KR20230150402A - 증착 마스크를 제조하기 위한 금속판, 금속판의 검사 방법, 금속판의 제조 방법, 증착 마스크, 증착 마스크 장치 및 증착 마스크의 제조 방법 - Google Patents

증착 마스크를 제조하기 위한 금속판, 금속판의 검사 방법, 금속판의 제조 방법, 증착 마스크, 증착 마스크 장치 및 증착 마스크의 제조 방법 Download PDF

Info

Publication number
KR20230150402A
KR20230150402A KR1020237035288A KR20237035288A KR20230150402A KR 20230150402 A KR20230150402 A KR 20230150402A KR 1020237035288 A KR1020237035288 A KR 1020237035288A KR 20237035288 A KR20237035288 A KR 20237035288A KR 20230150402 A KR20230150402 A KR 20230150402A
Authority
KR
South Korea
Prior art keywords
metal plate
deposition mask
reflectance
less
additionally
Prior art date
Application number
KR1020237035288A
Other languages
English (en)
Inventor
치카오 이케나가
히데유키 오카모토
마사토 우시쿠사
치아키 하츠타
히로키 오카
사치요 마츠우라
Original Assignee
다이니폰 인사츠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66496400&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20230150402(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 다이니폰 인사츠 가부시키가이샤 filed Critical 다이니폰 인사츠 가부시키가이샤
Publication of KR20230150402A publication Critical patent/KR20230150402A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0035Multiple processes, e.g. applying a further resist layer on an already in a previously step, processed pattern or textured surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/28Acidic compositions for etching iron group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0015Production of aperture devices, microporous systems or stamps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/002Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor using materials containing microcapsules; Preparing or processing such materials, e.g. by pressure; Devices or apparatus specially designed therefor
    • G03F7/0022Devices or apparatus
    • G03F7/0027Devices or apparatus characterised by pressure means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2008Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the reflectors, diffusers, light or heat filtering means or anti-reflective means used
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3005Observing the objects or the point of impact on the object
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/053Investigating materials by wave or particle radiation by diffraction, scatter or reflection back scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • G01N2223/0565Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction diffraction of electrons, e.g. LEED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Child & Adolescent Psychology (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Metal Rolling (AREA)

Abstract

금속판은, 금속판의 길이 방향 및 길이 방향에 직교하는 폭 방향을 갖는 표면을 구비한다. 광을 표면에 입사시킨 경우에 관측되는 반사광 중, 표면에 직교하는 적어도 하나의 평면 내에 있어서 45°±0.2°의 각도로 표면으로부터 출사하는 반사광의 표면 반사율이, 8% 이상 또한 25% 이하이다.

Description

증착 마스크를 제조하기 위한 금속판, 금속판의 검사 방법, 금속판의 제조 방법, 증착 마스크, 증착 마스크 장치 및 증착 마스크의 제조 방법 {METAL PLATE FOR PRODUCING VAPOR DEPOSITION MASKS, INSPECTION METHOD FOR METAL PLATES, PRODUCTION METHOD FOR METAL PLATES, VAPOR DEPOSITION MASK, VAPOR DEPOSITION MASK DEVICE, AND PRODUCTION METHOD FOR VAPOR DEPOSITION MASKS}
본 개시의 실시 형태는, 증착 마스크를 제조하기 위한 금속판, 금속판의 검사 방법 및 금속판의 제조 방법에 관한 것이다. 또한, 본 개시의 실시 형태는, 증착 마스크, 증착 마스크 장치 및 증착 마스크의 제조 방법에 관한 것이다.
근년, 스마트폰이나 태블릿 PC 등의 운반 가능한 디바이스에서 사용되는 표시 장치에 대하여, 고화질인 것, 예를 들어 화소 밀도가 500ppi 이상일 것이 요구되고 있다. 또한, 운반 가능한 디바이스에 있어서도, 울트라 하이 데피니션(UHD)에 대응하는 것으로의 수요가 높아지고 있고, 이 경우, 표시 장치의 화소 밀도가 예를 들어 800ppi 이상인 것이 바람직하다.
응답성의 양호함이나 소비 전력의 낮음을 위해, 유기 EL 표시 장치가 주목받고 있다. 유기 EL 표시 장치의 화소를 형성하는 방법으로서, 원하는 패턴으로 배열된 관통 구멍을 포함하는 증착 마스크를 사용하여, 원하는 패턴으로 화소를 형성하는 방법이 알려져 있다. 구체적으로는, 우선, 유기 EL 표시 장치용의 기판에 대하여 증착 마스크를 밀착시키고, 이어서 밀착시킨 증착 마스크 및 기판을 모두 증착 장치에 투입하고, 유기 재료 등의 증착을 행한다.
증착 마스크의 제조 방법으로서는, 포토리소그래피 기술을 사용한 에칭에 의해 금속판에 관통 구멍을 형성하는 방법이 알려져 있다. 예를 들어, 우선, 금속판의 제1 면 상에 제1 레지스트 패턴을 형성하고, 또한 금속판의 제2 면 상에 제2 레지스트 패턴을 형성한다. 이어서, 금속판의 제2 면 중 제2 레지스트 패턴에 의해 덮여 있지 않은 영역을 에칭하여, 금속판의 제2 면에 제2 오목부를 형성한다. 그 후, 금속판의 제1 면 중 제1 레지스트 패턴에 의해 덮여 있지 않은 영역을 에칭하고, 금속판의 제1 면에 제1 오목부를 형성한다. 이때, 제1 오목부와 제2 오목부가 통하도록 에칭을 행함으로써, 금속판을 관통하는 관통 구멍을 형성할 수 있다.
그 밖에도, 증착 마스크의 제조 방법으로서, 도금 처리를 이용하여 증착 마스크를 제조하는 방법이 알려져 있다. 예를 들어 먼저, 도전성을 갖는 기재를 준비한다. 이어서, 기재 상에, 소정의 간극을 두어서 레지스트 패턴을 형성한다. 이 레지스트 패턴은, 증착 마스크의 관통 구멍이 형성되어야 할 위치에 마련되어 있다. 그 후, 레지스트 패턴의 간극에 도금액을 공급하여, 전해 도금 처리에 의해 기재 상에 금속층을 석출시킨다. 그 후, 금속층을 기재로부터 분리시킴으로써, 복수의 관통 구멍이 형성된 증착 마스크를 얻을 수 있다.
일본 특허 제5382259호 공보 일본 특허 공개 제2001-234385호 공보
유기 EL 표시 장치의 화소 밀도가 높아짐에 따라서, 증착 마스크의 관통 구멍의 치수나 배열 피치가 작아진다. 또한, 포토리소그래피 기술을 사용한 에칭에 의해 금속판에 관통 구멍을 형성하는 경우, 금속판의 제1 면 또는 제2 면에 마련되는 레지스트 패턴의 폭도 좁아진다. 레지스트 패턴의 폭이 좁아지는 것은, 레지스트 패턴과 금속판 사이의 밀착 면적이 작아지는 것을 의미하고 있다. 이 때문에, 레지스트 패턴을 형성하기 위한 레지스트막에는, 금속판에 대한 높은 밀착력을 갖는 것이 요구된다.
본 개시의 실시 형태는, 이와 같은 과제를 고려하여 이루어진 것이고, 금속판의 표면에 좁은 폭의 레지스트 패턴을 안정적으로 마련할 수 있는 금속판을 제공하는 것을 목적으로 한다. 또한 본 개시의 실시 형태는, 금속판의 검사 방법 및 제조 방법 그리고 증착 마스크, 증착 마스크 장치 및 증착 마스크의 제조 방법에 관한 것이다.
본 개시의 일 실시 형태는, 증착 마스크를 제조하기 위하여 사용되는 금속판이며, 상기 금속판의 길이 방향 및 상기 길이 방향에 직교하는 폭 방향을 갖는 표면을 구비하고, 상기 표면에 직교하는 적어도 하나의 평면 내에 있어서 45°±0.2°의 입사 각도로 상기 표면에 광을 입사시킨 경우에 측정되는, 상기 광의 정반사에 의한 표면 반사율이, 8% 이상 또한 25% 이하인, 금속판이다.
본 개시의 일 실시 형태에 의한 금속판에 있어서, 상기 표면 반사율이, 8% 이상 또한 20% 이하여도 된다.
본 개시의 일 실시 형태에 의한 금속판에 있어서, 상기 표면 및 상기 길이 방향에 직교하는 제1 평면 내에 있어서 45°±0.2°의 입사 각도로 상기 표면에 상기 광을 입사시킨 경우에 측정되는, 상기 광의 정반사에 의한 상기 표면 반사율을 제1 반사율이라고 칭하고, 상기 표면 및 상기 폭 방향에 직교하는 제2 평면 내에 있어서 45°±0.2°의 입사 각도로 상기 표면에 상기 광을 입사시킨 경우에 측정되는, 상기 광의 정반사에 의한 상기 표면 반사율을 제2 반사율이라고 칭하고, 상기 제1 반사율 및 상기 제2 반사율의 평균값이, 8% 이상 또한 25% 이하여도 된다.
본 개시의 일 실시 형태에 의한 금속판에 있어서, 상기 제1 반사율 및 상기 제2 반사율의 평균값이, 8% 이상 또한 20% 이하여도 된다.
본 개시의 일 실시 형태에 의한 금속판은, 상기 폭 방향에 있어서의 일단으로부터 타단에 나열되는 제1 영역, 제2 영역 및 제3 영역이며, 각각이 상기 폭 방향에 있어서 동일한 길이를 갖는 제1 영역, 제2 영역 및 제3 영역을 포함하고, 상기 제1 반사율 및 상기 제2 반사율은 각각, 제1 영역, 제2 영역 및 제3 영역에 있어서 측정된 반사율의 평균값으로서 얻어져도 된다.
본 개시의 일 실시 형태에 의한 금속판에 있어서, 상기 제1 반사율을 상기 제2 반사율로 나눈 값이, 0.70 이상 1.30 이하여도 된다.
본 개시의 일 실시 형태에 의한 금속판의 두께가, 100㎛ 이하여도 된다.
본 개시의 일 실시 형태에 의한 금속판이, 니켈을 포함하는 철 합금으로 이루어져 있어도 된다.
본 개시의 일 실시 형태에 의한 금속판의 상기 표면이, 상기 길이 방향으로 연장되는 복수의 압연 줄무늬를 갖고 있어도 된다. 또한, 금속판의 상기 표면이, 상기 길이 방향에 직교하는 방향으로 연장되는 복수의 오일 피트를 갖고 있어도 된다.
본 개시의 일 실시 형태에 의한 금속판은, 상기 금속판의 상기 표면에 첩부된 레지스트막을 노광 및 현상하여 제1 레지스트 패턴을 형성하고, 상기 금속판의 상기 표면 중 상기 제1 레지스트 패턴에 의해 덮여 있지 않은 영역을 에칭하여, 상기 증착 마스크를 제조하기 위한 것이어도 된다. 예를 들어, 금속판은, 1000Pa 이하의 환경 하에서 상기 금속판의 상기 표면에 첩부된 레지스트막을 노광 및 현상하여 제1 레지스트 패턴을 형성하고, 상기 금속판의 상기 표면 중 상기 제1 레지스트 패턴에 의해 덮여 있지 않은 영역을 에칭하여, 상기 증착 마스크를 제조하기 위한 것이어도 된다.
본 개시의 일 실시 형태에 의한 금속판에 있어서, 상기 표면 반사율은, 상기 광을 검출기에 직접 입사시킨 경우에 측정되는 강도에 대한 비율로서 산출되어도 된다.
본 개시의 일 실시 형태에 의한 금속판에 있어서, 상기 표면 반사율은, 상기 금속판의 표면 중 증착 마스크의 유기 EL 기판측의 면을 구성하는 제1 면에 광을 입사시킨 경우에 관측되는 반사광에 기초하는 제1 면 반사율이어도 된다.
본 개시의 일 실시 형태는, 증착 마스크를 제조하기 위하여 사용되는 금속판의 검사 방법이며, 상기 금속판은, 상기 금속판의 길이 방향 및 상기 길이 방향에 직교하는 폭 방향을 갖는 표면을 구비하고, 상기 검사 방법은, 광을 상기 표면에 입사시킨 경우에 측정 관측되는 반사광의 표면 반사율을 측정하는 측정 공정과, 상기 반사광 중 기 표면에 직교하는 적어도 하나의 평면 내에 있어서 45°±0.2°의 각도로 상기 표면으로부터 출사하는 상기 반사광의 상기 표면 반사율이 8% 이상 또한 25% 이하인 경우에 상기 금속판을 양품으로 판정하는 판정 공정을 구비하는, 금속판의 검사 방법이다.
본 개시의 일 실시 형태는, 증착 마스크를 제조하기 위하여 사용되는 금속판의 제조 방법이며, 상기 금속판을 압연법 또는 도금법에 의해 얻는 제작 공정을 구비하고, 상기 금속판은, 상기 금속판의 길이 방향 및 상기 길이 방향에 직교하는 폭 방향을 갖는 표면을 구비하고, 광을 상기 표면에 입사시킨 경우에 관측되는 반사광 중, 상기 표면에 직교하는 적어도 하나의 평면 내에 있어서 45°±0.2°의 각도로 상기 표면으로부터 출사하는 상기 반사광의 표면 반사율이, 8% 이상 또한 25% 이하인, 금속판의 제조 방법이다.
본 개시의 일 실시 형태에 의한 금속판의 제조 방법은, 상기 표면 반사율이 8% 이상 또한 25% 이하인 상기 금속판을 선별하는 선별 공정을 구비하고 있어도 된다.
본 개시의 일 실시 형태는, 증착 마스크이며, 금속판과, 상기 금속판에 형성된 복수의 관통 구멍을 구비하고, 광을 상기 금속판의 표면에 입사시킨 경우에 관측되는 반사광 중, 상기 표면에 직교하는 적어도 하나의 평면 내에 있어서 45°±0.2°의 각도로 상기 표면으로부터 출사하는 상기 반사광의 표면 반사율이, 8% 이상 또한 25% 이하인, 증착 마스크이다.
본 개시의 일 실시 형태는, 금속판과, 상기 금속판에 형성된 복수의 관통 구멍을 구비하는 증착 마스크와, 상기 증착 마스크를 지지하는 프레임을 구비하고, 광을 상기 금속판의 표면에 입사시킨 경우에 관측되는 반사광 중, 상기 표면에 직교하는 적어도 하나의 평면 내에 있어서 45°±0.2°의 각도로 상기 표면으로부터 출사하는 상기 반사광의 표면 반사율이, 8% 이상 또한 25% 이하인, 증착 마스크 장치이다.
본 개시의 일 실시 형태는, 복수의 관통 구멍이 형성된 증착 마스크를 제조하는 방법이며, 금속판을 준비하는 공정과, 상기 금속판의 표면에 레지스트막을 마련하는 레지스트막 형성 공정과, 상기 레지스트막을 가공하여 레지스트 패턴을 형성하는 공정과, 상기 레지스트 패턴을 마스크로 하여 상기 금속판을 에칭하는 공정을 구비하고, 광을 상기 금속판의 표면에 입사시킨 경우에 관측되는 반사광 중, 상기 표면에 직교하는 적어도 하나의 평면 내에 있어서 45°±0.2°의 각도로 상기 표면으로부터 출사하는 상기 반사광의 표면 반사율이, 8% 이상 또한 25% 이하인, 증착 마스크의 제조 방법이다.
