hjelp av en rekke metoder slik som tids- eller koherensmultipleksing, men den foretrukne utførelsen benytter bølgelengdemultipleksing av Bragg-gitrene på fiberen. Den andre enden av den optiske fiberen kunne være skjøtt til en andre sensorpakke med Bragg-gitre ved kompatible bølgelengder. In practical application of the sensor package, it would be attached to the surface of a structure. One end of the optical fiber in the cable would be connected to a system for illumination and signal reading. The signals from the Bragg gratings could be interpreted using a number of methods such as time or coherence multiplexing, but the preferred embodiment uses wavelength multiplexing of the Bragg gratings on the fiber. The other end of the optical fiber could be spliced to a second sensor package with Bragg gratings at compatible wavelengths.
Avlesningssystemet ville måtte kunne tolke signalene fra tøynings- og temperatur-sensorene, og ut fra denne informasjonen kompensere tøyningsverdiene for den iboende temperaturresponsen til Bragg-gitrene og muligens den termiske utvidelsen av strukturen. The reading system would have to be able to interpret the signals from the strain and temperature sensors, and based on this information compensate the strain values for the inherent temperature response of the Bragg gratings and possibly the thermal expansion of the structure.
KORT BESKRIVELSE AV TEGNINGENE BRIEF DESCRIPTION OF THE DRAWINGS
Figur IA Optisk fiber 1 med Bragg-gitter FBG1 montert på en polymerfilm 2, Figure IA Optical fiber 1 with Bragg grating FBG1 mounted on a polymer film 2,
hvilket Bragg-gitter er montert langs en rett linje, og med et andre Bragg-gitter FBG4 isolert fra tøyning i en pakke Figur IB Optisk fiber 1 med Bragg-gitre FBG1-FBG3 dannende en rosett montert på en polymerfilm 2, hvilke Bragg-gitre er montert langs rette linjer, og med et fjerde Bragg-gitter FBG4 isolert fra tøyning i en pakke which Bragg grating is mounted along a straight line, and with a second Bragg grating FBG4 isolated from strain in a bundle Figure IB Optical fiber 1 with Bragg gratings FBG1-FBG3 forming a rosette mounted on a polymer film 2, which Bragg gratings is mounted along straight lines, and with a fourth Bragg grating FBG4 isolated from strain in a package
Figur 2A Tøyningsisolert Bragg-gitter i en løkke Figure 2A Strain-isolated Bragg grating in a loop
Figur 2B Tøyningsisolert Bragg-gitter på en avstiver Figure 2B Strain-isolated Bragg grating on a stiffener
Figur 3 Film med tøyningsfølsomme Bragg-gitre delvis inkorporert i en støpt Figure 3 Film with strain-sensitive Bragg gratings partially incorporated into a cast
strekkavlaster, fra hvilken kommer ut en solid fiberoptisk kabel strain relief, from which a solid fiber optic cable emerges
Figur 4 Diagrammatisk oversikt over et sensorsystem med en rekke sensorpakker Figure 4 Diagrammatic overview of a sensor system with a number of sensor packages
koblet til en lyskilde og en datamaskin-styrt avlesningsenhet connected to a light source and a computer-controlled reading unit
DETALJERT BESKRIVELSE AV OPPFINNELSEN DETAILED DESCRIPTION OF THE INVENTION
Figur IA viser en optisk fiber 1 inkorporerende et Bragg-gitter FBG1 følsomt for tøyning, hvilket gitter er montert på en polymerfilm 2, feks. laget av polyimid. Den optiske fiberen følger en sirkulær bane unntatt ved Bragg-gitterets posisjon, hvilket gitter er festet til filmen i en rett linje for å unngå variasjoner i gitterresponsen langs gitterets lengde. Som nevnt over bør minimum bøyningsradius for fiberen ikke overstige l-2cm, selv om man kan tenke seg korttidsanvendelser der radien kan tillates Figure IA shows an optical fiber 1 incorporating a Bragg grating FBG1 sensitive to strain, which grating is mounted on a polymer film 2, e.g. made of polyimide. The optical fiber follows a circular path except at the position of the Bragg grating, which grating is attached to the film in a straight line to avoid variations in the grating response along the length of the grating. As mentioned above, the minimum bending radius for the fiber should not exceed l-2cm, although one can imagine short-term applications where the radius can be allowed
å være mindre. På samme fiber er valgfritt et andre Bragg-gitter FBG4 inkorporert, hvilket gitter er plassert i en pakke 3 som virker til å isolere gitteret fra tøyning med det formål å fremskaffe en temperaturmåling som kan benyttes til å kompensere for det termiske signal målt av det tøyningsfølsomme gitteret. to be smaller. On the same fiber, a second Bragg grating FBG4 is optionally incorporated, which grating is placed in a package 3 which acts to isolate the grating from strain in order to provide a temperature measurement that can be used to compensate for the thermal signal measured by the strain sensitive the grid.
