NO118007B - - Google Patents
Download PDFInfo
- Publication number
- NO118007B NO118007B NO164754A NO16475466A NO118007B NO 118007 B NO118007 B NO 118007B NO 164754 A NO164754 A NO 164754A NO 16475466 A NO16475466 A NO 16475466A NO 118007 B NO118007 B NO 118007B
- Authority
- NO
- Norway
- Prior art keywords
- alloy
- iron
- manganese
- molybdenum
- copper
- Prior art date
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 39
- 239000000956 alloy Substances 0.000 claims description 39
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 30
- 229910052742 iron Inorganic materials 0.000 claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 11
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 239000011733 molybdenum Substances 0.000 claims description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims description 11
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 229910000805 Pig iron Inorganic materials 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical group [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- UODVLJFYMZOXME-UHFFFAOYSA-N [Mo].[Cu].[Mn] Chemical compound [Mo].[Cu].[Mn] UODVLJFYMZOXME-UHFFFAOYSA-N 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000003923 scrap metal Substances 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Description
Stdpejernslegering.Cast iron alloy.
Denne oppfinnelse angår hvitt stopejern legert med mangan-kobber-molyb.den og mer spesielt en slik legering med stor hardhet, gnidningsmotstand og slagfasthet. This invention relates to white pig iron alloyed with manganese-copper-molybdenum and more particularly such an alloy with great hardness, friction resistance and impact resistance.
Generelt utgjor mangan en vesentlig bestanddel av legeringen i. henhold til oppfinnelsen, men legeringen får forbedrede egenskaper hvis mangan er tilstede enten sammen med kobber eller molybden. In general, manganese forms an essential component of the alloy according to the invention, but the alloy gains improved properties if manganese is present either together with copper or molybdenum.
Materialer som tidligere hår vært brukt til formål hvor det kreves Materials such as hair have previously been used for purposes where required
motstandsdyktighet overfor gnidning og slitasje, innefatter hvitt stopejern, legert hvitt stopejern med nikkel og krom som hoved- resistance to rubbing and wear, includes white stop-iron, alloyed white stop-iron with nickel and chromium as the main
legeringsbestanddeler, samt stål, både alminnelig stål og legert stål. Disse materialer lider imidlertid av flere mangler. Forst alloy components, as well as steel, both ordinary steel and alloy steel. However, these materials suffer from several shortcomings. First
og fremst mangler de ofte den tilfredsstillende kombinasjon av styrke, hårdhet, seighet og slitestyrke som er nodvendig;for slikcfprmål som for eksempel malemedia, molleforinger og: lignende anvendelsesformål, eller de er for dyre i bruk på grunn av omkostningene med legeringsbestand-delene. ', and above all they often lack the satisfactory combination of strength, hardness, toughness and wear resistance which is necessary; for such purposes as, for example, painting media, mold linings and: similar applications, or they are too expensive to use due to the costs of the alloy component parts. ',
Behovet for/en legering som besitter seighets-, styrke-, hardhets-The need for/an alloy that possesses toughness, strength, hardness
og gnidningsmotstandsegenskaper og som er mer dkonomisk i bruk enn tidligere legeringstyper, skulle således være innlysende. and rubbing resistance properties and which is more economical to use than previous alloy types, should thus be obvious.
Foreliggende oppfinnelse går således ut på en hvit stope-:jernlegering som inneholder mellom 2 og 6$mangan, mellom 0,1 og 2% kobber, mellom 0,1 og 0, 7% molybden, 0 til 2% silisium, og mellom 2 og h% karbon, idet resten er jern og vanlige, forurensninger. Med en slik legering oppnås stor og jevn hårdhet, overskridende; 500 Brinell, samt stor gnidningsmotstand og slagstyrke. Foretrukne sammensininger av legeringen i henhold til oppfinnelsen jer angitt i krav 2 og 3- De forurensninger som forekommer omfatter fosfor og svovel som vanligvis finnes i stopejern (prosentinnholdet av fosfor kan typisk variere fra 0,01 til 0,2 og av svovel :fra 0,01 The present invention is thus based on a white stope:iron alloy containing between 2 and 6% manganese, between 0.1 and 2% copper, between 0.1 and 0.7% molybdenum, 0 to 2% silicon, and between 2 and h% carbon, the rest being iron and common impurities. With such an alloy, great and uniform hardness is achieved, exceeding; 500 Brinell, as well as great rubbing resistance and impact strength. Preferred compositions of the alloy according to the invention stated in claims 2 and 3 - The impurities that occur include phosphorus and sulfur which are usually found in cast iron (the percentage content of phosphorus can typically vary from 0.01 to 0.2 and of sulfur: from 0 ,01
til 0,3)j samt slike tilfeldige elementer som uunngåelig linnfores i legeringsovnen eller kupolovnen med skrapmetall. Fig; 1 i de medfolgende tegninger viser en grafisk oversikt over forholdet mellom legeringshårdheten og det prosentvise vektinnhold av mangan, kobber/feg molybden. Fig. 2 er et mikrofotografi av en foretrukken legering tatt med en forstørrelse på 500 ganger. to 0.3)j as well as such incidental elements as are unavoidably lined in the alloy furnace or cupola furnace with scrap metal. Fig; 1 in the accompanying drawings shows a graphical overview of the relationship between the alloy hardness and the percentage weight content of manganese, copper/feg molybdenum. Fig. 2 is a photomicrograph of a preferred alloy taken at 500 times magnification.