본 개시의 일 실시 형태에 의한 증착 마스크의 제조 방법에 있어서, 상기 레지스트막 형성 공정은, 1000Pa 이하의 환경 하에서 상기 금속판의 상기 표면에 레지스트막을 첩부하는 공정을 포함하고 있어도 된다.
본 개시의 실시 형태에 따르면, 증착 마스크를 안정되게 얻을 수 있다.
도 1은, 본 개시의 일 실시 형태에 의한 증착 마스크 장치를 구비한 증착 장치를 도시하는 도면이다.
도 2는, 도 1에 도시하는 증착 마스크 장치를 사용하여 제조한 유기 EL 표시 장치를 도시하는 단면도이다.
도 3은, 본 개시의 일 실시 형태에 의한 증착 마스크 장치를 도시하는 평면도이다.
도 4는, 도 3에 도시된 증착 마스크의 유효 영역을 도시하는 부분 평면도이다.
도 5는, 도 4의 V-V선을 따른 단면도이다.
도 6은, 모재를 압연하여 원하는 두께를 갖는 금속판을 얻는 공정을 도시하는 도면이다.
도 7은, 압연에 의해 얻어진 금속판을 어닐하는 공정을 도시하는 도면이다.
도 8은, 금속판으로부터 시험편을 취출하는 공정을 도시하는 도면이다.
도 9는, 시험편의 반사율을 측정하는 공정을 도시하는 도면이다.
도 10은, 증착 마스크의 제조 방법 일례를 전체적으로 설명하기 위한 모식도이다.
도 11은, 금속판 상에 레지스트막을 마련하는 공정을 도시하는 도면이다.
도 12는, 레지스트막이 마련된 금속판을 확대하여 도시하는 단면도이다.
도 13은, 레지스트막을 패터닝하는 공정을 도시하는 도면이다.
도 14는, 제1 면 에칭 공정을 도시하는 도면이다.
도 15는, 제2 면 에칭 공정을 도시하는 도면이다.
도 16은, 증착 마스크의 관통 구멍 면적을 검사하는 방법을 설명하기 위한 도면이다.
도 17a는, 증착 마스크의 얼라인먼트 마크의 일례를 도시하는 단면도이다.
도 17b는, 증착 마스크의 얼라인먼트 마크를 촬영한 경우에 얻어지는 화상의 일례를 모식적으로 도시하는 도면이다.
도 18a는, 실시예 1 내지 실시예 12에 관한 금속판의 평가 결과를 도시하는 도면이다.
도 18b는, 실시예 13 내지 실시예 24에 관한 금속판의 평가 결과를 도시하는 도면이다.
도 18c는, 실시예 25 내지 실시예 35에 관한 금속판의 평가 결과를 도시하는 도면이다.
도 19는, 실시예 1 내지 실시예 35에 관한 금속판의 평가 결과를 도시하는 도면이다.
도 20은, 선별된 복수의 금속판의 표면 반사율의 분포의 일례를 도시하는 도면이다.
도 21은, 선별된 복수의 금속판의 표면 반사율의 분포의 일례를 도시하는 도면이다.
도 22는, 제조된 복수의 금속판의 표면 반사율의 분포의 일례를 도시하는 도면이다.
이하, 도면을 참조하여 본 개시의 일 실시 형태에 대하여 설명한다. 또한, 본건 명세서에 첨부하는 도면에 있어서는, 도시와 이해의 용이함의 편의상, 적절히 축척 및 종횡의 치수비 등을, 실물의 그것들로부터 변경하여 과장하고 있다.
또한, 본 개시의 실시 형태는, 모순이 발생하지 않는 범위에서, 그 밖의 실시 형태나 변형예와 조합할 수 있다. 또한, 그 밖의 실시 형태끼리나, 그 밖의 실시 형태와 변형예도, 모순이 발생하지 않는 범위에서 조합할 수 있다. 또한, 변형예끼리도, 모순이 발생하지 않는 범위에서 조합할 수 있다.
또한, 본 개시의 실시 형태에 있어서, 제조 방법 등의 방법에 대하여 복수의 공정을 개시하는 경우에, 개시되어 있는 공정 사이에, 개시되어 있지 않은 그 밖의 공정이 실시되어도 된다. 또한, 개시되어 있는 공정의 순서는, 모순이 발생하지 않는 범위에서 임의이다.
도 1 내지 도 17b는, 본 개시의 일 실시 형태를 설명하기 위한 도면이다. 이하의 실시 형태 및 그 변형예에서는, 유기 EL 표시 장치를 제조할 때에 유기 재료를 원하는 패턴으로 기판 상에 패터닝하기 위하여 사용되는 증착 마스크의 제조 방법을 예로 들어 설명한다. 단, 이러한 적용에 한정되지 않고, 다양한 용도에 사용되는 증착 마스크에 대하여 본 개시를 적용할 수 있다.
또한, 본 명세서에 있어서, 「판」, 「시트」, 「필름」의 용어는, 호칭의 차이에만 기초하여, 서로로부터 구별되는 것은 아니다. 예를 들어, 「판」은 시트나 필름이라고 불릴 수 있는 것과 같은 부재도 포함하는 개념이다.
또한, 「판면(시트면, 필름면)」이란, 대상으로 되는 판상(시트상, 필름상)의 부재를 전체적 또한 대국적으로 본 경우에 있어서 대상으로 되는 판상 부재(시트상 부재, 필름상 부재)의 평면 방향과 일치하는 면을 가리킨다. 또한, 판상(시트상, 필름상)의 부재에 대하여 사용하는 법선 방향이란, 당해 부재의 판면(시트면, 필름면)에 대한 법선 방향을 가리킨다.
또한, 본 명세서에 있어서 사용하는, 형상이나 기하학적 조건 및 물리적 특성 그리고 그것들의 정도를 특정하는, 예를 들어 「평행」, 「직교」, 「동일」, 「동등」 등의 용어나 길이나 각도 그리고 물리적 특성의 값 등에 대해서는, 엄밀한 의미에 구속되는 일없이, 마찬가지의 기능을 기대할 수 있는 정도의 범위를 포함하여 해석하기로 한다.
먼저, 대상물에 증착 재료를 증착시키는 증착 처리를 실시하는 증착 장치(90)에 대해서, 도 1을 참조하여 설명한다. 도 1에 도시하는 바와 같이, 증착 장치(90)는, 그 내부에, 증착원(예를 들어 도가니(94)), 히터(96) 및 증착 마스크 장치(10)를 구비하고 있어도 된다. 또한, 증착 장치(90)는, 증착 장치(90)의 내부를 진공 분위기로 하기 위한 배기 수단을 더 구비하고 있어도 된다. 도가니(94)는, 유기 발광 재료 등의 증착 재료(98)를 수용한다. 히터(96)는, 도가니(94)를 가열하여, 진공 분위기 하에서 증착 재료(98)를 증발시킨다. 증착 마스크 장치(10)는, 도가니(94)와 대향하도록 배치되어 있다.
이하, 증착 마스크 장치(10)에 대하여 설명한다. 도 1에 도시하는 바와 같이, 증착 마스크 장치(10)는, 증착 마스크(20)와, 증착 마스크(20)를 지지하는 프레임(15)을 구비하고 있어도 된다. 프레임(15)은, 증착 마스크(20)가 휘어버리는 일이 없도록, 증착 마스크(20)를 그 면 방향으로 잡아 당긴 상태에서 지지한다. 증착 마스크 장치(10)는, 도 1에 도시하는 바와 같이, 증착 마스크(20)가, 증착 재료(98)를 부착시키는 대상물인 기판, 예를 들어 유기 EL 기판(92)에 대면하도록, 증착 장치(90) 내에 배치된다. 이하의 설명에 있어서, 증착 마스크(20)의 면 중, 유기 EL 기판(92)측의 면을 제1 면(20a)이라고 칭하고, 제1 면(20a)의 반대측에 위치하는 면을 제2 면(20b)이라고 칭한다.
증착 마스크 장치(10)는, 도 1에 도시하는 바와 같이, 유기 EL 기판(92)의, 증착 마스크(20)와 반대인 측의 면에 배치된 자석(93)을 구비하고 있어도 된다. 자석(93)을 마련함으로써, 자력에 의해 증착 마스크(20)를 자석(93)측에 가까이 끌어 당겨, 증착 마스크(20)를 유기 EL 기판(92)에 밀착시킬 수 있다. 또한, 정전기력(쿨롱력)을 이용하는 정전 척을 사용하여 증착 마스크(20)를 유기 EL 기판(92)에 밀착시켜도 된다.
도 3은, 증착 마스크 장치(10)를 증착 마스크(20)의 제1 면(20a)측에서 본 경우를 도시하는 평면도이다. 도 3에 도시하는 바와 같이, 증착 마스크 장치(10)는, 복수의 증착 마스크(20)를 구비하고 있어도 된다. 각 증착 마스크(20)는, 한 쌍의 긴 변(26) 및 한 쌍의 짧은 변(27)을 포함하고 있어도 된다. 예를 들어, 각 증착 마스크(20)는, 직사각 형상의 형상을 갖고 있어도 된다. 각 증착 마스크(20)는, 한 쌍의 짧은 변(27) 또는 그 근방의 부분에 있어서, 예를 들어 용접에 의해 프레임(15)에 고정되어 있어도 된다.
증착 마스크(20)는, 증착 마스크(20)를 관통하는 복수의 관통 구멍(25)이 형성된 금속판을 포함하고 있어도 된다. 도가니(94)로부터 증발하여 증착 마스크 장치(10)에 도달한 증착 재료(98)는, 증착 마스크(20)의 관통 구멍(25)을 통하여 유기 EL 기판(92)에 부착된다. 이에 의해, 증착 마스크(20)의 관통 구멍(25)의 위치에 대응한 원하는 패턴으로, 증착 재료(98)를 유기 EL 기판(92)의 표면에 성막할 수 있다.
도 2는, 도 1의 증착 장치(90)를 사용하여 제조한 유기 EL 표시 장치(100)를 도시하는 단면도이다. 유기 EL 표시 장치(100)는, 유기 EL 기판(92)과, 패턴상으로 마련된 증착 재료(98)를 포함하는 화소를 구비한다.
또한, 복수의 색에 의한 컬러 표시를 행하고 싶은 경우에는, 각 색에 대응하는 증착 마스크(20)가 탑재된 증착 장치(90)를 각각 준비하고, 유기 EL 기판(92)을 각 증착 장치(90)에 순으로 투입한다. 이에 의해, 예를 들어 적색용의 유기 발광 재료, 녹색용의 유기 발광 재료 및 청색용의 유기 발광 재료를 순으로 유기 EL 기판(92)에 증착시킬 수 있다.
그런데, 증착 처리는, 고온 분위기로 되는 증착 장치(90)의 내부에서 실시되는 경우가 있다. 이 경우, 증착 처리 사이, 증착 장치(90)의 내부에 보유 지지되는 증착 마스크(20), 프레임(15) 및 유기 EL 기판(92)도 가열된다. 이때, 증착 마스크(20), 프레임(15) 및 유기 EL 기판(92)은, 각각의 열팽창 계수에 기초한 치수 변화의 거동을 나타내게 된다. 이 경우, 증착 마스크(20)나 프레임(15)과 유기 EL 기판(92)의 열팽창 계수가 크게 다르면, 그것들의 치수 변화의 차이에 기인한 위치 어긋남이 발생하고, 이 결과, 유기 EL 기판(92) 상에 부착되는 증착 재료의 치수 정밀도나 위치 정밀도가 저하되어 버린다.
이와 같은 과제를 해결하기 위해서, 증착 마스크(20) 및 프레임(15)의 열팽창 계수가, 유기 EL 기판(92)의 열팽창 계수와 동등한 값인 것이 바람직하다. 예를 들어, 유기 EL 기판(92)으로서 유리 기판이 사용되는 경우, 증착 마스크(20) 및 프레임(15)의 주요한 재료로서, 니켈을 포함하는 철 합금을 사용할 수 있다. 철 합금은, 니켈에 첨가하여 코발트를 더 포함하고 있어도 된다. 예를 들어, 증착 마스크(20)를 구성하는 금속판의 재료로서, 니켈 및 코발트의 함유량이 합계로 30질량% 이상 또한 54질량% 이하이고, 또한 코발트의 함유량이 0질량% 이상 또한 6질량% 이하인 철 합금을 사용할 수 있다. 니켈 또는 니켈 및 코발트를 포함하는 철 합금의 구체예로서는, 34질량% 이상 또한 38질량% 이하의 니켈을 포함하는 인바재, 30질량% 이상 또한 34질량% 이하의 니켈에 첨가하여 또한 코발트를 포함하는 슈퍼 인바재, 38질량% 이상 또한 54질량% 이하의 니켈을 포함하는 저열팽창 Fe-Ni계 도금 합금 등을 들 수 있다.
또한 증착 처리 시에, 증착 마스크(20), 프레임(15) 및 유기 EL 기판(92)의 온도가 고온에는 달하지 않는 경우에는, 증착 마스크(20) 및 프레임(15)의 열팽창 계수를, 유기 EL 기판(92)의 열팽창 계수와 동등한 값으로 할 필요는 특별히 없다. 이 경우, 증착 마스크(20)를 구성하는 재료로서, 상술한 철 합금 이외의 재료를 사용해도 된다. 예를 들어, 크롬을 포함하는 철 합금 등, 상술한 니켈을 포함하는 철 합금 이외의 철 합금을 사용해도 된다. 크롬을 포함하는 철 합금으로서는, 예를 들어 소위 스테인리스라고 칭해지는 철 합금을 사용할 수 있다. 또한, 니켈이나 니켈-코발트 합금 등, 철 합금 이외의 합금을 사용해도 된다.
이어서, 증착 마스크(20)에 대하여 상세하게 설명한다. 도 3에 도시하는 바와 같이, 증착 마스크(20)는, 증착 마스크(20)의 한 쌍의 짧은 변(27)을 포함하는 한 쌍의 귀부(제1 귀부(17a) 및 제2 귀부(17b))와, 한 쌍의 귀부(17a, 17b) 사이에 위치하는 중간부(18)를 구비하고 있어도 된다.
먼저, 귀부(17a, 17b)에 대하여 상세하게 설명한다. 귀부(17a, 17b)는, 증착 마스크(20) 중 프레임(15)에 고정되는 부분이다. 본 실시 형태에 있어서, 귀부(17a, 17b)는, 중간부(18)와 일체적으로 구성되어 있다. 또한, 귀부(17a, 17b)는, 중간부(18)와는 다른 부재에 의해 구성되어 있어도 된다. 이 경우, 귀부(17a, 17b)는, 예를 들어 용접에 의해 중간부(18)에 접합된다.
이어서, 중간부(18)에 대하여 설명한다. 중간부(18)는, 제1 면(20a)으로부터 제2 면(20b)에 이르는 관통 구멍(25)이 형성된, 적어도 하나의 유효 영역(22)과, 유효 영역(22)을 둘러싸는 주위 영역(23)을 포함하고 있어도 된다. 유효 영역(22)은, 증착 마스크(20) 중, 유기 EL 기판(92)의 표시 영역에 대면하는 영역이다.