Figur IB viser en andre utførelse av oppfinnelsen hvori en optisk fiber 1 inkorporerende tre Bragg-gittere FBG1-FBG3 følsomme for tøyning er montert på en polymerfilm 2. Den optiske fiberen følger en sirkulær bane unntatt ved Bragg-gitrenes posisjoner, hvilke gitre er festet til filmen i en rett linje og med en definert vinkelavstand. Derigjennom danner de tre gitrene en rosett anvendelig til å måle tøyningstilstanden i en flate. På samme fiber er inkorporert et fjerde gitter FBG4 montert i en pakke som virker til å isolere gitteret fra tøyning og hvilket gitter fremskaffer en temperaturmåling som kan benyttes til å kompensere for det termiske bidraget til signalet fra FBG1-FBG3. Figure 1B shows a second embodiment of the invention in which an optical fiber 1 incorporating three Bragg gratings FBG1-FBG3 sensitive to strain is mounted on a polymer film 2. The optical fiber follows a circular path except at the positions of the Bragg gratings, which gratings are attached to the film in a straight line and with a defined angular distance. Through this, the three grids form a rosette that can be used to measure the state of strain in a surface. On the same fiber is incorporated a fourth grating FBG4 mounted in a package which acts to isolate the grating from strain and which grating provides a temperature measurement which can be used to compensate for the thermal contribution to the signal from FBG1-FBG3.
I tillegg til utførelsene vist i figurene IA og IB er en utførelse mulig med to sensorer, feks. med en vinkelavstand på 45 eller 60 grader eller med perpendikulær orientering, for måling av tøyning langs to akser. Figur 2A viser en utførelse av en tøyningsisolerende pakke hvori en løkke av den optiske fiberen 1 inkorporerende et Bragg-gitter FBG4 er plassert i en sirkulær fure 6 i en sirkulær polymerplate 4, den optiske fiberen passerende inn og ut av furen 6 via v-spor 7 tangentielle til furen 6. Furen er forseglet ved å plassere et sirkulært lokk over platen 4, og lukke v-sporene 7 med en passende forsegling. Figur 2B viser en andre utførelse av en tøyningsisolerende pakke utformet for å fremskaffe en måling av en referansetemperatur. Bragg-gitteret FBG4 inkorporert i den optiske fiberen 1 er plassert på en bit av et materiale med høy elastisk modulus, en avstiver 8, hvilket gitter er festet til avstiveren med lim med høy elastisk modulus. Avstiveren med høy elastisk modulus er fortrinnsvis laget av et materiale med samme termisk utvidelse som den optiske fiberen, og med fordel av ikke-krystallinsk kvarts. Avstiveren kan anta mange former, men kan for eksempel være formet som en stav med et v-spor, eller som en U-profil. Den optiske fiberen og avstiveren er videre innkapslet i en polymer med lavere elastisk modulus 10, hvilken virker til å redusere tøynings-konsentrasjoner i den optiske fiberen ved hver ende av avstiveren. In addition to the designs shown in figures IA and IB, a design is possible with two sensors, e.g. with an angular distance of 45 or 60 degrees or with a perpendicular orientation, for measuring strain along two axes. Figure 2A shows an embodiment of a strain-isolating package in which a loop of the optical fiber 1 incorporating a Bragg grating FBG4 is placed in a circular groove 6 in a circular polymer plate 4, the optical fiber passing in and out of the groove 6 via v-grooves 7 tangential to the groove 6. The groove is sealed by placing a circular cover over the plate 4, and closing the v-grooves 7 with a suitable seal. Figure 2B shows a second embodiment of a strain isolating package designed to provide a measurement of a reference temperature. The Bragg grating FBG4 incorporated in the optical fiber 1 is placed on a piece of a high elastic modulus material, a stiffener 8, which grating is attached to the stiffener with high elastic modulus glue. The high elastic modulus stiffener is preferably made of a material with the same thermal expansion as the optical fiber, and with the advantage of non-crystalline quartz. The brace can take many forms, but can, for example, be shaped like a rod with a v-groove, or as a U-profile. The optical fiber and the stiffener are further encapsulated in a polymer with a lower elastic modulus 10, which acts to reduce strain concentrations in the optical fiber at each end of the stiffener.