Etter utforelse av utstrakte eksperimenter og pr5vning av en rekke legeringer har det vist seg at legert hvitt stopejern som, som deler av sammensetningen, inneholder mangan, kobber og molybden tilveiebringer en foronskét kombinasjon av styrke, hårdhet, seighet og gnidningsmotstand når: legeringssammensetningen holdes innenfor de gitte grenser, og at det legerte stopejern lett kan smeltes i kupolovn. Videre tilveiebringer den nye stopejernslegering et 6'konomisk alternativ til tidligere brukte slitemotstandsdyktige materialer. After carrying out extensive experiments and testing a number of alloys, it has been found that alloyed white stop iron containing, as part of its composition, manganese, copper and molybdenum provides a phoronic combination of strength, hardness, toughness and abrasion resistance when: the alloy composition is kept within the given limits, and that the alloy stop iron can easily be melted in a cupola furnace. Furthermore, the new stop-iron alloy provides an economical alternative to previously used wear-resistant materials.
Mikrostrukturen til legeringen fremstilt i .-henhold til oppfinnelsen omfatter en karbidfase, en perlittfase og en austenitt-martensitt-fase i varierende forhold. Bortsett fra karbidfasen er det ikke nodvendig at alle disse faser er tilstede sammen i mikrostrukturen' av foreliggende oppfinnelse. Forholdene mellom karbidfasen, perlittfasen og austenitt-martensittfasen i mikrostrukturen varierer i henhold til tverrsnittsstorrelsen av den støpte gjenstand, avkjolingshastigheten av stopegodset og den ndyaktige sammen-setning, hvilket lett vil forstås av fagfolk på området. Den kombinerte effekt av disse faser gir mikrostrukturen, og folgelig legeringen, den foronskede kombinasjon av egenskaper som foran nevnt og muliggjor at legeringen kan brukes hvor en stor motstandsevne mot slitasje og slag, såvel som en stor og jevn hårdhet gjennom hele den stopte gjenstand, er nodvendig. The microstructure of the alloy produced in accordance with the invention comprises a carbide phase, a pearlite phase and an austenite-martensite phase in varying proportions. Apart from the carbide phase, it is not necessary that all these phases are present together in the microstructure' of the present invention. The ratios between the carbide phase, the pearlite phase and the austenite-martensite phase in the microstructure vary according to the cross-sectional size of the cast object, the cooling rate of the ingot and the desired composition, which will be readily understood by those skilled in the art. The combined effect of these phases gives the microstructure, and consequently the alloy, the perfect combination of properties as mentioned above and enables the alloy to be used where a great resistance to wear and impact, as well as a great and uniform hardness throughout the entire stuffed object, is necessary.
Et eksempel på oppfinnelsen vil nå bli beskrevet under henvisning ti^Fig. 1 i medfolgende tegninger som viser forholdet mellom legeringshårdheten og det prosentvise innhold av mangan, kobber: An example of the invention will now be described with reference to Fig. 1 in the accompanying drawings showing the relationship between the alloy hardness and the percentage content of manganese, copper:
og molybden.and molybdenum.