도 3에 도시하는 예에 있어서, 중간부(18)는, 증착 마스크(20)의 긴 변(26)을 따라 소정의 간격을 두어 배열된 복수의 유효 영역(22)을 포함한다. 하나의 유효 영역(22)은, 하나의 유기 EL 표시 장치(100)의 표시 영역에 대응한다. 이 때문에, 도 1에 도시하는 증착 마스크 장치(10)에 의하면, 유기 EL 표시 장치(100)의 다면 증착이 가능하다. 또한, 하나의 유효 영역(22)이 복수의 표시 영역에 대응하는 경우도 있다.
도 3에 도시하는 바와 같이, 유효 영역(22)은, 예를 들어 평면으로 보아 대략 사각형 형상, 더욱 정확하게는 평면으로 보아 대략 직사각 형상의 윤곽을 갖고 있어도 된다. 또한 도시는 하지 않지만, 각 유효 영역(22)은, 유기 EL 기판(92)의 표시 영역의 형상에 따라, 다양한 형상의 윤곽을 가질 수 있다. 예를 들어 각 유효 영역(22)은, 원 형상의 윤곽을 갖고 있어도 된다.
이하, 유효 영역(22)에 대하여 상세하게 설명한다. 도 4는, 증착 마스크(20)의 제2 면(20b)측에서 유효 영역(22)을 확대하여 도시하는 평면도이다. 도 4에 도시하는 바와 같이, 도시된 예에 있어서, 각 유효 영역(22)에 형성된 복수의 관통 구멍(25)은, 당해 유효 영역(22)에 있어서, 서로 직교하는 2 방향을 따라서 각각 소정의 피치로 배열되어 있어도 된다.
도 5는, 도 4의 유효 영역(22)의 V-V 방향을 따른 단면도이다. 도 5에 도시하는 바와 같이, 복수의 관통 구멍(25)은, 증착 마스크(20)의 법선 방향 N을 따른 한쪽의 측으로 되는 제1 면(20a)으로부터, 증착 마스크(20)의 법선 방향 N을 따른 다른 쪽의 측으로 되는 제2 면(20b)으로 관통하고 있다. 도시된 예에서는, 후에 상세하게 설명한 바와 같이, 증착 마스크(20)의 법선 방향 N에 있어서의 한쪽의 측으로 되는 금속판(64)의 제1 면(64a)에 제1 오목부(30)가 에칭에 의해 형성되고, 증착 마스크(20)의 법선 방향 N에 있어서의 다른 쪽의 측으로 되는 금속판(64)의 제2 면(64b)에 제2 오목부(35)가 형성된다. 제1 오목부(30)는, 제2 오목부(35)에 접속되고, 이것에 의해 제2 오목부(35)와 제1 오목부(30)가 서로 통하게 형성된다. 관통 구멍(25)은, 제2 오목부(35)와, 제2 오목부(35)에 접속된 제1 오목부(30)에 의해 구성되어 있다. 도 4 및 도 5에 도시하는 바와 같이, 제1 오목부(30)의 벽면(31)과, 제2 오목부(35)의 벽면(36)은, 주상의 접속부(41)를 통해 접속되어 있다. 접속부(41)는, 증착 마스크(20)의 평면으로 보아 관통 구멍(25)의 개구 면적이 최소가 되는 관통부(42)를 구획 형성한다.
도 5에 도시하는 바와 같이, 증착 마스크(20)의 제1 면(20a)측에 있어서, 인접하는 두개의 관통 구멍(25)은, 금속판(64)의 제1 면(64a)을 따라 서로로부터 이격되어 있다. 증착 마스크(20)의 제2 면(20b)측에 있어서도, 인접하는 두개의 제2 오목부(35)가, 금속판(64)의 제2 면(64b)을 따라 서로로부터 이격되어 있어도 된다. 즉, 인접하는 두개의 제2 오목부(35) 사이에 금속판(64)의 제2 면(64b)이 잔존하고 있어도 된다. 이하의 설명에 있어서, 금속판(64)의 제2 면(64b)의 유효 영역(22) 중 에칭되지 않고 남아 있는 부분을, 톱부(43)라고도 칭한다. 이러한 톱부(43)가 남도록 증착 마스크(20)를 제작함으로써, 증착 마스크(20)에 충분한 강도를 갖게 할 수 있다. 이것에 의해, 예를 들어 반송 중 등에 증착 마스크(20)가 파손되어 버리는 것을 억제할 수 있다. 또한 톱부(43)의 폭 β가 너무 크면, 증착 공정에 있어서 섀도가 발생하고, 이에 의해 증착 재료(98)의 이용 효율이 저하되는 경우가 있다. 따라서, 톱부(43)의 폭 β가 과잉으로 커지지 않는 것처럼 증착 마스크(20)가 제작되는 것이 바람직하다. 섀도란, 유기 EL 기판(92) 등의 증착 대상물 중 증착 마스크(20)의 관통 구멍과 겹쳐 있는 영역으로의 증착 재료의 부착이, 증착 마스크(20)의 제2 면(20b)이나 벽면에 의해 저해되는 현상이다.
도 1에 도시하도록 하여 증착 마스크 장치(10)가 증착 장치(90)에 수용된 경우, 도 5에 이점 쇄선으로 나타낸 바와 같이, 증착 마스크(20)의 제1 면(20a)이, 유기 EL 기판(92)에 대면하고, 증착 마스크(20)의 제2 면(20b)이, 증착 재료(98)를 보유 지지한 도가니(94)측에 위치한다. 따라서, 증착 재료(98)는, 점차 개구 면적이 작아져 가는 제2 오목부(35)를 통과하여 유기 EL 기판(92)에 부착된다. 도 5에 있어서 제2 면(20b)측으로부터 제1 면(20a)을 향하는 화살표로 나타낸 바와 같이, 증착 재료(98)는, 도가니(94)로부터 유기 EL 기판(92)을 향하여 유기 EL 기판(92)의 법선 방향 N을 따라 이동할 뿐만 아니라, 유기 EL 기판(92)의 법선 방향 N에 대하여 크게 경사진 방향으로 이동하기도 한다. 이때, 증착 마스크(20)의 두께가 크면, 비스듬히 이동하는 증착 재료(98)가, 톱부(43), 제2 오목부(35)의 벽면(36)이나 제1 오목부(30)의 벽면(31)에 걸리기 쉬워지고, 이 결과, 관통 구멍(25)을 통과할 수 없는 증착 재료(98)의 비율이 많아진다. 따라서, 증착 재료(98)의 이용 효율을 높이기 위해서는, 증착 마스크(20)의 두께 t를 작게 하고, 이에 의해, 제2 오목부(35)의 벽면(36)이나 제1 오목부(30)의 벽면(31)의 높이를 작게 하는 것이 바람직하다고 생각된다. 즉, 증착 마스크(20)를 구성하기 위한 금속판(64)으로서, 증착 마스크(20)의 강도를 확보할 수 있는 범위 내에서 가능한 한 두께 t가 작은 금속판(64)을 사용하는 것이 바람직하다고 할 수 있다. 이 점을 고려하여, 본 실시 형태에 있어서, 증착 마스크(20)의 두께 t는, 100㎛ 이하여도 되고, 50㎛ 이하여도 되고, 40㎛ 이하여도 되고, 35㎛ 이하여도 되고, 30㎛ 이하여도 되고, 25㎛ 이하여도 되고, 20㎛ 이하여도 되고, 18㎛ 이하여도 되고, 15㎛ 이하이여도 된다. 한편, 증착 마스크(20)의 두께가 너무 작아지면, 증착 마스크(20)의 강도가 저하되고, 증착 마스크(20)에 손상이나 변형이 발생하기 쉬워진다. 이 점을 고려하고, 증착 마스크(20)의 두께 t는, 5㎛ 이상이어도 되고, 8㎛ 이상이어도 되고, 10㎛ 이상이어도 되고, 12㎛ 이상이어도 되고, 13㎛ 이상이어도 되고, 15㎛ 이상이어도 된다. 또한 두께 t는, 주위 영역(23)의 두께, 즉 증착 마스크(20) 중 제1 오목부(30) 및 제2 오목부(35)가 형성되어 있지 않은 부분의 두께이다. 따라서 두께 t는, 금속판(64)의 두께라고 할 수도 있다.
증착 마스크(20)의 두께 t의 범위는, 상술한 복수의 상한의 후보값 중의 임의의 1개와, 상술한 복수의 하한의 후보값 중의 임의의 1개의 조합에 의해 정해져도 된다. 예를 들어, 증착 마스크(20)의 두께 t는, 5㎛ 이상 100㎛ 이하여도 되고, 8㎛ 이상 50㎛ 이하여도 되고, 10㎛ 이상 40㎛ 이하여도 되고, 12㎛ 이상 35㎛ 이하여도 되고, 13㎛ 이상 30㎛ 이하여도 되고, 15㎛ 이상 25㎛ 이하여도 되고, 15㎛ 이상 20㎛ 이하여도 된다. 또한, 증착 마스크(20)의 두께 t의 범위는, 상술한 복수의 상한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 증착 마스크(20)의 두께 t는, 50㎛ 이상 100㎛ 이하여도 된다. 또한, 증착 마스크(20)의 두께 t의 범위는, 상술한 복수의 하한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 증착 마스크(20)의 두께 t는, 5㎛ 이상 8㎛ 이하여도 된다.
도 5에 있어서, 관통 구멍(25)의 최소 개구 면적을 갖는 부분으로 되는 접속부(41)와, 제2 오목부(35)의 벽면(36)의 다른 임의의 위치를 통과하는 직선 M1이, 증착 마스크(20)의 법선 방향 N에 대하여 이루는 최소 각도가, 부호 θ1로 표시되어 있다. 비스듬히 이동하는 증착 재료(98)를, 벽면(36)에 도달시키지 않고 가능한 한 유기 EL 기판(92)에 도달시키기 위해서는, 각도 θ1을 크게 하는 것이 유리해진다. 각도 θ1을 크게 하는 데에는, 증착 마스크(20)의 두께 t를 작게 하는 것 이외에도, 상술한 톱부(43)의 폭 β를 작게 하는 것도 유효하다.
도 5에 있어서, 부호 α는, 금속판(64)의 제1 면(64a)의 유효 영역(22) 중 에칭되지 않고 남아 있는 부분(이하, 리브부라고도 칭함)의 폭을 나타내고 있다. 리브부의 폭 α 및 관통부(42)의 치수 r은, 유기 EL 표시 장치의 치수 및 표시 화소수에 따라서 적절히 정해진다. 예를 들어, 리브부의 폭 α는 5㎛ 이상 또한 40㎛ 이하이고, 관통부(42)의 치수 r은 10㎛ 이상 또한 60㎛ 이하이다.
리브부의 폭 α는, 10㎛ 이상이어도 되고, 15㎛ 이상이어도 되고, 20㎛ 이상이어도 된다. 또한, 리브부의 폭 α는, 35㎛ 이하여도 되고, 30㎛ 이하여도 되고, 25㎛ 이하여도 된다. 리브부의 폭 α의 범위는, 상술한 복수의 상한의 후보값 중의 임의의 1개와, 상술한 복수의 하한의 후보값 중의 임의의 1개의 조합에 의해 정해져도 된다. 예를 들어, 리브부의 폭 α는, 10㎛ 이상 35㎛ 이하여도 되고, 15㎛ 이상 30㎛ 이하여도 되고, 20㎛ 이상 25㎛ 이하여도 된다. 또한, 리브부의 폭 α의 범위는, 상술한 복수의 상한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 리브부의 폭 α는, 35㎛ 이상 40㎛ 이하여도 된다. 또한, 리브부의 폭 α의 범위는, 상술한 복수의 하한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 리브부의 폭 α는, 5㎛ 이상 10㎛ 이하여도 된다.
관통부(42)의 치수 r은, 15㎛ 이상이어도 되고, 20㎛ 이상이어도 되고, 25㎛ 이상이어도 되고, 30㎛ 이상이어도 된다. 또한, 관통부(42)의 치수 r의 하한은, 상술한 10㎛보다도 작아도 된다. 예를 들어, 관통부(42)의 치수 r은, 5㎛ 이상이어도 된다. 또한, 관통부(42)의 치수 r은, 55㎛ 이하여도 되고, 50㎛ 이하여도 되고, 45㎛ 이하여도 되고, 40㎛ 이하여도 되고, 35㎛ 이하여도 된다. 관통부(42)의 치수 r의 범위는, 상술한 복수의 상한의 후보값 중의 임의의 1개와, 상술한 복수의 하한의 후보값 중의 임의의 1개의 조합에 의해 정해져도 된다. 예를 들어, 관통부(42)의 치수 r은, 15㎛ 이상 55㎛ 이하여도 되고, 20㎛ 이상 50㎛ 이하여도 되고, 25㎛ 이상 45㎛ 이하여도 되고, 30㎛ 이상 40㎛ 이하여도 되고, 30㎛ 이상 35㎛ 이하여도 된다. 또한, 관통부(42)의 치수 r의 범위는, 상술한 복수의 상한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 관통부(42)의 치수 r은, 55㎛ 이상 60㎛ 이하여도 된다. 또한, 관통부(42)의 치수 r의 범위는, 상술한 복수의 하한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 관통부(42)의 치수 r은, 5㎛ 이상 10㎛ 이하여도 된다.
또한, 도 4 및 도 5에 있어서는, 인접하는 두개의 제2 오목부(35) 사이에 금속판(64)의 제2 면(64b)이 잔존하고 있는 예를 나타냈지만, 이것에 한정되는 일은 없다. 도시는 하지 않지만, 인접하는 두개의 제2 오목부(35)가 접속되도록 에칭이 실시되어도 된다. 즉, 인접하는 두개의 제2 오목부(35) 사이에, 금속판(64)의 제2 면(64b)이 잔존하고 있지 않은 장소가 존재하고 있어도 된다.
이어서, 증착 마스크(20)를 제조하는 방법에 대하여 설명한다.
먼저, 증착 마스크를 제조하기 위하여 사용되는 금속판의 제조 방법에 대하여 설명한다. 본 실시 형태에 있어서는, 금속판이, 니켈을 포함하는 철 합금의 압연재로 이루어지는 예에 대하여 설명한다. 압연재는, 100㎛ 이하의 두께를 갖고 있어도 되고, 바람직하게는 40㎛ 이하의 두께를 갖는다. 또한, 압연재는, 30질량% 이상 또한 38질량% 이하의 니켈과, 0질량% 이상 6질량% 이하의 코발트와, 잔부의 철과, 불가피한 불순물을 포함하고 있어도 된다.
먼저, 철 및 니켈 그리고 그 밖의 원재료를 준비한다. 예를 들어, 원재료 전체에 대한 철의 비율 및 니켈의 비율이 각각 약 64중량% 및 약 36중량%로 되도록, 각 원재료를 준비한다. 계속해서, 각 원재료를 필요에 따라서 분쇄한 후, 각 원재료를 용해로에서 용해하는 용해 공정을 실시한다. 예를 들어, 아크 방전 등의 기체 방전을 이용하여 각 원재료를 용해하여 혼합한다. 이에 의해, 금속판을 위한 모재를 얻을 수 있다.
용해 시의 온도는, 원재료에 따라서 설정하지만, 예를 들어 1500℃ 이상이다. 용해 공정은 탈산, 탈수, 탈질소 등을 위하여 알루미늄, 망간, 실리콘 등을 용해로에 투입하는 공정을 포함하고 있어도 된다. 또한, 용해 공정은, 대기압보다도 낮은 저압 상태에서, 아르곤 가스 등의 불활성 가스의 분위기 하에서 실시해도 된다.