Figur 3 viser en sammenstilling av en sensorpakke som er egnet for praktiske anvend-elser hvori en optisk fiber 1 med Bragg-gitre FBG1-FBG3 er montert i et rosettmønster mellom to polymerfilmer 2, fiberen videre inkorporerende et fjerde Bragg-gitter FBG4 i en tøyningsisolerende pakke, hvilken fibers to ender er skjøtt til en solid kabel 12. En ende av filmen 2 og kabelen 12 er innkapslet i en støpt strekkavlaster i polymer 11, hvilken videre innkapsler den tøyningsisolerende pakken 3. Strekkavlasteren 11 er fortrinnsvis støpt i en fleksibel og motstandsdyktig polymer som polyuretan. Strekkavlasteren har en plan flate som muliggjør godt feste til en overflate når den monteres med et passende lim, og en lav profil som gjør den egnet for overflateinnlegging under et beskyttende lag av fiberforsterket polymer. Figure 3 shows an assembly of a sensor package suitable for practical applications in which an optical fiber 1 with Bragg gratings FBG1-FBG3 is mounted in a rosette pattern between two polymer films 2, the fiber further incorporating a fourth Bragg grating FBG4 in a strain-isolating package, which fiber's two ends are joined to a solid cable 12. One end of the film 2 and the cable 12 is encapsulated in a molded strain relief in polymer 11, which further encapsulates the strain-insulating package 3. The strain relief 11 is preferably molded in a flexible and resistant polymer such as polyurethane. The strain relief has a flat surface that enables good adhesion to a surface when mounted with a suitable adhesive, and a low profile that makes it suitable for surface installation under a protective layer of fiber reinforced polymer.
Sensorpakken er tenkt brukt i multipleksede sensorsystemer som skjematisk vist i Figur 4. En rekke sensorpakker P1-P3 er montert på en struktur ved bruk av et passende limstoff med den hensikt å karakterisere tøyningen i strukturen. P1-P3 er skjøtt ved sammensmelting eller på annen måte optisk koblet til hverandre, dannende en optisk bane i den optiske fiberen 1 fra en lyskilde 13 via en optisk kobler 16 til hvert av sensorgitrene inkorporert i sensorpakkene. Lyset reflektert fra gitrene ledes via den optiske kobleren 16 til en mottaker 14 som detekterer lyset og konverterer råsignalet til elektriske signaler som representerer målingene gjort av Bragg-gitrene. En fagperson vil vite at dette kan gjøres på en rekke måter, som ved bruk av et skannende Fabry-Perotfilter, et Mach-Zehnder interferometer eller en optisk spektrumsanalysator. Det elektriske signalet sendes videre til en signalbehandlingsenhet 15 via en egnet elektrisk forbindelse 17. Signalbehandlingsenheten er hensiktsmessig en digital datamaskin. The sensor package is intended to be used in multiplexed sensor systems as schematically shown in Figure 4. A number of sensor packages P1-P3 are mounted on a structure using a suitable adhesive with the intention of characterizing the strain in the structure. P1-P3 are joined by fusion or otherwise optically connected to each other, forming an optical path in the optical fiber 1 from a light source 13 via an optical coupler 16 to each of the sensor grids incorporated in the sensor packages. The light reflected from the gratings is directed via the optical coupler 16 to a receiver 14 which detects the light and converts the raw signal into electrical signals representing the measurements made by the Bragg gratings. One skilled in the art will know that this can be done in a number of ways, such as using a scanning Fabry-Perot filter, a Mach-Zehnder interferometer, or an optical spectrum analyzer. The electrical signal is sent on to a signal processing unit 15 via a suitable electrical connection 17. The signal processing unit is suitably a digital computer.