Et antall malelegemer med 38 mm's diameter som vanligvis brukes i maieinnretninger for malm ble kokillestopt med varierende innhold av legeringsemner. Legemenes hardhet ble undersdkt og tegningen viser variasjonen i hårdhet i sliktmasseenheter når mangan, kobber og molybden varieres uavhengig mens de andre bestanddeler i legeringen holdes konstant innenfor forsoksgrensene. Legemenes Rockwell-hårdhet ble undersokt. Det vil sees at én ekvivalent Brinell-hårdhet omkring 500 kan oppnås i et legert hvitt stopejern over et sammensetningsområde hvor flere av legeringene vil være vesentlig billigere enn de materialer som hittil har vært vanlig anvendt for legeringer hvorav det kreves utmerket gnidnings-og slitasebestandighet. A number of grinding bodies with a diameter of 38 mm, which are usually used in mining devices for ore, were die-stopped with varying contents of alloy blanks. The bodies' hardness was investigated and the drawing shows the variation in hardness in such mass units when manganese, copper and molybdenum are varied independently while the other constituents of the alloy are kept constant within the experimental limits. The Rockwell hardness of the bodies was investigated. It will be seen that one equivalent Brinell hardness of around 500 can be achieved in an alloyed white stop iron over a composition range where several of the alloys will be significantly cheaper than the materials that have hitherto been commonly used for alloys from which excellent rubbing and wear resistance is required.
For mari kom frem til den foretrukne utforelsesform, ble det i et forsoksanlegg utfort forsok med legeringer inneholdende opp til ' h% kobber, opp til 16%.mangan, opp til 0,5$ nikkel, opp til 1% molybden og opp til 0,1$ bor. Hver legering var basert på en stopejernsblanding inneholdende omtrent 2% karbon, 0, 5% silisium og resten jern. Alle prosentangivelser er vektprosent. Alle de undersokte legeringer viste en stor hårdhet og god slitasje-bestandighet. In order to arrive at the preferred embodiment, trials were carried out in a test facility with alloys containing up to 100% copper, up to 16% manganese, up to 0.5% nickel, up to 1% molybdenum and up to 0 ,1$ live. Each alloy was based on a pig iron mixture containing about 2% carbon, 0.5% silicon and the rest iron. All percentages are percentage by weight. All the investigated alloys showed great hardness and good wear resistance.
Innenfor det brede området som omfattes av oppfinnelsen og somWithin the broad area covered by the invention and which
er nevnt i det foregående, finnes det imidlertid en spesiell og .foretrukken legering som har en optimal hardhet. Den for,etrukne legering inneholder omkring 3,2$ mangan, 0,9$ kobber og 0,20$ molybden med 2-lt$karbon, 0-2$ silisium mens resten vesentlig er jern samt snå mengder forurensninger, som for eksempel fos^for og svovel, i mengder som vanligvis finnes i stopejern som foran, nevnt. Denne foretrukne legering yter en meget stor motstand mot gnidning og slitasje ved anvendelse ved f.eks. maling av malmer. is mentioned above, however, there is a particular and preferred alloy which has an optimum hardness. The preferred alloy contains about 3.2% manganese, 0.9% copper and 0.20% molybdenum with 2-lt$ carbon, 0-2$ silicon, while the rest is essentially iron and small amounts of impurities, such as phosphorus ^for and sulphur, in quantities usually found in stope iron as before, mentioned. This preferred alloy offers a very high resistance to rubbing and wear when used in e.g. grinding of ores.
Mikrostrukturen til den foretrukne.legering er vist i fig. 2 somThe microstructure of the preferred alloy is shown in FIG. 2 which
er etmikrofotografi med 500 ganger forstdrrelse. Mikrofotografiet viser fordelingen av karbid, perlitt, gjenværende austenitt.og martensitt i legeringen. is a photomicrograph at 500 times magnification. The photomicrograph shows the distribution of carbide, pearlite, remaining austenite and martensite in the alloy.
I tillegg har den foretrukne legering en forbedret suj/yice og seighet sammenlignet med vanlig anvendt hvitt stopejern legert med krom-nikkel og som eksempelvis selges under varebetegnelsen MNi-Hard". Ved proving med gjentatt fall av et lodd på ca.<*>+5 kg. på et 38 mm<*>s kokillestopt og spenningsglodet legeme fra en hoyde på omkring In addition, the preferred alloy has an improved suj/yice and toughness compared to commonly used white stop iron alloyed with chrome-nickel and which is for example sold under the trade name MNi-Hard". When testing with repeated dropping of a weight of approx.<*>+ 5 kg on a 38 mm<*> mold stop and tension ball body from a height of about
2,^f meter viste den foretrukne legering seg å være vesentlig seigere enn krom-nikkelstdpejernslegeringen kjent under:betegnelsen "Ni-Hard"..- . 2.^f meters, the preferred alloy proved to be significantly tougher than the chrome-nickel stainless steel alloy known under the designation "Ni-Hard".