모재를 용해로로부터 취출한 후, 모재의 표면을 깍아내는 연삭 공정을 실시해도 된다. 이에 의해, 스케일 등의 산화물의 피막을 제거할 수 있다. 구체적인 연삭 방법은 특별히는 한정되지 않지만, 숫돌을 회전시켜서 모재의 표면을 깎는, 소위 그라인딩법이나, 모재를 절삭구에 압입하여 모재의 표면을 깎는, 소위 압입법 등을 채용할 수 있다. 연삭 공정은, 모재의 두께가 균일해지도록 실시되어도 된다.
계속해서, 도 6에 도시하는 바와 같이, 니켈을 포함하는 철 합금으로 구성된 모재(60)를 압연하는 압연 공정을 실시한다. 예를 들어, 한 쌍의 압연 롤(워크 롤)(66a, 66b)을 포함하는 압연 장치(66)를 향해서, 화살표 D1로 나타내는 방향으로 인장 장력을 가하면서 반송한다. 한 쌍의 압연 롤(66a, 66b) 사이에 도달한 모재(60)는, 한 쌍의 압연 롤(66a, 66b)에 의해 압연되고, 이 결과, 모재(60)는, 그 두께가 저감됨과 함께, 반송 방향을 따라서 늘려진다. 이에 의해, 방향 D1로 연장되고, 소정의 두께를 갖는 금속판(64)을 얻을 수 있다. 이하의 설명에 있어서, 금속판(64)이 연장되는 방향 D1을, 길이 방향 D1이라고도 칭한다. 압연에 의해 금속판(64)을 제작하는 경우, 금속판(64)의 표면에는, 길이 방향 D1로 연장되는 압연 줄무늬가 형성된다. 도 6에 도시하는 바와 같이, 금속판(64)을 코어(61)에 권취함으로써 권취체(62)를 형성해도 된다.
또한 도 6은, 압연 공정의 개략을 나타내는 것에 지나지 않고, 압연 공정을 실시하기 위한 구체적인 구성이나 수순이 특별히 한정되는 일은 없다. 예를 들어 압연 공정은, 모재(60)를 구성하는 철 합금의 결정 배열을 변화시키는 온도 이상의 온도에서 모재를 가공하는 열간 압연 공정이나, 철 합금의 결정 배열을 변화시키는 온도 이하의 온도에서 모재를 가공하는 냉간 압연 공정을 포함하고 있어도 된다. 또한, 한 쌍의 압연 롤(66a, 66b) 사이에 모재(60)나 금속판(64)을 통과시킬 때의 방향이 일방향으로 한정되는 일은 없다. 예를 들어, 도 6 및 도 7에 있어서, 지면 좌측으로부터 우측으로의 방향 및 지면 우측으로부터 좌측으로의 방향으로 반복하여 모재(60)나 금속판(64)을 한 쌍의 압연 롤(66a, 66b) 사이에 통과시킴으로써, 모재(60)나 금속판(64)을 서서히 압연해도 된다.
압연 공정에 있어서는, 금속판(64)의 형상을 조정하기 위하여 압연 액추에이터의 압력을 조정해도 된다. 또한, 압연 롤(워크 롤)(66a, 66b)에 추가하여 백업 롤의 형상을 적절히 조정해도 된다.
또한, 냉간 압연 공정에 있어서는, 모재(60)와 압연 롤(66a, 66b) 사이에 등유나 니트 오일 등의 쿨런트를 공급해도 된다. 이에 의해, 모재의 온도를 제어할 수 있다.
또한, 압연 공정 전후, 또는 압연 공정 사이에 모재(60) 또는 금속판(64)의 품질이나 특성을 분석하는 분석 공정을 실시해도 된다. 예를 들어, 형광 X선을 모재(60) 또는 금속판(64)에 조사하여 조성을 분석해도 된다. 또한, 열 기계 분석(TMA: Thermomechanical Analisys)에 의해 모재(60) 또는 금속판(64)의 열 신축량을 측정해도 된다.
그 후, 압연에 의해 금속판(64) 내에 축적된 잔류 응력을 제거하기 위해서, 도 7에 도시하는 바와 같이, 어닐 장치(67)를 사용하여 금속판(64)을 어닐하는 어닐 공정을 실시해도 된다. 어닐 공정은, 도 7에 도시하는 바와 같이, 금속판(64)을 반송 방향(길이 방향)으로 잡아당기면서 실시되어도 된다. 즉, 어닐 공정은, 소위 배치식의 어닐링이 아닌, 반송하면서의 연속 어닐링으로서 실시되어도 된다. 이 경우, 금속판(64)에 좌굴 꺾임 등의 변형이 발생하는 것을 억제하도록 온도나 반송 속도를 설정하는 것이 바람직하다. 어닐 공정을 실시함으로써, 잔류 변형이 어느 정도 제거된 금속판(64)을 얻을 수 있다. 또한, 도 7에 있어서는, 어닐 공정 시에 금속판(64)을 수평 방향으로 반송하는 예를 나타내고 있지만, 이것에 한정되는 일은 없고, 어닐 공정 시에 금속판(64)을, 수직 방향 등의 기타 방향으로 반송해도 된다.
어닐 공정의 조건은, 금속판(64)의 두께나 압하율 등에 따라 적절하게 설정되지만, 예를 들어 500℃ 이상 600℃ 이하의 범위 내에서 30초 이상 90초 이하에 걸쳐 어닐 공정이 실시된다. 또한 상기의 초수는, 어닐 장치(67) 중에서 소정의 온도로 조정된 공간을 금속판(64)이 통과하는 것에 요하는 시간을 나타내고 있다. 어닐 공정의 온도는, 금속판(64)의 연화가 발생하지 않도록 설정되어도 된다.
어닐 공정의 온도의 하한은, 상술한 500℃보다도 낮아도 된다. 예를 들어, 어닐 공정의 온도는, 400℃ 이상이어도 되고, 450℃ 이상이어도 된다. 또한, 어닐 공정의 온도의 상한은, 상술한 600℃보다도 높아도 된다. 예를 들어, 어닐 공정의 온도는, 700℃ 이하여도 되고, 650℃ 이하여도 된다. 또한, 어닐 공정의 온도 범위는, 상술한 복수의 상한의 후보값 중의 임의의 1개와, 상술한 복수의 하한의 후보값 중의 임의의 1개의 조합에 의해 정해져도 된다. 예를 들어, 어닐 공정의 온도는, 400℃ 이상 700℃ 이하여도 되고, 450℃ 이상 650℃ 이하여도 된다. 또한, 어닐 공정의 온도 범위는, 상술한 복수의 상한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 어닐 공정의 온도는, 650℃ 이상 700℃ 이하여도 된다. 또한, 어닐 공정의 온도 범위는, 상술한 복수의 하한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 어닐 공정의 온도는, 400℃ 이상 450℃ 이하여도 된다.
어닐 공정의 시간은, 40초 이상이어도 되고, 50초 이상이어도 된다. 또한, 어닐 공정의 시간의 하한은, 상술한 30초보다도 짧아도 된다. 예를 들어, 어닐 공정의 시간은, 10초 이상이어도 되고, 20초 이상이어도 된다. 또한, 어닐 공정의 시간은, 80초 이하여도 되고, 70초 이하여도 되고, 60초 이하여도 된다. 또한, 어닐 공정의 시간의 상한은, 상술한 90초보다도 길어도 된다. 예를 들어, 어닐 공정의 시간은, 100초 이하여도 된다. 또한, 어닐 공정의 시간의 범위는, 상술한 복수의 상한의 후보값 중의 임의의 1개와, 상술한 복수의 하한의 후보값 중의 임의의 1개의 조합에 의해 정해져도 된다. 예를 들어, 어닐 공정의 시간은, 10초 이상 100초 이하여도 되고, 20초 이상 90초 이하여도 되고, 30초 이상 80초 이하여도 되고, 40초 이상 70초 이하여도 되고, 50초 이상 60초 이하여도 된다. 또한, 어닐 공정의 시간의 범위는, 상술한 복수의 상한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 어닐 공정의 시간은, 90초 이상 100초 이하여도 된다. 또한, 어닐 공정의 시간 범위는, 상술한 복수의 하한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 어닐 공정의 시간은, 10초 이상 20초 이하여도 된다.
바람직하게는 상술한 어닐 공정은, 비환원 분위기나 불활성 가스 분위기에서 실시된다. 여기서 비환원 분위기란, 수소 등의 환원성 가스를 포함하지 않는 분위기이다. 「환원성 가스를 포함하지 않는다」란, 수소 등의 환원성 가스의 농도가 10% 이하인 것을 의미하고 있다. 어닐 공정에 있어서, 환원성 가스의 농도는, 8% 이하여도 되고, 6% 이하여도 되고, 4% 이하여도 되고, 2% 이하여도 되고, 1% 이하여도 된다. 또한 불활성 가스 분위기란, 아르곤 가스, 헬륨 가스, 질소 가스 등의 불활성 가스의 농도가 90% 이상인 분위기이다. 어닐 공정에 있어서, 불활성 가스의 농도는, 92% 이상이어도 되고, 94% 이상이어도 되고, 96% 이상이어도 되고, 98% 이상이어도 되고, 99% 이상이어도 된다. 비환원 분위기나 불활성 가스 분위기에서 어닐 공정을 실시함으로써, 니켈 수산화물 등의 니켈 화합물이 금속판(64)의 표면층에 생성되는 것을 억제할 수 있다. 어닐 장치(67)는, 불활성 가스의 농도를 모니터하는 기구나, 불활성 가스의 농도를 조정하는 기구를 갖고 있어도 된다.
어닐 공정 전에, 금속판(64)을 세정하는 세정 공정을 실시해도 된다. 이에 의해, 어닐 공정 시에 금속판(64)의 표면에 이물이 부착되는 것을 억제할 수 있다. 세정을 위한 세정액으로서는, 예를 들어 탄화수소계의 액을 사용할 수 있다.
또한 도 7에 있어서는, 어닐 공정이, 금속판(64)을 길이 방향으로 잡아당기면서 실시되는 예를 나타냈지만, 이것에 한정되는 일은 없고, 어닐 공정을, 금속판(64)이 코어(61)에 권취된 상태에서 실시해도 된다. 즉 배치식의 어닐링이 실시되어도 된다. 또한, 금속판(64)이 코어(61)에 권취된 상태에서 어닐 공정을 실시하는 경우, 금속판(64)에, 권취체(62)의 권취 직경에 따른 휘려는 경향이 생겨 버리는 경우가 있다. 따라서, 권취체(62)의 감기 직경이나 모재(60)를 구성하는 재료에 따라서는, 금속판(64)을 길이 방향으로 잡아당기면서 어닐 공정을 실시하는 것이 유리하다.
그 후, 금속판(64)의 폭이 소정의 범위 내가 되도록, 압연 공정에 의해 얻어진 금속판(64)의 폭 방향에 있어서의 양단을 각각 소정의 범위에 걸쳐 잘라 떨어뜨리는 슬릿 공정을 실시해도 된다. 이 슬릿 공정은, 압연에 기인하여 금속판(64)의 양단에 발생할 수 있는 크랙을 제거하기 위하여 실시된다. 이러한 슬릿 공정을 실시함으로써, 금속판(64)이 파단되어 버리는 현상, 소위 판 절단, 크랙을 기점으로 하여 발생해 버리는 것을 방지할 수 있다.
슬릿 공정에 있어서 잘라 떨어뜨려지는 부분의 폭은, 슬릿 공정 후의 금속판(64)의 형상이, 폭 방향에 있어서 좌우 대칭이 되도록 조정되어도 된다. 또한, 슬릿 공정을, 상술한 어닐 공정 전에 실시해도 된다.
또한, 상술한 압연 공정, 어닐 공정 및 슬릿 공정 중 적어도 2개의 공정을 복수회 반복함으로써, 소정의 두께의 긴 형상의 금속판(64)을 제작해도 된다.
어닐 공정의 후, 금속판(64)의 표면 상태를 검사하는 검사 공정을 실시한다. 구체적으로는, 금속판(64)의 표면에 있어서의 광의 반사율이 소정의 범위 내인지의 여부를 검사한다. 이하, 이러한 검사를 실시하는 것의 배경에 대하여 설명한다. 또한, 금속판(64)의 표면이란, 금속판(64)의 제1 면(64a) 또는 제2 면(64b)이다.
본건 발명자들이 예의 연구를 행한 바, 금속판(64)의 표면과 레지스트막 사이의 밀착성과, 금속판(64)의 표면에 있어서의 광의 반사율 사이에 상관이 있는 것을 발견하였다. 구체적으로는, 본건 출원인이 사용하는 타입의 금속판(64)의 영역에 있어서는, 금속판(64)의 표면에 있어서의 광의 반사율이 작아질수록, 금속판(64)의 표면과 레지스트막 사이의 밀착성이 높아지는 것을 발견하였다. 따라서, 금속판(64)의 표면에 있어서의 광의 반사율을 측정함으로써, 금속판(64)의 표면과 레지스트막 사이의 밀착성에 관한 지견을 얻을 수 있다. 레지스트막이란, 예를 들어 금속판(64)을 에칭하여 관통 구멍(25)을 형성할 때의 마스크로 되는 층이다.
금속판(64)의 표면에 있어서의 광의 반사율이 낮을수록 레지스트막과의 밀착성이 높아지는 이유는, 예를 들어 이하와 같다. 압연에 의해 금속판(64)을 제작하는 경우, 금속판(64)의 표면에는, 오일 피트나 압연 줄무늬 등의 미소한 파임부나 요철부가 형성된다. 오일 피트란, 모재(60)와 압연 롤(66a, 66b) 사이에 존재하는 압연 오일에 기인하여 금속판(64)의 표면에 형성되는 오목부이다. 이러한 파임부나 요철부의 분포 밀도가 높을수록, 금속판(64)의 표면에 있어서의 광의 반사율이 낮아진다. 한편, 금속판(64)의 표면에 마련되는 레지스트막이, 파임부나 요철부에 추종하여 변형 가능한 경우, 파임부나 요철부의 분포 밀도가 높을수록, 금속판(64)의 표면에 대한 레지스트막의 접촉 면적이 커진다. 이 결과, 금속판(64)의 표면에 있어서의 광의 반사율이 낮을수록 레지스트막과의 밀착성이 높다는 현상이 나타난다고 생각된다. 또한, 상술한 이유는 추측에 지나지 않고, 광의 반사율과 밀착성 사이의 상관의 원인이 이외에 존재하는 것을 부정하는 것은 아니다.
상술한 바와 같이, 금속판(64)의 표면에 있어서는, 오일 피트나 압연 줄무늬 등의 미소한 파임부나 요철부의 분포 밀도가 높을수록, 광의 반사율이 낮아진다. 따라서, 금속판(64)의 표면에 있어서의 광의 반사율을 측정함으로써, 미소한 파임부나 요철부에 관한 평가를 행할 수 있다. 즉, 광의 반사율이라고 하는 거시적인 평가에 의해, 파임부나 요철부라고 하는 미시적인 특성에 관한 정보를 얻을 수 있다.
이하, 금속판(64)의 표면에 있어서의 광의 반사율을 측정하는 방법에 대하여 설명한다. 여기에서는, 금속판(64)의 제2 면(64b)에 있어서의 광의 반사율을 측정하는 예에 대하여 설명한다.