Sensorpakkene i figur 4 er orientert med en kjent orientering i forhold til hverandre og/eller en referanseramme for maksimal presisjon i målingene. For å oppnå dette kan filmen eller strekkavlasteren være utstyrt med minst en kant som indikerer orienteringen av minst en sensor, feks. ved at ett Bragg-gitter/en måleretning er parallell med en referansekant av den støpte strekkavlasteren. For det tilfelle at hver sensorløkke inneholder kun en sensor, kan orienteringen av sensorene endres periodisk eller ifølge forutsette stress-retninger som skal måles. Ved å sammenligne stresset målt av et antall sensorer i ulike posisjoner over et større område, som skroget til et skip, kan man kartlegge lastsituasjonen i hele området. The sensor packages in Figure 4 are oriented with a known orientation in relation to each other and/or a reference frame for maximum precision in the measurements. To achieve this, the film or strain relief can be equipped with at least one edge that indicates the orientation of at least one sensor, e.g. in that one Bragg grating/one measurement direction is parallel to a reference edge of the molded strain relief. In the event that each sensor loop contains only one sensor, the orientation of the sensors can be changed periodically or according to assumed stress directions to be measured. By comparing the stress measured by a number of sensors in different positions over a larger area, such as the hull of a ship, the load situation in the entire area can be mapped.
Sensorene, optiske kilder og detektorer er i likhet med resten av utstyret tilpasset operasjon i et valgt bølgelengdeintervall, og er i og for seg kjent for en fagmann på området. Typisk vil man velge bølgelengder i 1550nm-området, og muligens i 1300nm-området, siden disse bølgelengdeområdene er i vanlig bruk innen telekommunikasjon og det derfor finnes et stort utvalg av rimelig og kommersielt tilgjengelig utstyr. Bølgelengdeområdet til systemet kan også tilpasses til utlesningsteknikken. Som nevnt over kan signalene fra Bragg-gitterne tolkes vha tids- og koherensmultipleksing, men den foretrukne utførelsen inkluderer bølgelengdemultipleksing av Bragg-gitrene på fiberen, og systemet dekker et tilstrekkelig stort bølgelengdeområde til at hver Bragg-sensor har en unik Bragg-bølgelengde slik at den kan skilles fra andre sensorer. The sensors, optical sources and detectors are, like the rest of the equipment, adapted to operation in a selected wavelength interval, and are in and of themselves known to a specialist in the field. Typically, one will choose wavelengths in the 1550nm range, and possibly in the 1300nm range, since these wavelength ranges are in common use in telecommunications and there is therefore a large selection of affordable and commercially available equipment. The wavelength range of the system can also be adapted to the readout technique. As mentioned above, the signals from the Bragg gratings can be interpreted using time and coherence multiplexing, but the preferred embodiment includes wavelength multiplexing of the Bragg gratings on the fiber, and the system covers a sufficiently large wavelength range that each Bragg sensor has a unique Bragg wavelength so that it can be distinguished from other sensors.
I tillegg til utlesningssystemet 13, 14,15, 16, 17 illustrert i figur 4, kan et tilsvarende system plasseres i andre enden av sensorpakkene, for slik å måle fra begge ender og på den måten gjøre det mulig å fortsette overvåkningen av sensorpakkene selv om fiberen skulle knekke noe sted. Alternativt kan begge ender av den optiske fiberen kobles til det samme utlesningssystemet som dermed er i stand til å overvåke systemet i begge retninger. In addition to the reading system 13, 14, 15, 16, 17 illustrated in Figure 4, a corresponding system can be placed at the other end of the sensor packages, in order to measure from both ends and thus make it possible to continue monitoring the sensor packages even if the fiber should break somewhere. Alternatively, both ends of the optical fiber can be connected to the same readout system which is thus able to monitor the system in both directions.
Ulike modifikasjoner av de presenterte utførelsene er mulig innenfor kravenes omfang. Various modifications of the presented designs are possible within the scope of the requirements.