Stdperiprover i full målestokk har vist at legeringene i henhold til foreliggende oppfinnelse kan kokillestdpes eller sandstdpes under anvendelse av vanlig kupolovnpraksis og stdpemetoder. Det vanlige smelteutstyr anvendt ved disse prover i full målestokk var en kupolovn som er det billigste og mest vanlige anvendte utstyr for stopejern. Det er imidlertid klart at annet kjent smelteutstyr som f.eks. elektriske ovner også kan brukes. Det er blitt foretatt undersøkelser av kpkillestdpte deler,så vel som sandstopte deler av mangan-kobber-molybdenlegeringer for å bestemme deres oppforsel ut fra stoperimannens syn på saken og det er blitt oppnådd gode resultater fra slite undersokelser. Full-scale pilot tests have shown that the alloys according to the present invention can be die-cast or sand-cast using normal cupola furnace practice and casting methods. The usual smelting equipment used in these full-scale tests was a cupola furnace, which is the cheapest and most common equipment used for pig iron. However, it is clear that other known melting equipment such as e.g. electric heaters can also be used. Investigations have been carried out of cold-dipped parts, as well as sand-stopped parts of manganese-copper-molybdenum alloys to determine their behavior from the stopper man's view of the matter, and good results have been obtained from painstaking investigations.
Feltprover på maling av malm har vist at kokillestopte deler stopt av den foretrukne legering med etterfølgende spennings-glodning ved 315°C har utmerket motstandsevne mot gnidning og slag og at de i så henseende er sammenlignbare med vanlig brukt og kostbare hvitt stopejern legert med krom-nikkel.. Field tests on grinding ore have shown that die-stopped parts stopped from the preferred alloy with subsequent stress-annealing at 315°C have excellent resistance to rubbing and impact and that in this respect they are comparable to commonly used and expensive white stoping iron alloyed with chromium nickel..
Et antall prover ble også utfort på kulemolldeler, omtrent 107 x 152 x 711 mm, stopt fra en legering av den foretrukne utforelse som foran nevnt. Disse deler viste seg å ha en hoy slagfasthet, provet ved fritt fall av en vekt på 1. 22h kg. fra en hoyde på A number of samples were also made on ball mold parts, approximately 107 x 152 x 711 mm, stopped from an alloy of the preferred embodiment as mentioned above. These parts proved to have a high impact resistance, tested by free fall of a weight of 1.22h kg. from a height of
30,5 cm, samt en utmerket hardhet. ■ 30.5 cm, as well as an excellent hardness. ■
På grunn av dets usedvanlige kombinasjon av egenskaper vil det hvite stopejern i henhold til oppfinnelsen finne anvendelse på Due to its unusual combination of properties, the white stop iron according to the invention will find application in
et stort antall områder hvori stor hårdhet, gnidningsmotstand og slitasje motstand foretrekkes, som .f.eks. malekuler, sliteplater i moller, ruller, pumpedeler, deler til gruvemaskiner, molleringer, dyser osv., som kan fremstilles av det hvite stopejern i henhold til oppfinnelsen. a large number of areas in which great hardness, rubbing resistance and wear resistance are preferred, such as e.g. grinding balls, wear plates in moles, rollers, pump parts, parts for mining machines, mole rings, nozzles, etc., which can be made from the white stop iron according to the invention.