먼저, 도 8에 도시하는 바와 같이, 길이 방향 D1로 연장되는 금속판(64)을 준비한다. 도 8에 있어서, 부호 D2는, 길이 방향 D1에 직교하는 폭 방향을 나타내고 있다. 금속판(64)의 제1 면(64a) 및 제2 면(64b)은 모두, 길이 방향 D1 및 폭 방향 D2로 넓어지고 있다. 폭 방향 D2에 있어서의 금속판(64)의 치수는, 100mm 이상 또한 1000mm 이하이고, 예를 들어 500mm이다.
폭 방향 D2에 있어서의 금속판(64)의 치수는, 200mm 이상이어도 되고, 300mm 이상이어도 되고, 400mm 이상이어도 되고, 500mm 이상이어도 된다. 또한, 폭 방향 D2에 있어서의 금속판(64)의 치수는, 900mm 이하여도 되고, 800mm 이하여도 되고, 700mm 이하여도 되고, 600mm 이하여도 된다. 폭 방향 D2에 있어서의 금속판(64)의 치수 범위는, 상술한 복수의 상한의 후보값 중의 임의의 1개와, 상술한 복수의 하한의 후보값 중의 임의의 1개의 조합에 의해 정해져도 된다. 예를 들어, 폭 방향 D2에 있어서의 금속판(64)의 치수는, 200mm 이상 900mm 이하여도 되고, 300mm 이상 800mm 이하여도 되고, 400mm 이상 700mm 이하여도 되고, 500mm 이상 600mm 이하여도 된다. 또한, 폭 방향 D2에 있어서의 금속판(64)의 치수 범위는, 상술한 복수의 상한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 폭 방향 D2에 있어서의 금속판(64)의 치수는, 900mm 이상 1000mm 이하여도 된다. 또한, 폭 방향 D2에 있어서의 금속판(64)의 치수의 범위는, 상술한 복수의 하한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 폭 방향 D2에 있어서의 금속판(64)의 치수는, 100mm 이상 200mm 이하여도 된다.
계속해서, 금속판(64)을 절단하여 복수의 시험편을 준비한다. 예를 들어, 도 8에 도시하는 바와 같이, 제1 시험편(50L), 제2 시험편(50M) 및 제3 시험편(50R)이라고 하는 3개의 시험편을 준비한다. 도 8에 도시하는 바와 같이, 제1 시험편(50L), 제2 시험편(50M) 및 제3 시험편(50R)이라고 하는 3개의 시험편은 각각, 금속판(64)의 제1 영역(64L), 제2 영역(64M) 및 제3 영역(64R)으로부터 취출된 시험편이다. 제1 영역(64L), 제2 영역(64M) 및 제3 영역(64R)은, 금속판(64)의 폭 방향 D2에 있어서의 일단으로부터 타단에 나열되어 있다. 또한, 제1 영역(64L), 제2 영역(64M) 및 제3 영역(64R)은, 금속판(64)의 폭 방향 D2에 있어서 동일한 소정의 길이를 갖고 있다. 이하의 설명에 있어서, 제1 시험편(50L), 제2 시험편(50M) 및 제3 시험편(50R)에 공통되는 구성 등에 대하여 설명하는 경우, 제1 시험편(50L), 제2 시험편(50M) 및 제3 시험편(50R)을 총칭하여 시험편(50)이라고도 나타낸다. 길이 방향 D1 및 폭 방향 D2에 있어서의 시험편(50)의 치수는 각각, 20mm 이상 또한 100mm 이하이고, 예를 들어 50mm이다.
계속해서, 금속판(64)의 시험편(50)에 조사하는 광을 생성하는 광원과, 시험편(50)에 의해 반사된 광을 검출하는 검출기를 적어도 갖는 측정기를 준비한다. 측정기로서는, 예를 들어 가부시키가이샤 무라카미 시키사이 기쥬츠 겐큐죠제의 변각 광도계 GP-200을 사용할 수 있다. 이 경우, 광원은, 예를 들어 할로겐 램프이다. 측정기는, 시험편(50)에 조사되는 광의 강도나 검출기에 도달하는 광의 강도 등을 조정하기 위한 조정기를 또한 갖고 있어도 된다. 예를 들어, 측정기는, 광원과 시험편(50) 사이, 또는 시험편과 검출기 사이에 위치하는 감광 필터나 조리개 등을 또한 갖고 있어도 된다.
계속해서, 측정기의 교정(calibration)을 행한다. 구체적으로는, 먼저, 광원과 검출기를 소정의 이격 거리로 이격한 상태에서, 광원으로부터 검출기를 향하여 광을 방사한다. 이 경우, 광이 광원으로부터 검출기에 직접 입사한다. 이격 거리는, 광원으로부터 방사된 광이 시험편(50)에 의해 반사되어서 검출기에 도달할 때까지의 광로 길이와 동등해지도록 설정된다. 계속해서, 검출기가 검출한 광의 강도를 기준 강도로서 기록한다.
계속해서, 도 9에 도시하는 바와 같이, 광원으로부터의 광을 시험편(50)에 입사시켜, 시험편(50)의 표면에 의해 정반사된 광(이하, 반사광이라고도 칭함)을 검출기에 의해 검출하고, 광의 반사율을 측정하는 측정 공정을 실시한다. 반사율은, 상술한 기준 강도에 대한, 검출기가 검출한 반사광의 강도의 비율로서 산출된다. 측정 공정에 있어서는, 검출기의 각도 또는 위치를 변화시킴으로써, 시험편(50)의 표면으로부터 다양한 각도로 출사하는 반사광의 강도를 측정해도 된다. 예를 들어, 시험편(50)의 표면으로부터 30° 내지 60°의 각도로 출사하는 반사광의 강도를, 소정의 각도마다, 예를 들어 0.1°마다 각각 측정해도 된다. 또한, 본 실시 형태에 있어서는, 시험편(50)의 표면으로부터 다양한 각도로 출사하는 반사광 중 45°±0.2°의 범위 내의 반사광을 사용하여, 광의 반사율을 산출한다.
이하의 설명에 있어서, 시험편(50)의 표면 중 제1 면(64a)에 있어서의 광의 반사율을, 제1 면 반사율이라고도 칭하고, 시험편(50)의 표면 중 제2 면(64b)에 있어서의 광의 반사율을, 제2 면 반사율이라고도 칭한다. 또한, 제1 면 반사율 또는 제2 면 반사율을 표면 반사율이라고도 총칭한다. 도 9에 있어서는, 시험편(50)의 제2 면(64b)에 있어서의 제2 면 반사율을 측정하는 예가 나타나 있다.
표면 반사율을, 제1 평면 P1 내에 있어서 측정한 제1 반사율 및 제2 평면 P2 내에 있어서 측정한 제2 반사율의 평균값으로서 산출해도 된다.
도 9에 도시하는 바와 같이, 제1 평면 P1은, 제1 면(64a) 등의 표면 및 길이 방향 D1에 직교하는 평면이다. 도 9에 있어서, 부호 L11은, 제1 평면 P1 내에 있어서 시험편(50)에 입사하는 광을 나타내고, 부호 L12는, 제1 평면 P1 내에 있어서 시험편(50)으로부터 출사하는 반사광을 나타낸다.
도 9에 도시하는 바와 같이, 제2 평면 P2는, 제1 면(64a) 등의 표면 및 폭 방향 D2에 직교하는 평면이다. 도 9에 있어서, 부호 L21은, 제2 평면 P2 내에 있어서 시험편(50)에 입사하는 광을 나타내고, 부호 L22는, 제2 평면 P2 내에 있어서 시험편(50)으로부터 출사하는 반사광을 나타낸다.
상술한 바와 같은 반사율의 측정을, 복수의 시험편(50) 각각에 대하여 실시하고, 각 시험편(50)에 있어서 측정된 값의 평균값을, 본 실시 형태에 있어서의 표면 반사율로 해도 된다. 예를 들어, 상술한 제1 시험편(50L), 제2 시험편(50M) 및 제3 시험편(50R) 각각에 있어서, 제1 면(64a) 등의 표면에 있어서 반사율을 측정하고, 측정된 각 반사율의 평균값을, 본 실시 형태에 있어서의 제1 면 반사율 등으로 해도 된다. 또한, 상술한 바와 같이 제1 평면 P1 내 및 제2 평면 P2 내에서 각각 반사율을 측정하는 경우, 제1 평면 P1 내에 있어서 복수의 시험편(50)에 대하여 측정된 값 및 제2 평면 P2 내에 있어서 복수의 시험편(50)에 대하여 측정된 값의 평균값을, 본 실시 형태에 있어서의 표면 반사율로 해도 된다.
계속해서, 얻어진 표면 반사율의 값에 따라, 금속판(64)이 양품인지 아닌지를 판정하는 판정 공정을 실시한다. 판정 공정은, 예를 들어 이하의 판정 조건 A, B 중 적어도 어느 한쪽을 만족시키는 금속판(64)을, 양품으로 판정한다. 판정 공정은, 이하의 판정 조건 A, B의 양쪽을 만족시키는 금속판(64)을, 양품으로 판정해도 된다.
판정 조건 A: 금속판(64)의 표면 반사율이 8% 이상인 것.
판정 조건 B: 금속판(64)의 표면 반사율이 25% 이하인 것.
판정 조건 A는, 후술하는 바와 같이, 증착 마스크(20)의 금속판(64)에 형성된 얼라인먼트 마크의 검출성을 충분히 확보하기 위한 조건이다. 얼라인먼트 마크는, 예를 들어 금속판(64) 중 주위의 부분에 비하여 반사율이 낮은 부분으로서 형성된다. 이 경우, 금속판(64)의 반사율이 원래 낮게 되어 있으면, 얼라인먼트 마크의 반사율과 얼라인먼트 마크의 주위 부분 반사율의 차가 작아지고, 얼라인먼트 마크가 검출되기 어려워진다. 따라서, 상술한 판정 조건 A와 같이, 금속판(64)의 표면 반사율의 하한을 설정하는 것은, 얼라인먼트 마크의 검출성을 확보하는 데에 유효하다.
판정 조건 B는, 후술하는 실시예에 의해 뒷받침되는 것처럼, 금속판(64)의 표면에 대한 레지스트막의 밀착성을 충분히 확보하고, 이에 의해, 레지스트막을 마스크로 하여 금속판(64)을 에칭함으로써 형성되는 관통 구멍(25)의 면적 정밀도를 높이기 위한 조건이다.
판정 공정에 있어서는, 상술한 판정 조건 A, B에 추가하여, 이하의 판정 조건 C를 또한 충족하는 금속판(64)을, 양품으로 판정해도 된다.
판정 조건 C: 금속판(64)의 표면 반사율이 20% 이하인 것.
판정 조건 C는, 후술하는 실시예에 의해 뒷받침되는 것처럼, 금속판(64)의 표면에 대한 레지스트막의 보다 높은 밀착성을 확보하고, 이에 의해, 레지스트막을 마스크로 하여 금속판(64)을 에칭함으로써 형성되는 관통 구멍(25)의 치수 변동을 억제하기 위한 조건이다. 금속판(64)에 대한 레지스트막의 밀착성이 높아지면, 에칭 팩터가 높아진다. 즉, 금속판(64)의 두께 방향에 있어서의 에칭이 진행되기 쉬워진다. 이에 의해, 보다 작은 치수를 갖는 관통 구멍(25)을 금속판(64)에 형성하는 것이 가능해지고, 또한, 관통 구멍(25)의 치수 변동을 억제할 수 있다.
상술한 판정 조건 A, B, C는, 금속판(64)의 표면에 직교하는 적어도 하나의 평면 내에 있어서 45°±0.2°의 입사 각도로 상기 표면에 광을 입사시킨 경우에 측정되는 표면 반사율에 대하여 만족되고 있으면 된다. 또한, 판정 조건 A, B, C는, 상술한 제1 반사율 및 제2 반사율의 평균값으로서 산출되는 표면 반사율에 대하여 만족되고 있어도 된다.
상술한 판정 조건 A, B, C 등을 만족시키는 금속판(64)은, 압연 공정 등의 조건을 조정함으로써 제작될 수 있다. 예를 들어, 압연 공정에 있어서, 모재(60)와 압연 롤(66a, 66b) 사이에 공급하는 압연 오일의 양을 증가시킴으로써, 금속판(64)의 표면에 형성되는 오일 피트의 수, 면적 등을 증가시킬 수 있다. 이에 의해, 금속판(64)의 표면에 있어서의 광의 반사율을 낮게 할 수 있다. 반대로, 압연 오일의 공급량을 감소시킴으로써, 모재(60)와 압연 롤(66a, 66b) 사이에 말려들어가는 압연 오일의 양을 감소시킬 수 있고, 금속판(64)의 표면에 있어서의 광의 반사율을 높게 할 수 있다.
또한, 압연 공정에 있어서, 압연 속도, 즉 모재(60)의 반송 속도를 증가시킴으로써도, 모재(60)와 압연 롤(66a, 66b) 사이에 말려들어가는 압연 오일의 양을 증가시킬 수 있다. 이에 의해, 금속판(64)의 표면에 있어서의 광의 반사율을 낮게 할 수 있다. 반대로, 압연 속도를 감소시킴으로써, 모재(60)와 압연 롤(66a, 66b) 사이에 말려들어가는 압연 오일의 양을 감소시킬 수 있고, 금속판(64)의 표면에 있어서의 광의 반사율을 높게 할 수 있다.
압연 속도는, 바람직하게는 30m/분 이상이다. 압연 속도는, 50m/분 이상이어도 되고, 70m/분 이상이어도 되고, 100m/분 이상이어도 된다. 또한, 압연 속도는, 바람직하게는 200m/분 이하이다. 압연 속도는, 150m/분 이하여도 되고, 100m/분 이하여도 되고, 80m/분 이하여도 된다.
압연 속도는, 복수의 상한의 후보값 중의 임의의 1개와, 복수의 하한의 후보값 중의 임의의 1개의 조합에 의해 정해져도 된다. 예를 들어, 압연 속도는, 30m/분 이상 200m/분 이하여도 되고, 50m/분 이상 150m/분 이하여도 된다. 또한, 압연 속도의 범위는, 복수의 상한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 압연 속도는, 150m/분 이상 200m/분 이하여도 되고, 100m/분 이상 150m/분 이하여도 된다. 또한, 압연 속도의 범위는, 복수의 하한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 압연 속도의 범위는, 30m/분 이상 50m/분 이하여도 되고, 50m/분 이상 70m/분 이하여도 된다. 압연 속도는, 바람직하게는 30m/분 이상 200m/분 이하이고, 보다 바람직하게는 30m/분 이상 150m/분 이하이고, 보다 바람직하게는 30m/분 이상 100m/분 이하이고, 보다 바람직하게는 30m/분 이상 80m/분 이하이다.
또한, 워크 롤의 직경을 증가시킴으로써, 금속판(64)의 표면에 있어서의 광의 반사율을 낮게 할 수 있다. 반대로, 워크 롤의 직경을 감소시킴으로써, 금속판(64)의 표면에 있어서의 광의 반사율을 높게 할 수 있다.
워크 롤의 직경은, 바람직하게는 28mm 이상이다. 워크 롤의 직경은, 40mm 이상이어도 되고, 50mm 이상이어도 된다. 또한, 워크 롤의 직경은, 바람직하게는 150mm 이하이다. 워크 롤의 직경은, 120mm 이하여도 되고, 100mm여도 되고, 80mm 이하여도 된다.