Claims (12)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20021257A NO334515B1 (en) | 2002-03-13 | 2002-03-13 | Fiber optic sensor package |
GB0421369A GB2405202B (en) | 2002-03-13 | 2003-03-13 | Fiber optic sensor package |
PCT/NO2003/000087 WO2003076887A1 (en) | 2002-03-13 | 2003-03-13 | Fiber optic sensor package |
AU2003212719A AU2003212719A1 (en) | 2002-03-13 | 2003-03-13 | Fiber optic sensor package |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20021257A NO334515B1 (en) | 2002-03-13 | 2002-03-13 | Fiber optic sensor package |
Publications (3)
Publication Number | Publication Date |
---|---|
NO20021257D0 NO20021257D0 (en) | 2002-03-13 |
NO20021257L NO20021257L (en) | 2003-09-15 |
NO334515B1 true NO334515B1 (en) | 2014-03-31 |
Family
ID=19913426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20021257A NO334515B1 (en) | 2002-03-13 | 2002-03-13 | Fiber optic sensor package |
Country Status (4)
Country | Link |
---|---|
AU (1) | AU2003212719A1 (en) |
GB (1) | GB2405202B (en) |
NO (1) | NO334515B1 (en) |
WO (1) | WO2003076887A1 (en) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2864202B1 (en) * | 2003-12-22 | 2006-08-04 | Commissariat Energie Atomique | INSTRUMENT TUBULAR DEVICE FOR TRANSPORTING A PRESSURIZED FLUID |
US7813598B2 (en) * | 2004-01-23 | 2010-10-12 | Lm Glasfiber A/S | Device including a system adapted for use in temperature compensation of strain measurements in fibre-reinforced structures |
US7295724B2 (en) | 2004-03-01 | 2007-11-13 | University Of Washington | Polymer based distributive waveguide sensor for pressure and shear measurement |
JP4588432B2 (en) | 2004-12-15 | 2010-12-01 | 富士重工業株式会社 | Method for manufacturing modular sensor for damage detection |
ES2267366B1 (en) * | 2004-12-29 | 2008-02-16 | Sistemas Materiales Sensados,S.L. | SENSING SYSTEM FOR THE MEASUREMENT OF DEFORMATIONS IN STRUCTURES OR MACHINES. |
WO2006075972A1 (en) * | 2005-01-14 | 2006-07-20 | Sif Universal Pte Ltd | Bending sensor arrangement |
KR100760510B1 (en) * | 2006-05-26 | 2007-09-20 | 한국과학기술연구원 | Monitoring device for rotating body |
DE102006025700B4 (en) * | 2006-06-01 | 2009-04-16 | Siemens Ag | Optical measuring device for temperature determination in a cryogenic environment and temperature-controllable winding arrangement |
GB2440955A (en) * | 2006-08-18 | 2008-02-20 | Insensys Ltd | Wind turbine blade monitoring |
EP2084506A2 (en) * | 2006-11-20 | 2009-08-05 | Intune Technologies Limited | System and method for real-time measurement of sail conditions and dynamics |
EP2108108B1 (en) * | 2007-01-24 | 2017-08-16 | GKN Aerospace Services Limited | Temperature sensing |
FR2916838B1 (en) | 2007-05-29 | 2009-08-14 | Schneider Electric Ind Sas | INTEGRATED DEVICE FOR MONITORING THE DEFORMATIONS OF AN ELECTRICALLY INSULATING WORKPIECE AND METHOD OF MANUFACTURING SUCH A DEVICE. |
US7428350B1 (en) | 2007-07-18 | 2008-09-23 | Schlumberger Technology Corporation | Optical turnaround system |
US7912334B2 (en) | 2007-09-19 | 2011-03-22 | General Electric Company | Harsh environment temperature sensing system and method |
GB2454252B (en) | 2007-11-02 | 2010-02-17 | Insensys Ltd | Sensor array |
WO2009121367A1 (en) | 2008-03-31 | 2009-10-08 | Vestas Wind Systems A/S | Optical transmission strain sensor for wind turbines |
GB2461532A (en) | 2008-07-01 | 2010-01-06 | Vestas Wind Sys As | Sensor system and method for detecting deformation in a wind turbine component |
GB2461566A (en) * | 2008-07-03 | 2010-01-06 | Vestas Wind Sys As | Embedded fibre optic sensor for mounting on wind turbine components and method of producing the same. |
US7796844B2 (en) * | 2008-07-22 | 2010-09-14 | The Hong Kong Polytechnic University | Temperature-compensated fibre optic strain gauge |