Forbedringen og fordelene ved foreliggende oppfinnelse skulle således være klar. The improvement and advantages of the present invention should thus be clear.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB40027/65A GB1158149A (en) | 1965-09-20 | 1965-09-20 | Alloy Cast Iron |
Publications (1)
Publication Number | Publication Date |
---|---|
NO118007B true NO118007B (en) | 1969-10-20 |
Family
ID=10412800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO164754A NO118007B (en) | 1965-09-20 | 1966-09-16 |
Country Status (7)
Country | Link |
---|---|
US (1) | US3623922A (en) |
BE (1) | BE687151A (en) |
DE (1) | DE1533337B1 (en) |
ES (1) | ES331335A1 (en) |
FI (1) | FI46080C (en) |
GB (1) | GB1158149A (en) |
NO (1) | NO118007B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2236349A1 (en) * | 1972-07-25 | 1974-02-07 | Erlau Ag Eisen Drahtwerk | CHAIN LINK FOR SLIP PROTECTION AND TIRE PROTECTION CHAINS |
US3941589A (en) * | 1975-02-13 | 1976-03-02 | Amax Inc. | Abrasion-resistant refrigeration-hardenable white cast iron |
US4194906A (en) * | 1976-09-13 | 1980-03-25 | Noranda Mines Limited | Wear resistant low alloy white cast iron |
CH648353A5 (en) * | 1979-11-19 | 1985-03-15 | Fischer Ag Georg | HIGH-IMPACT CASTING PARTS AND A METHOD FOR THE PRODUCTION THEREOF. |
US5242510A (en) * | 1992-09-25 | 1993-09-07 | Detroit Diesel Corporation | Alloyed grey iron having high thermal fatigue resistance and good machinability |
US11524733B2 (en) * | 2019-08-07 | 2022-12-13 | Caterpillar Inc. | Track assembly bushing having while iron member |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE699034C (en) * | 1939-09-28 | 1940-11-21 | Wilhelm Bamberger | Chilled cast alloy for cover plates of coke fire trucks and coke fire ramps |
GB846477A (en) * | 1956-03-16 | 1960-08-31 | Renault | Improvements in or relating to the manufacture of thin iron castings |
US3042512A (en) * | 1959-06-04 | 1962-07-03 | Meehanite Metal Corp | Wear resistant cast iron |
-
1965
- 1965-09-20 GB GB40027/65A patent/GB1158149A/en not_active Expired
-
1966
- 1966-08-29 FI FI662251A patent/FI46080C/en active
- 1966-09-16 NO NO164754A patent/NO118007B/no unknown
- 1966-09-16 DE DE19661533337 patent/DE1533337B1/en active Pending
- 1966-09-17 ES ES331335A patent/ES331335A1/en not_active Expired
- 1966-09-20 BE BE687151D patent/BE687151A/xx unknown
-
1968
- 1968-05-27 US US732143A patent/US3623922A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ES331335A1 (en) | 1968-08-01 |
GB1158149A (en) | 1969-07-16 |
US3623922A (en) | 1971-11-30 |
DE1533337B1 (en) | 1972-03-16 |
FI46080B (en) | 1972-08-31 |
FI46080C (en) | 1972-12-11 |
BE687151A (en) | 1967-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wei et al. | Effects of carbon on microstructures and properties of high vanadium high-speed steel | |
Wei et al. | Effects of vanadium and carbon on microstructures and abrasive wear resistance of high speed steel | |
Ju et al. | Effects of Cr and V additions on the microstructure and properties of high-vanadium wear-resistant alloy steel | |
CN104152808A (en) | Boron-containing high-silicon bainite wear-resistant corrosion-resistant alloy and manufacturing method thereof | |
Kim et al. | Mechanical, wear and heat exposure properties of compacted graphite cast iron at elevated temperatures | |
NO118007B (en) | ||
Dasgupta et al. | Microstructure and mechanical properties of as-cast ductile irons alloyed with manganese and copper | |
CN104928563B (en) | A kind of anti-aluminium liquid oxidation heat-proof nodular cast iron and manufacture method | |
Kawalec et al. | Abrasive wear resistance of cast iron with precipitates of spheroidal VC carbides | |
CN110607478B (en) | Gray cast iron cylinder liner material and preparation method thereof | |
Fay et al. | Inoculation solutions against metallurgical problems | |
CN105714182B (en) | A kind of high tenacity is containing high boron cast iron of aluminium and preparation method thereof | |
Rizov | Some results from the investigation of effects of heat treatment on properties of ni-hard cast irons | |
US2841488A (en) | Nodular cast iron and process of making same | |
US10787726B2 (en) | Ductile iron composition and process of forming a ductile iron component | |
Kawalec | The spheroidisation of VC carbides in high-vanadium cast iron | |
Vaško et al. | Static and dynamic mechanical properties of nodular cast irons | |
Alias et al. | Development of high strength ductile iron with niobium addition | |
Boburjon et al. | Influence of structure and mechanical properties on hydroabrasive wear resistance of cast Iron | |
Rivera L et al. | Microalloyed niobium influence on ductile ferrite cast irons | |
RU2448183C1 (en) | Wear-resistant cast iron | |
Kalandyk et al. | Microstructure and mechanical properties of high-alloyed 23Cr-5Mn-2Ni-3Mo cast steel | |
Kopyciński et al. | Inoculation of Austenite Primary Grains in Cast Iron | |
SU1756374A1 (en) | Complex alloy for steel alloying | |
SU1507843A1 (en) | Alloying composition for melting, deoxidizing, alloying and inoculating tungsten-molybdenum-cobalt steel for cutting tool |