워크 롤의 직경 범위는, 복수의 상한의 후보값 중의 임의의 1개와, 복수의 하한의 후보값 중의 임의의 1개의 조합에 의해 정해져도 된다. 예를 들어, 워크 롤의 직경은, 28mm 이상 150mm 이하여도 되고, 40mm 이상 120mm 이하여도 된다. 또한, 워크 롤의 직경 범위는, 복수의 상한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 워크 롤의 직경은, 120mm 이상 150mm 이하여도 된다. 또한, 워크 롤의 직경 범위는, 복수의 하한의 후보값 중의 임의의 2개의 조합에 의해 정해져도 된다. 예를 들어, 워크 롤의 직경은, 28mm 이상 40mm 이하여도 된다. 워크 롤의 직경은, 바람직하게는 28mm 이상 150mm 이하이고, 보다 바람직하게는 40mm 이상 120mm 이하이고, 보다 바람직하게는 50mm 이상 100mm 이하이고, 보다 바람직하게는 50mm 이상 80mm 이하이다.
또한, 압연 오일을 적절하게 선택함으로써도, 금속판(64)의 표면에 형성되는 오일 피트나 압연 줄무늬의 수, 면적 등을 조정할 수 있다. 예를 들어, 압연 오일로서 니트 오일 사용할 수 있다. 니트 오일은, 압연 시의 점도의 상승이 발생하기 어렵다고 하는 특성을 갖는다. 이 때문에, 압연 오일로서 니트 오일을 사용함으로써, 모재(60)와 압연 롤(66a, 66b) 사이에 말려들어가는 압연 오일의 양을 저감할 수 있다. 이에 의해, 금속판(64)의 표면에 오일 피트가 형성되는 것을 억제할 수 있다.
또한, 워크 롤의 표면 조도를 적절하게 선택함으로써도, 금속판(64)의 표면에 형성되는 오일 피트나 압연 줄무늬의 수, 면적 등을 조정할 수 있다. 예를 들어, 워크 롤의 표면 조도 Ra를 작게 함으로써, 금속판(64)의 표면에 압연 줄무늬가 형성되는 것을 억제할 수 있다. 워크 롤의 표면 조도 Ra는, 바람직하게는 0.2㎛ 이하이다. 워크 롤의 표면 조도 Ra는, 0.15㎛ 이하여도 되고, 0.1㎛ 이하여도 되고, 0.05㎛ 이하여도 된다. 워크 롤의 표면 조도 Rz는, 바람직하게는 2.0㎛ 이하이다. 워크 롤의 표면 조도 Rx는, 1.5㎛ 이하여도 되고, 1.0㎛ 이하여도 되고, 0.5㎛ 이하여도 된다. 또한, 워크 롤의 표면 조도 Rz는, 바람직하게는 2.0㎛ 이하이다. 워크 롤의 표면 조도 Rz는, 1.5㎛ 이하여도 되고, 1.0㎛ 이하여도 되고, 0.5㎛ 이하여도 된다. 표면 조도 Ra, Rz는, JIS B 0601: 2013에 기초하여 측정된다.
판정 공정에 있어서는, 상술한 판정 조건에 추가하여, 이하의 판정 조건 D를 또한 충족하는 금속판(64)을, 양품이라 판정해도 된다.
판정 조건 D: 제1 평면 P1 내에 있어서 측정한 제1 반사율을, 제2 평면 P2 내에 있어서 측정한 제2 반사율로 나눈 값이, 0.70 이상 1.30 이하인 것.
판정 조건 D는, 제1 반사율과 제2 반사율의 차에 상한을 설정하는 것을 의미하고 있다. 이하, 판정 조건 D의 의의에 대하여 설명한다.
본건 발명자들이 연구를 행한 바, 제1 반사율과 제2 반사율의 차가 큰 경우, 금속판(64)에 형성되는 관통 구멍(25)의 형상이 설계 형상으로부터 어긋나기 쉬운 것을 발견하였다. 예를 들어, 제1 반사율과 제2 반사율의 차가 큰 경우, 금속판(64)의 길이 방향 D1에 있어서의 관통 구멍(25)의 치수와, 금속판(64)의 폭 방향 D2에 있어서의 관통 구멍(25)의 치수의 차가, 설계값으로부터 어긋나기 쉬운 것을 발견하였다.
금속판(64)의 표면 반사율이 높으면, 금속판(64)의 표면에 대한 레지스트막의 밀착성이 낮아지고, 금속판(64) 중 레지스트막과 겹쳐 있는 부분의 에칭이 발생하기 쉬워진다고 생각된다. 이 때문에, 제1 반사율과 제2 반사율의 차가 크면, 길이 방향 D1에 있어서의 관통 구멍(25)의 치수와 폭 방향 D2에 있어서의 관통 구멍(25)의 치수의 차가, 설계값으로부터 어긋나기 쉬워진다고 생각된다. 예를 들어, 길이 방향 D1에 있어서의 관통 구멍(25)의 치수 설계값과 폭 방향 D2에 있어서의 관통 구멍(25)의 치수 설계값이 동일하다고 가정한다. 이 경우, 제1 반사율과 제2 반사율의 차가 크면, 실제로 형성되는 관통 구멍(25)에 있어서, 길이 방향 D1에 있어서의 치수와 폭 방향 D2에 있어서의 치수 사이에 차가 발생하기 쉬워진다. 구체적으로는, 관통 구멍(25)의 설계 형상이 원형인 경우에, 실제로 형성되는 관통 구멍(25)의 형상이 타원형이 되기 쉬워진다.
또한, 상술한 이유는 추측에 지나지 않고, 제1 반사율과 제2 반사율 사이의 차와, 관통 구멍(25)의 치수 어긋남 사이의 상관 원인이 이외에 존재하는 것을 부정하는 것은 아니다.
증착 마스크(20)는, 상술과 같이, 면 방향으로 잡아 당긴 상태에서 프레임(15)에 고정된다. 증착 마스크(20)를 잡아 당긴 때에 증착 마스크(20)에 발생하는 신장의 양은, 강성 등의 증착 마스크(20)의 기계 특성에 의존한다. 길이 방향 D1에 있어서의 관통 구멍(25)의 치수 및 폭 방향 D2에 있어서의 관통 구멍(25)의 치수는, 강성 등의 증착 마스크(20)의 기계 특성에 영향을 준다. 따라서, 길이 방향 D1에 있어서의 관통 구멍(25)의 치수와 폭 방향 D2에 있어서의 관통 구멍(25)의 치수의 차가 커지면, 강성 등의 증착 마스크(20)의 기계 특성이 상정값으로부터 일탈될 수 있다. 이 경우, 증착 마스크(20)에 발생하는 신장의 양이 상정량으로부터 일탈할 수 있다.
증착 마스크(20)를 프레임(15)에 고정하는 공정에 있어서는, 증착 마스크(20)의 복수의 관통 구멍(25)의, 길이 방향 D1 및 폭 방향 D2에 있어서의 위치가 각각 설정 위치가 되도록, 증착 마스크(20)를 길이 방향 D1에 있어서 잡아 당긴다. 길이 방향 D1에 있어서의 증착 마스크(20)의 인장량은, 미리 시뮬레이션에 기초하여 결정되어 있어도 된다. 이 경우, 증착 마스크(20)을 프레임(15)에 고정하는 공정에 있어서는, 증착 마스크(20)가, 미리 결정된 인장량만큼 길이 방향 D1에 있어서 잡아 당겨진다.
그런데, 증착 마스크(20)를 길이 방향 D1로 잡아 당기면, 폭 방향 D2에 있어서 증착 마스크(20)가 수축한다. 시뮬레이션에 있어서는, 길이 방향 D1에 있어서의 증착 마스크(20)의 인장량과 폭 방향 D2에 있어서의 증착 마스크(20)의 수축량 사이의 상관 관계에 기초하여, 증착 마스크(20)를 프레임(15)에 고정하는 공정에서의 증착 마스크(20)의 인장량을 결정한다. 한편, 길이 방향 D1에 있어서의 관통 구멍(25)의 치수와 폭 방향 D2에 있어서의 관통 구멍(25)의 치수의 차가 크면, 상술한 상관 관계가, 시뮬레이션에 있어서 가정한 시뮬레이션으로부터 어긋나 버린다. 이 경우, 시뮬레이션에 있어서 결정한 인장량의 분만 증착 마스크(20)를 길이 방향 D1로 인장했다고 해도, 폭 방향 D2에 있어서의 증착 마스크(20)의 복수의 관통 구멍(25)의 위치가 설정 위치로부터 일탈해 버린다고 하는 현상이 발생할 수 있다.
이에 비해, 상술한 판정 조건 D를 사용하여 금속판(64)을 판정함으로써, 증착 마스크(20)를 잡아 당긴 때에 증착 마스크(20)에 발생하는 신장의 양이 상정량으로부터 일탈하는 것을 억제할 수 있다. 이 때문에, 시뮬레이션에 있어서 결정한 인장량만큼 증착 마스크(20)를 길이 방향 D1로 인장함으로써, 복수의 관통 구멍(25)의 위치를 설정 위치로 조정할 수 있다. 구체적으로는, 후술하는 실시예에 의해 지지되도록, 제1 반사율을 제2 반사율로 나눈 값이, 0.70 이상 1.30 이하인 금속판(64)을 사용하여 제조한 증착 마스크(20)를 프레임(15)에 고정할 때에, 증착 마스크(20)의 복수의 관통 구멍(25)의 길이 방향 D1 및 폭 방향 D2에 있어서의 위치가 각각 설정 위치가 되도록 증착 마스크(20)를 잡아 당길 수 있었다.
판정 조건 D를 만족시키는 금속판(64)은, 제1 반사율과 제2 반사율의 차가 작아지도록 압연 공정 등의 조건을 조정함으로써 제작될 수 있다. 제1 반사율은, 예를 들어 워크 롤의 표면 조도, 워크 롤의 표면 회전 속도와 금속판(64)의 반송 속도의 차 등이 클수록 낮아진다. 제2 반사율은, 예를 들어 압연 오일의 공급량, 금속판(64)의 반송 속도, 워크 롤의 직경, 금속판(64)의 압하율에 의존한다. 워크 롤의 직경을 작게 하는 것은, 금속판(64)의 압하율을 크게 하는 데에 유효할 수 있다. 이들의 경향에 기초하여 압연 공정 등의 조건을 조정함으로써, 제1 반사율과 제2 반사율의 차가 작은 금속판(64)을 제작할 수 있다.
검사 공정의 판정 공정에 있어서, 상술한 판정 조건 A 내지 D는 임의로 조합할 수 있다. 예를 들어, 판정 조건 A 내지 D를 모두 만족시키는 금속판(64)을 양품으로 판정해도 되고, 판정 조건 A 내지 D의 일부만을 만족시키는 금속판(64)을 양품으로 판정해도 된다. 조합의 예를 이하에 나타내었다.
예 1: 판정 조건 A를 만족시키는 금속판(64)을 양품으로 판정한다.
예 2: 판정 조건 A 및 B를 만족시키는 금속판(64)을 양품으로 판정한다.
예 3: 판정 조건 A, B 및 C를 만족시키는 금속판(64)을 양품으로 판정한다.
예 4: 판정 조건 A 및 D를 만족시키는 금속판(64)을 양품으로 판정한다.
예 5: 판정 조건 A, B 및 D를 만족시키는 금속판(64)을 양품으로 판정한다.
예 6: 판정 조건 A, B, C 및 D를 만족시키는 금속판(64)을 양품으로 판정한다.
예 7: 판정 조건 B를 만족시키는 금속판(64)을 양품으로 판정한다.
예 8: 판정 조건 B 및 C를 만족시키는 금속판(64)을 양품으로 판정한다.
예 9: 판정 조건 B 및 D를 만족시키는 금속판(64)을 양품으로 판정한다.
예 10: 판정 조건 B, C 및 D를 만족시키는 금속판(64)을 양품으로 판정한다.
예 11: 판정 조건 D를 만족시키는 금속판(64)을 양품으로 판정한다.
또한, 상술한 판정 조건 A 내지 D에 있어서의 판정 기준은, 금속판(64)에 요구되는 특성에 따라서 적절히 변경될 수 있다.
예를 들어, 판정 조건 A에 있어서의 표면 반사율의 역치는, 8% 이상 또한 판정 조건 B의 역치보다도 작은 범위 내에서 임의로 설정 가능하다. 예를 들어, 판정 조건 A에 있어서의 표면 반사율의 역치는, 10%여도 되고, 12%여도 되고, 14%여도 되고, 16%여도 되고, 18%여도 되고, 20%여도 되고, 23%여도 된다.
또한, 판정 조건 B에 있어서의 표면 반사율의 역치는, 25% 이하 또한 판정 조건 C의 역치보다도 큰 범위 내에서 임의로 설정 가능하다. 예를 들어, 판정 조건 B에 있어서의 표면 반사율의 역치는, 24%여도 되고, 22%여도 된다.
또한, 판정 조건 C에 있어서의 표면 반사율의 역치는, 20% 이하 또한 판정 조건 A의 역치보다도 큰 범위 내에서 임의로 설정 가능하다. 예를 들어, 판정 조건 B에 있어서의 표면 반사율의 역치는, 18%여도 되고, 16%여도 되고, 14%여도 되고, 12%여도 되고, 10%여도 된다.
또한, 판정 조건 D에 있어서의, 제1 반사율을 제2 반사율로 나눈 값의 범위의 하한은, 0.75여도 되고, 0.80이어도 되고, 0.85여도 되고, 0.90이어도 되고, 0.95여도 되고, 1.00이어도 되고, 1.05여도 되고, 1.10이어도 되고, 1.15여도 되고, 1.20이어도 되고, 1.25여도 된다. 또한, 제1 반사율을 제2 반사율로 나눈 값의 범위의 상한은, 1.25여도 되고, 1.20이어도 되고, 1.15여도 되고, 1.10이어도 되고, 1.05여도 되고, 1.00이어도 되고, 0.95여도 되고, 0.90이어도 되고, 0.85여도 되고, 0.80이어도 되고, 0.75여도 된다.
도 20은, 상술한 예 3에 나타내는 조건인, 판정 조건 A, B 및 C에 기초하여 양품으로서 판정되어 선별된 복수의 금속판(64)의 표면 반사율의 분포의 일례를 도시하는 도면이다. 도 20에 있어서, 횡축은, 각 금속판(64)에 있어서 산출된 표면 반사율의 값을 나타낸다. 또한, 종축은, 횡축에 나타난 범위의 표면 반사율을 갖는 금속판(64)의 개수를 나타낸다. 예를 들어, 선별된 복수의 금속판(64) 중, 12% 이상 14% 미만의 표면 반사율을 갖는 금속판(64)의 개수는 28이다. 도 20의 예에 있어서, 판정 조건 A의 역치는 8%이고, 판정 조건 C의 역치는 20%이다. 이 경우, 양품으로서 판정된 금속판(64)의 대부분은, 예를 들어 95% 이상은, 8% 이상 20% 이하의 표면 반사율을 갖는다. 또한, 도 20에 도시하는 바와 같이, 측정 오차 등에 기인하여 선별된 금속판(64)의 일부가, 8% 미만 또는 20%를 초과하는 표면 반사율을 갖는 경우도 있다.
도 21은, 상술한 예 3에 나타내는 조건인, 판정 조건 A, B 및 C에 기초하여 양품으로서 판정되어서 선별된 복수의 금속판(64)의 표면 반사율의 분포의 일례를 도시하는 도면이다. 도 21에 나타내는 횡축 및 종축의 의미는, 도 20의 경우와 동일하다. 도 21의 예에 있어서, 판정 조건 A의 역치는 10%이고, 판정 조건 C의 역치는 18%이다. 이와 같이, 도 21의 예에서는, 도 20의 예에 비하여, 양품으로서 선별되는 금속판(64)의 범위가 좁다. 이 경우, 도 21에 나타내는 선별을 실시하면, 도 20에 나타내는 선별을 실시하는 것도 된다.