GB2463696A (en) * | 2008-09-22 | 2010-03-24 | Vestas Wind Sys As | Edge-wise bending insensitive strain sensor system |
EP2331923B1 (en) | 2008-09-23 | 2013-06-19 | Voith Patent GmbH | Industrial roll with optical roll cover sensor system |
DE102008052807B3 (en) * | 2008-10-17 | 2010-02-25 | Sächsisches Textilforschungsinstitut e.V. | Slat for the strengthening and monitoring of structures as well as methods for their production and application |
GB2466433B (en) | 2008-12-16 | 2011-05-25 | Vestas Wind Sys As | Turbulence sensor and blade condition sensor system |
CA2753420C (en) | 2009-02-27 | 2014-09-30 | Baker Hughes Incorporated | System and method for wellbore monitoring |
GB2472437A (en) | 2009-08-06 | 2011-02-09 | Vestas Wind Sys As | Wind turbine rotor blade control based on detecting turbulence |
GB2477529A (en) | 2010-02-04 | 2011-08-10 | Vestas Wind Sys As | A wind turbine optical wind sensor for determining wind speed and direction |
EP2556332A4 (en) * | 2010-04-09 | 2017-03-15 | Intuitive Surgical Operations, Inc. | Strain sensing with optical fiber rosettes |
WO2013044919A1 (en) * | 2011-09-30 | 2013-04-04 | Vestas Wind Systems A/S | Optical fibre grating sensor system and method |
DE102013008617A1 (en) * | 2012-05-21 | 2013-11-21 | Hottinger Baldwin Messtechnik Gmbh | Temperature compensation device for FBG strain sensors |
CN104330180A (en) * | 2014-07-09 | 2015-02-04 | 国家电网公司 | Fiber temperature sensor, fiber thereof and fire alarming device using sensor |
EP3258230B1 (en) | 2016-06-13 | 2019-11-13 | Airbus Defence and Space GmbH | Sensor skin with temperature sensor system |
EP3638997A1 (en) * | 2017-06-15 | 2020-04-22 | FBGS Technologies GmbH | Method and device for measuring force and shape |
WO2019123122A1 (en) * | 2017-12-22 | 2019-06-27 | Istituto Superiore Mario Boella Sulle Tecnologie Dell'informazione E Delle Telecomunicazioni | Device for detecting pressure, temperature and humidity variations for monitoring bedridden or low-mobility patients |
EP3708990B1 (en) * | 2019-03-14 | 2022-04-27 | Thales Management & Services Deutschland GmbH | Fiber optic sensor unit, optical measuring system, axle-counting device, axle-counting method |
CN111982265A (en) * | 2019-05-21 | 2020-11-24 | 武汉理工大学 | Packaging structure of two-dimensional vibration sensor based on fiber grating |
IT201900008898A1 (en) * | 2019-06-13 | 2020-12-13 | Freni Brembo Spa | Method and system for determining a braking torque, by detecting it with photonic sensors at a fastening interface between a brake caliper body and a respective support |
CN110987255B (en) * | 2019-12-04 | 2021-09-03 | 西安工业大学 | High-precision film stress online testing method and device |
CN111413006A (en) * | 2020-03-25 | 2020-07-14 | 北京空间科技信息研究所 | Vacuum low-temperature fiber grating temperature sensor and packaging method thereof |
CN114088239B (en) * | 2020-07-31 | 2023-08-22 | 潍坊嘉腾液压技术有限公司 | Manufacturing and packaging method of sensor assembly for fluid multi-parameter measurement |
CN118067268B (en) * | 2024-04-19 | 2024-07-09 | 湘江实验室 | Optical fiber temperature sensor and method for improving stability thereof |
CN118687742A (en) * | 2024-08-28 | 2024-09-24 | 之江实验室 | Flexible multiaxial force sensor and system based on conical optical fiber |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4037077A1 (en) * | 1990-11-22 | 1992-05-27 | Hilti Ag | METHOD AND DEVICE FOR FIBER OPTICAL FORCE MEASUREMENT |
FR2727203B1 (en) * | 1994-11-18 | 1996-12-13 | Commissariat Energie Atomique | DOSE ELECTRIC GUIDE ROSETTE-TYPE OPTICAL MICRO-SYSTEM FOR MEASURING A LONGITUDINAL CONSTRAIN IN A PLANE STRUCTURE |
US5633748A (en) * | 1996-03-05 | 1997-05-27 | The United States Of America As Represented By The Secretary Of The Navy | Fiber optic Bragg grating demodulator and sensor incorporating same |