상술한 설명에 있어서는, 표면 반사율에 기초하여 금속판(64)을 검사하는 검사 공정을, 금속판(64)의 양부를 판정하기 위해서, 즉 금속판(64)의 선별을 위하여 실시하는 예를 나타내었다. 즉, 검사 공정이, 금속판(64)의 제조 방법에 있어서 금속판(64)을 선별하는 선별 공정으로서 기능하는 예를 나타내었다. 또한, 도 20 및 도 21에 있어서는, 선별 공정이, 상술한 예 3에 나타내는 조건인, 판정 조건 A, B 및 C를 만족시키는 금속판(64)을 선별하는 예를 나타내었다. 즉, 표면 반사율이 8% 이상 또한 25% 이하인 금속판(64)을 선별하는 예를 나타내었다. 그러나, 검사 공정은, 금속판(64)의 제조 방법에 있어서의 금속판(64)의 선별 이외의 목적으로 사용되어도 된다.
또한, 선별 공정에서의 선별 조건은 임의이다. 예를 들어, 선별 공정은, 상술한 판정 조건 A 내지 D를 모두 만족시키는 금속판(64)을 선별해도 되고, 판정 조건 A 내지 D의 일부만을 만족시키는 금속판(64)을 선별해도 된다. 조합의 예는, 판정 공정에서의 상술한 예 1 내지 11의 경우와 마찬가지이다.
검사 공정을 금속판(64)의 제조 방법에 있어서의 금속판(64)의 선별 이외의 목적으로 사용하는 예에 대하여 설명한다. 예를 들어, 표면 반사율에 기초하는 금속판(64)의 검사는, 압연 공정의 조건이나 어닐 공정의 조건 등의, 금속판(64)을 제조하기 위한 조건을 최적화하기 위하여 이용되어도 된다. 구체적으로는, 먼저, 다양한 압연 조건에서 금속판(64)을 제조하고, 얻어진 금속판(64)의 표면 반사율을 산출한다. 또한, 압연 조건과, 얻어진 금속판(64)의 표면 반사율을 대조한다. 이에 의해, 상술한 판정 조건을 만족시키는 금속판(64)을 높은 확률로 제조하기 위한 압연 조건 등을 발견할 수 있다. 이와 같이, 표면 반사율에 기초하는 금속판(64)의 검사는, 적절한 압연 조건을 발견하기 위해 이용되어도 된다. 이 경우, 실제의 제조 공정에 있어서 얻어진 금속판(64)의 모두에 대하여 표면 반사율을 산출하는 검사 공정을 실시할 필요는 없다. 예를 들어, 일부의 금속판(64)에 대하여만 검사 공정을 실시해도 된다. 혹은, 압연 조건 등의 제조 조건이 일단 설정된 후는 표면 반사율을 산출하는 검사 공정이 전혀 실시되지 않아도 된다.
도 22는, 판정 조건 A 및 C를 이용하여 발견된 압연 조건 및 어닐 조건에 기초하여 제조된 복수의 금속판(64)의 표면 반사율의 분포의 일례를 도시하는 도면이다. 도 22에 나타내는 횡축 및 종축의 의미는, 도 20의 경우와 동일하다. 도 22의 예에 있어서, 판정 조건 A의 역치는 8%이고, 판정 조건 C의 역치는 20%이다. 도 22의 예에 있어서는, 선별 공정을 실시하지 않는 경우에도, 제조된 복수의 금속판(64)이 각각 8% 이상 20% 이하의 표면 반사율을 갖고 있다.
압연 공정의 후, 혹은 어닐 공정의 후, 금속판(64)의 외관을 검사하는 외관 검사 공정을 실시해도 된다. 외관 검사 공정은, 자동 검사기를 사용하여 금속판(64)의 외관을 검사하는 공정을 포함하고 있어도 된다. 또한, 외관 검사 공정은, 눈으로 보아 금속판(64)의 외관을 검사하는 공정을 포함하고 있어도 된다.
또한, 압연 공정의 후, 혹은 어닐 공정의 후, 금속판(64)의 형상을 검사하는 형상 검사 공정을 실시해도 된다. 예를 들어, 3차원 측정기를 사용하여, 두께 방향에 있어서의 금속판(64)의 표면 위치를 금속판(64)의 소정의 영역 내에서 측정해도 된다.
본 실시 형태에 의한 금속판의 제조 방법에 의하면, 상술한 판정 조건을 만족시키는 금속판(64)을 얻을 수 있다. 예를 들어, 표면 반사율이 8% 이상인 금속판(64)을 얻을 수 있다. 이에 의해, 금속판(64)의 표면에 있어서의 광의 반사율을, 금속판(64)의 표면의 오목부 등을 포함하는 얼라인먼트 마크에 있어서의 광의 반사율에 비하여 유의미하게 크게 할 수 있다. 이에 의해, 얼라인먼트 마크의 검출 불량이 발생하는 것을 억제할 수 있다. 또한, 표면 반사율이 25% 이하, 보다 바람직하게는 20% 이하인 금속판(64)을 얻을 수 있다. 이에 의해, 금속판(64)의 표면에 대한 레지스트막의 밀착성을 높일 수 있으므로, 금속판(64)의 표면에 좁은 폭의 레지스트 패턴을 안정적으로 마련할 수 있다. 이 때문에, 높은 화소 밀도를 갖는 유기 EL 표시 장치를 제작하기 위한 증착 마스크(20)를 안정되게 얻을 수 있다. 또한, 제1 반사율을 제2 반사율로 나눈 값이 0.70 이상 1.30 이하인 금속판(64)을 얻을 수 있다. 이에 의해, 금속판(64)을 사용하여 제조한 증착 마스크(20)를 프레임(15)에 고정할 때에, 복수의 관통 구멍(25)의 길이 방향 D1에 있어서의 위치가 설정 위치로 되도록 증착 마스크(20)를 길이 방향 D1로 잡아 당긴 경우에, 복수의 관통 구멍(25)의 폭 방향 D2에 있어서의 위치가 설정 위치로부터 일탈해 버리는 것을 억제할 수 있다.
이어서, 상술한 판정 조건을 만족시키는 표면 반사율을 갖는 금속판(64)을 사용하여 증착 마스크(20)를 제조하는 방법에 대해서, 주로 도 10 내지 도 15를 참조하여 설명한다. 도 10은, 금속판(64)을 사용하여 증착 마스크(20)를 제조하는 제조 장치(70)를 도시하는 도면이다. 먼저, 길이 방향 D1로 연장되는 금속판(64)을 준비한다. 금속판(64)은, 예를 들어 금속판(64)을 상술한 코어(61)로 권취한 권취체(62)의 상태에서 준비된다. 계속해서, 금속판(64)을 도 10에 도시하는 레지스트막 형성 장치(71), 노광·현상 장치(72), 에칭 장치(73) 및 분리 장치(74)에 순차 반송한다. 또한, 도 10에 있어서는, 금속판(64)이 그 길이 방향 D1로 반송됨으로써 장치 사이를 이동하는 예가 나타나 있지만, 이것에 한정되는 일은 없다. 예를 들어, 레지스트막 형성 장치(71)에 있어서 레지스트막이 마련된 금속판(64)을 권취한 후, 권취체의 상태의 금속판(64)을 노광·현상 장치(72)에 공급해도 된다. 또한, 노광·현상 장치(72)에 있어서 노광·현상 처리된 레지스트막이 마련된 상태의 금속판(64)을 권취한 후, 권취체의 상태의 금속판(64)을 에칭 장치(73)에 공급해도 된다. 또한, 에칭 장치(73)에 있어서 에칭된 금속판(64)을 권취한 후, 권취체의 상태의 금속판(64)을 분리 장치(74)에 공급해도 된다.
레지스트막 형성 장치(71)는, 금속판(64)의 표면에 레지스트막을 마련한다. 노광·현상 장치(72)는, 레지스트막에 노광 처리 및 현상 처리를 실시함으로써, 레지스트막을 패터닝하여 레지스트 패턴을 형성한다.
에칭 장치(73)는, 레지스트 패턴을 마스크로 하여 금속판(64)을 에칭하여, 금속판(64)에 관통 구멍(25)을 형성한다. 또한 본 실시 형태에 있어서는, 복수매의 증착 마스크(20)에 대응하는 다수의 관통 구멍(25)을 금속판(64)에 형성한다. 바꾸어 말하면, 금속판(64)에 복수매의 증착 마스크(20)를 할당한다. 예를 들어, 금속판(64)의 폭 방향 D2에 복수의 유효 영역(22)이 나열되고, 또한 금속판(64)의 길이 방향 D1에 복수의 증착 마스크(20)용의 유효 영역(22)이 나열하도록, 금속판(64)에 다수의 관통 구멍(25)을 형성한다.
분리 장치(74)는, 금속판(64) 중 1매분의 증착 마스크(20)에 대응하는 복수의 관통 구멍(25)이 형성된 부분을 금속판(64)으로부터 분리하는 분리 공정을 실시한다. 이와 같이 하여, 매엽상의 증착 마스크(20)를 얻을 수 있다.
도 11 및 도 12를 참조하여, 레지스트막 형성 장치(71)를 사용하여, 금속판(64)의 표면에 레지스트막을 마련하는 레지스트막 형성 공정에 대하여 설명한다.
도 11에 도시하는 바와 같이, 레지스트막 형성 장치(71)는, 챔버(71a)와, 챔버(71a) 내에 위치하는 적층 롤러(71b)와, 도시하지 않은 배기 수단을 갖는다. 배기 수단은, 챔버(71a) 내의 압력이 대기압 이하가 되도록, 챔버(71a)의 배기를 행할 수 있다.
도 11에 도시하는 바와 같이, 레지스트막 형성 공정에 있어서는, 금속판(64)의 표면에 드라이 필름(71c)을 적층시킨 후, 적층 롤러(71b)를 사용하여 드라이 필름(71c)을 금속판(64)측으로 압박한다. 이에 의해, 드라이 필름(71c) 중 금속판(64)측에 위치하는 층을 구성하고 있는 레지스트막을, 금속판(64)의 표면에 첩부할 수 있다. 또한, 상술한 바와 같이, 챔버(71a)의 압력을 대기압 이하로 함으로써, 금속판(64)의 표면과 레지스트막 사이에 기포 등이 형성되는 것을 억제할 수 있다. 레지스트막은, 예를 들어 아크릴계 광경화성 수지 등의 감광성 레지스트 재료를 포함하는 막이다.
적층 롤러(71b)는, 레지스트막을 포함하는 드라이 필름(71c)을 금속판(64)측으로 가열하면서 압박해도 된다. 레지스트막 형성 공정에 있어서의 적층 조건의 일례를 이하에 나타낸다.
·챔버(71a) 내의 압력: 10Pa 이상 1000Pa 이하
·적층 롤러(71b)의 온도: 90℃ 이상 130℃ 이하
·적층 롤러(71b)의 압력: 0.2MPa 이상 0.5MPa 이하
도 11에 도시하는 바와 같이, 드라이 필름(71c)은, 챔버(71a) 내에 위치하는 코어(71d)에 감긴 상태에서 공급되어도 된다. 마찬가지로, 도시는 하지 않지만, 금속판(64)도, 챔버(71a) 내에 위치하는 코어에 감긴 상태에서 공급되어도 된다.
도 12는, 금속판(64)과, 금속판(64)의 제1 면(64a)에 마련된 제1 레지스트막(65a)과, 금속판(64)의 제2 면(64b)에 마련된 제2 레지스트막(65b)을 포함하는 적층체의 단면도이다. 도 12에 나타내는 예에 있어서, 금속판(64)의 제1 면(64a) 등의 표면에는 오목부(64c)가 형성되어 있다. 오목부(64c)는, 예를 들어 오일 피트이다. 도 12에 나타내는 예에 의하면, 오목부(64c)의 내부에 레지스트막(65a, 65b)이 침입함으로써, 금속판(64)의 표면에 오목부(64c)가 존재하지 않는 경우에 비하여, 금속판(64)의 표면에 대한 레지스트막(65a, 65b)의 접촉 면적을 크게 할 수 있다. 이에 의해, 금속판(64)의 표면에 대한 레지스트막(65a, 65b)의 밀착성을 높일 수 있다. 또한, 본 실시 형태에 의하면, 금속판(64)의 표면에 있어서의 오목부(64c)의 분포 밀도에 관련하는 정보를, 금속판(64)의 표면에 있어서의 광의 반사율에 기초하여 얻을 수 있다.
계속해서, 노광·현상 장치(72)를 사용하여, 레지스트막(65a, 65b)을 노광 및 현상한다. 이에 의해, 도 13에 도시하는 바와 같이, 금속판(64)의 제1 면(64a) 상에 제1 레지스트 패턴(65c)을 형성하고, 금속판(64)의 제2 면(64b) 상에 제2 레지스트 패턴(65d)을 형성할 수 있다.
도 13에 있어서, 부호 γ는, 금속판(64)의 제2 면(64b) 중 증착 마스크(20)의 상술한 톱부(43)로 되는 부분을 덮는 제2 레지스트 패턴(65d)의 폭을 나타낸다. 폭 γ는, 예를 들어 40㎛ 이하이다. 폭 γ는, 5㎛ 이상이어도 된다.
계속해서, 에칭 장치(73)를 사용하여, 레지스트 패턴(65c, 65d)을 마스크로 하여 금속판(64)을 에칭한다. 구체적으로는, 먼저, 도 14에 도시하는 바와 같이, 금속판(64)의 제1 면(64a) 중 제1 레지스트 패턴(65c)에 의해 덮여 있지 않은 영역을, 제1 에칭액을 사용해서 에칭한다. 예를 들어, 제1 에칭액을, 반송되는 금속판(64)의 제1 면(64a)에 대면하는 측에 배치된 노즐로부터, 제1 레지스트 패턴(65c)너머로 금속판(64)의 제1 면(64a)을 향하여 분사한다. 이 결과, 도 14에 도시하는 바와 같이, 금속판(64) 중 제1 레지스트 패턴(65c)에 의해 덮여 있지 않은 영역에서, 제1 에칭액에 의한 침식이 진행된다. 이에 의해, 금속판(64)의 제1 면(64a)에 다수의 제1 오목부(30)가 형성된다. 제1 에칭액으로서는, 예를 들어 염화제2철 용액 및 염산을 포함하는 것을 사용한다.
이어서, 도 15에 도시하는 바와 같이, 금속판(64)의 제2 면(64b) 중 제2 레지스트 패턴(65d)에 의해 덮여 있지 않은 영역을 에칭하고, 제2 면(64b)에 제2 오목부(35)를 형성한다. 제2 면(64b)의 에칭은, 제1 오목부(30)와 제2 오목부(35)가 서로 통하고, 이에 의해 관통 구멍(25)이 형성되게 될 때까지 실시된다. 제2 에칭액으로서는, 상술한 제1 에칭액과 마찬가지로, 예를 들어 염화제2철 용액 및 염산을 포함하는 것을 사용한다. 또한, 제2 면(64b)의 에칭 시, 도 15에 도시하는 바와 같이, 제2 에칭액에 대한 내성을 가진 수지(69)에 의해 제1 오목부(30)가 피복되어 있어도 된다.