US5973317A (en) * | 1997-05-09 | 1999-10-26 | Cidra Corporation | Washer having fiber optic Bragg Grating sensors for sensing a shoulder load between components in a drill string |
GB2326471B (en) * | 1997-06-19 | 2001-05-30 | British Aerospace | A strain isolated optical fibre bragg grating sensor |
GB9824756D0 (en) * | 1998-11-11 | 1999-01-06 | Europ Economic Community | A strain sensor and strain sensing apparatus |
EP1144969B1 (en) * | 1998-12-04 | 2010-09-08 | CiDra Corporation | Strain-isolated bragg grating temperature sensor |
JP2001296110A (en) * | 2000-04-17 | 2001-10-26 | Ntt Advanced Technology Corp | Sticking type optical fiber sensor |
-
2002
- 2002-03-13 NO NO20021257A patent/NO334515B1/en not_active IP Right Cessation
-
2003
- 2003-03-13 GB GB0421369A patent/GB2405202B/en not_active Expired - Lifetime
- 2003-03-13 AU AU2003212719A patent/AU2003212719A1/en not_active Abandoned
- 2003-03-13 WO PCT/NO2003/000087 patent/WO2003076887A1/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
WO2003076887A1 (en) | 2003-09-18 |
GB2405202B (en) | 2005-10-26 |
NO20021257D0 (en) | 2002-03-13 |
NO20021257L (en) | 2003-09-15 |
GB0421369D0 (en) | 2004-10-27 |
GB2405202A (en) | 2005-02-23 |
AU2003212719A1 (en) | 2003-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO334515B1 (en) | Fiber optic sensor package | |
US5649035A (en) | Fiber optic strain gauge patch | |
US6668105B2 (en) | Fiber optic strain sensor | |
US8433160B2 (en) | Smart fastener and smart insert for a fastener using fiber Bragg gratings to measure strain and temperature | |
KR101465156B1 (en) | FBG sensor for measuring the maximum strain, manufacturing method thereof and operating method thereof | |
US7333696B2 (en) | Tape-shaped optical fiber cable | |
US4564289A (en) | Single mode optical fiber polarimetric stress sensor having optical common mode rejection | |
RU2522679C2 (en) | System of "smart" cable for bridge using built-in sensors with fibre diffraction gratings | |
Costa et al. | Fiber optic based monitoring system applied to a centenary metallic arch bridge: Design and installation | |
Haran et al. | A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors | |
US20100232961A1 (en) | Fibre optic sensors | |
NO20110644A1 (en) | Procedure and system for monitoring seabed sinking | |
JP2008545124A (en) | Optical strain gauge | |
JP2004500570A (en) | Fiber optic device for measuring stress | |
NO310125B1 (en) | System for monitoring high voltage cables in air tension | |
EP3983268B1 (en) | Method and system for detecting and measuring a braking force of a braking system for vehicle, by means of photonic sensors incorporated in a brake pad | |
Barbosa et al. | Weldable fibre Bragg grating sensors for steel bridge monitoring | |
Tjin et al. | Application of quasi-distributed fibre Bragg grating sensors in reinforced concrete structures | |
KR20110062674A (en) | Apparatus and method for measuring deflection of bridge plate using fiber bragg grating sensor | |
WO2005083379A1 (en) | Multi-arm fiber optic sensor | |
KR200374752Y1 (en) | Fiber bragg grating sensor for measuring strain | |
Haran et al. | Fiber Bragg grating strain gauge rosette with temperature compensation | |
JP2003329417A (en) | Distortion measuring sensor, and distortion measuring system using the sensor | |
Kiddy et al. | Hydrostatic testing of a manned underwater vehicle using fiber optic sensors | |
KR20190012921A (en) | Submergence detection sensor using optical fiber grating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CHAD | Change of the owner's name or address (par. 44 patent law, par. patentforskriften) |
Owner name: LIGHT STRUCTURES AS, NO |
|
MK1K | Patent expired |