그 후, 금속판(64)으로부터 수지(69)를 제거한다. 수지(69)는, 예를 들어 알칼리계 박리액을 사용함으로써, 제거할 수 있다. 알칼리계 박리액이 사용되는 경우, 수지(69)와 동시에 레지스트 패턴(65c, 65d)도 제거된다. 또한, 수지(69)를 제거한 후, 수지(69)를 박리시키기 위한 박리액과는 다른 박리액을 사용하여, 수지(69)와는 별도로 레지스트 패턴(65c, 65d)을 제거해도 된다.
그 후, 금속판(64)에 할당된 복수의 증착 마스크(20)를 1개 1개 취출한다. 예를 들어, 금속판(64) 중 1매분의 증착 마스크(20)에 대응하는 복수의 관통 구멍(25)이 형성된 부분을 금속판(64)의 그 밖의 부분으로부터 분리한다. 이에 의해, 증착 마스크(20)를 얻을 수 있다.
계속해서, 금속판(64)에 형성된 관통 구멍(25)의 면적 기준값으로부터의 어긋남이 소정의 허용값 이하인지의 여부를 검사하는 검사 공정을 실시한다. 검사 공정에 있어서는, 금속판(64)의 법선 방향을 따라서 평행 광을 증착 마스크(20)의 제1 면(20a) 또는 제2 면(20b)의 한쪽에 입사시켜, 관통 구멍(25)을 투과하여 제1 면(20a) 또는 제2 면(20b)의 다른 쪽으로부터 출사시킨다. 그리고, 출사한 광이 금속판(64)의 면 방향에 있어서 차지하는 영역의 면적을, 관통 구멍(25)의 면적으로서 측정한다. 본 실시 형태에 있어서는, 제1 오목부(30)와 제2 오목부(35) 사이의 접속부(41)가, 증착 마스크(20)로부터 출사한 광이 금속판(64)의 면 방향에 있어서 차지하는 영역의 면적을 결정한다. 따라서, 본 실시 형태에 있어서는, 접속부(41)에 의해 둘러싸인 영역의 면적이, 검사 공정에 있어서 측정되는 관통 구멍(25)의 면적에 대응한다. 기준값 및 허용값은, 증착 마스크(20)를 사용하여 제조하는 표시 장치의 화소 밀도 등에 따라 설정된다. 허용값은, 예를 들어 5㎛2 이상 또한 400㎛2 이하의 범위 내의 소정값이다. 허용값은, 20㎛2 이상이어도 된다. 관통 구멍의 검사 공정에 있어서는, 면적의 기준값으로부터의 어긋남이 허용값을 초과하는 관통 구멍(25)이 1개라도 증착 마스크(20)에 포함되는 경우, 당해 증착 마스크(20)를 불량품으로 하여 배제한다.
도 16은, 증착 마스크(20)를 제1 면(20a)측으로부터 본 경우의 평면도의 일례를 나타내고 있다. 도 16에 도시하는 바와 같이, 제1 오목부(30) 등의 관통 구멍(25)의 윤곽은, 금속판(64)의 표면이 부분적으로 깍여지는 것 등에 의해 형성되는 절결부 F를 포함하는 경우가 있다. 이러한 절결부 F가, 관통 구멍(25)의 면적의 기준값으로부터의 어긋남을 발생시킨다. 절결부 F는, 예를 들어 금속판(64)의 표면에 대한 레지스트 패턴(65c, 65d)의 밀착성이 낮고, 금속판(64)의 표면과 레지스트 패턴(65c, 65d) 사이에 에칭액이 침입함으로써 형성될 수 있다.
검사 공정에 있어서는, 금속판(64)에 형성된 관통 구멍(25)의 면적 변동이 소정의 허용값 이하인지의 여부를 검사해도 된다. 예를 들어, 인접하는 2개의 관통 구멍(25)의 면적 차가 소정의 허용값 이하인지의 여부를 검사한다.
또한, 금속판(64)에 형성된 관통 구멍(25)의 치수를 측정하는 치수 측정 공정을 실시해도 된다. 관통 구멍(25)의 치수란, 예를 들어 도 16에 도시하는 바와 같이, 복수의 관통 구멍(25)이 나열되는 방향에 있어서의 접속부(41)의 치수 S1이나 치수 S2이다. 관통 구멍(25)의 치수를 측정하는 측정 장치로서는, 예를 들어 신토 S 프레시죤제의 AMIC-1710D를 사용할 수 있다. 치수 측정 공정에 있어서는, 측정된 치수의, 치수 기준값으로부터의 어긋남이 소정의 허용값 이하인지의 여부를 검사해도 된다. 치수에 관한 허용값은, 예를 들어 3.0㎛이고, 2.0㎛나 1.5㎛의 경우도 있다. 측정된 치수의, 치수 기준값으로부터의 어긋남양은, 금속판(64)의 표면에 대한 레지스트 패턴(65c, 65d)의 밀착성이 낮은 경우에 커진다.
여기서 본 실시 형태에 있어서는, 상술한 바와 같이, 상술한 판정 조건 B나 판정 조건 C를 만족시키는 금속판(64)을 사용함으로써, 금속판(64)의 표면에 대한 레지스트 패턴(65c, 65d)의 밀착성을 높일 수 있다. 이 때문에, 금속판(64)의 표면과 레지스트 패턴(65c, 65d) 사이에 에칭액이 침입하는 것을 억제할 수 있다. 이에 의해, 관통 구멍(25)의 면적이나 치수가 기준값으로부터 어긋나 버리는 것을 억제할 수 있다. 또한, 금속판(64)의 표면에 대한 레지스트 패턴(65c, 65d)의 밀착성이 위치에 따라 변동되는 것을 억제할 수 있다. 이 때문에, 관통 구멍(25)의 면적이나 치수가 변동되는 것을 억제할 수 있다.
또한, 상술한 판정 조건 A 및 판정 조건 B를 만족시키는 금속판(64)을 사용하여 증착 마스크(20)를 제조한 경우, 증착 마스크(20)에 있어서도, 상술한 판정 조건 A 및 판정 조건 B가 만족될 수 있다. 예를 들어, 증착 마스크(20)의 귀부(17a, 17b)나 중간부(18)의 주위 영역(23) 등, 관통 구멍(25)이 형성되지 않고, 이 때문에 증착 마스크(20)의 제조 공정에 있어서 레지스트 패턴에 의해 덮여 있는 부분은, 제조 공정에 있어서 에칭액에 접촉하지 않는다. 이 때문에, 귀부(17a, 17b)나 주위 영역(23)에 있어서는, 관통 구멍(25)이 형성되기 전의 금속판(64)의 표면 상태가 유지될 수 있다. 따라서, 증착 마스크(20)의 귀부(17a, 17b)나 주위 영역(23)에 광을 조사하여, 증착 마스크(20)를 구성하는 금속판(64)의 표면 반사율을 측정하는 경우, 상술한 판정 조건 A 및 판정 조건 B가 만족될 수 있다. 상술한 판정 조건 C도 마찬가지로, 증착 마스크(20)에 있어서도 만족될 수 있다. 상술한 판정 조건 D도 마찬가지로, 증착 마스크(20)에 있어서도 만족될 수 있다.
이어서, 상술한 바와 같이 하여 얻어진 증착 마스크(20)를 프레임(15)에 용접하는 용접 공정을 실시한다. 이에 의해, 증착 마스크(20) 및 프레임(15)을 구비하는 증착 마스크 장치(10)를 얻을 수 있다.
용접 공정에 있어서는, 증착 마스크(20)에 형성된 얼라인먼트 마크를 이용하여, 프레임(15)에 대한 증착 마스크(20)의 위치 정렬을 실시해도 된다. 도 17a는, 얼라인먼트 마크(64d)의 일례를 도시하는 단면도이다. 도 17a에 나타내는 예에 있어서, 얼라인먼트 마크(64d)는, 증착 마스크(20)의 주위 영역(23)에 있어서 금속판(64)의 제1 면(64a)에 형성된 오목부로 이루어진다. 오목부는, 예를 들어 금속판(64)을 제1 면(64a)측으로부터 에칭하여 제1 오목부(30)를 형성하는 에칭 공정에 있어서, 제1 오목부(30)와 동시에 형성된다. 이 경우, 에칭 공정은, 얼라인먼트 마크(64d)를 구성하는 오목부가 제2 면(64b)측까지 관통하지 않도록 실시된다.
얼라인먼트 마크(64d)에 입사한 광은, 도 17a에 있어서 부호 R1을 붙인 화살표로 나타낸 바와 같이, 입사한 광 L의 입사 각도와는 다른 각도로 반사된다. 예를 들어, 제1 면(64a)에 대한 입사광 L의 입사 각도가 90°인 경우, 얼라인먼트 마크(64d)로부터의 반사광 R1의 출사 각도는 90°로부터 어긋난다. 이 때문에, 얼라인먼트 마크(64d)의 주위로부터의 반사광 R2를 검출하도록 구성되어 있는 검출기는, 얼라인먼트 마크(64d)로부터의 반사광 R1을 적절하게 검출할 수 없다. 이 결과, 얼라인먼트 마크(64d)는, 그 주위의 제1 면(64a)의 부분에 비하여, 반사광의 검출량이 적은 영역으로서 인식된다. 예를 들어, 얼라인먼트 마크(64d)는, 흑색의 영역으로서 인식된다.
도 17b는, 증착 마스크(20)의 얼라인먼트 마크(64d)를 촬영한 화상의 일례를 모식적으로 도시하는 도면이다. 상술한 바와 같이, 얼라인먼트 마크(64d)에 있어서는, 입사광의 입사 각도와는 다른 각도로 광이 반사되므로, 얼라인먼트 마크(64d)는 흑색의 영역으로서 인식된다. 또한, 오일 피트(64e)나 압연 줄무늬(64f)도 마찬가지로 흑색의 영역으로서 인식된다. 이 때문에, 다수의 오일 피트(64e)나 압연 줄무늬(64f)가 존재하고 있으면, 오일 피트(64e)나 압연 줄무늬(64f)가 얼라인먼트 마크(64d)의 윤곽 부분으로서 인식되어, 얼라인먼트 마크(64d)의 오검출이 발생하기 쉬워진다.
본건 발명자들이 예의 연구를 행한 바, 후술하는 실시예에 도시하는 바와 같이, 금속판(64)의 제1 면(64a)의 표면 반사율이 8% 미만인 경우, 얼라인먼트 마크(64d)를 적절하게 검출할 수 없었다. 이유로서는, 얼라인먼트 마크(64d)뿐만 아니라 얼라인먼트 마크(64d)의 주위의 제1 면(64a)도 흑색의 영역으로서 인식되어, 이 때문에 얼라인먼트 마크(64d)의 윤곽을 검출할 수 없었던 것으로 생각된다. 또한, 오일 피트 등에 기인하여 금속판(64)의 제1 면(64a)의 표면 반사율이 8% 미만인 경우, 오일 피트의 부분이, 얼라인먼트 마크(64d)의 윤곽을 획정하는 흑색의 영역으로서 오인식된 경우도 생각된다. 여기서 본 실시 형태에 있어서는, 상술한 판정 조건 A를 만족시키는 금속판(64)을 사용함으로써, 얼라인먼트 마크(64d)의 주위로부터의 반사광 R2의 강도를 충분히 확보할 수 있다. 이 때문에, 반사광의 검출량의 차에 기초하여, 얼라인먼트 마크(64d)의 위치나 윤곽을 고정밀도로 특정할 수 있다.
또한, 상술한 실시 형태에 대하여 다양한 변경을 가하는 것이 가능하다. 이하, 필요에 따라 도면을 참조하면서, 변형예에 대하여 설명한다. 이하의 설명 및 이하의 설명에서 사용하는 도면에서는, 상술한 실시 형태와 마찬가지로 구성될 수 있는 부분에 대해서, 상술한 실시 형태에 있어서의 대응하는 부분에 대하여 사용한 부호와 동일한 부호를 사용하는 것으로 하고, 중복하는 설명을 생략한다. 또한, 상술한 실시 형태에 있어서 얻어지는 작용 효과가 변형예에 있어서도 얻어지는 것이 명확한 경우, 그 설명을 생략하기도 한다.
상술한 본 실시 형태에 있어서는, 금속판(64)이, 모재를 압연함으로써 얻어지는 예를 나타내었다. 그러나, 이것에 한정되는 일은 없고, 도금 처리를 이용한 제박 공정에 의해, 원하는 두께를 갖는 금속판(64)을 제작해도 된다. 제박 공정에 있어서는, 예를 들어 도금액 중에 부분적으로 침지된 스테인리스제 등의 드럼을 회전시키면서, 드럼의 표면에 도금막을 형성하고, 이 도금막을 박리해 감으로써, 긴 형상의 금속판을 롤 투 롤로 제작할 수 있다. 니켈을 포함하는 철 합금으로 이루어지는 금속판을 제작하는 경우, 도금액으로서는, 니켈 화합물을 포함하는 용액과, 철 화합물을 포함하는 용액의 혼합 용액을 사용할 수 있다. 예를 들어, 술팜산 니켈을 포함하는 용액과, 술팜산 철을 포함하는 용액의 혼합 용액을 사용할 수 있다. 도금액에는, 첨가제가 포함되어 있어도 된다. 첨가제의 예로서는, 완충제로서 기능하는 붕산, 평활재로서 기능하는 사카린이나 말론산, 계면활성제로서 기능하는 도데실황산나트륨 등을 들 수 있다.
이와 같이 하여 얻어진 금속판에 대하여, 이어서, 상술한 어닐 공정을 실시해도 된다. 또한, 어닐 공정 전 또는 후에, 금속판의 폭을 원하는 폭으로 조정하기 위하여 금속판의 양단을 잘라내는 상술한 슬릿 공정을 실시해도 된다.
도금 처리를 이용하여 금속판을 제작한 경우도, 상술한 본 실시 형태의 경우와 마찬가지로, 금속판(64)의 표면 반사율이 상술한 판정 조건을 만족시키도록 금속판(64)을 제조한다. 예를 들어, 도금액에 포함되는 상술한 첨가제의 농도나, 제박 공정에서의 온도나 시간 등의 조건을 조정한다. 이에 의해, 금속판(64)에 형성된 얼라인먼트 마크의 검출성을 유지하면서, 금속판(64)의 표면에 대한 레지스트막의 밀착성을 높일 수 있다.
상술한 본 실시 형태에 있어서는, 증착 마스크(20)가, 금속판(64)을 에칭하여 금속판(64)에 관통 구멍(25)을 형성함으로써 제조되는 예를 나타내었다. 그러나, 이것에 한정되는 일은 없고, 관통 구멍(25)에 대응하는 소정의 패턴으로 기판 상에 도금층을 형성하고, 도금층을 기판으로부터 박리함으로써, 증착 마스크(20)를 제조해도 된다. 이러한 증착 마스크(20)의 제조 방법에 대해서는, 예를 들어 일본 특허 공개 제2016-148112호 공보에 개시되어 있으므로, 여기에서는 상세한 설명을 생략한다.
상술한 본 실시 형태에 있어서는, 반사율을 측정하여 금속판(64)의 표면 상태를 검사하는 검사 공정을, 관통 구멍(25)이 형성되기 전의 금속판(64)에 대하여 실시하는 예를 나타내었다. 그러나, 이것에 한정되는 일은 없고, 반사율을 측정하여 금속판(64)의 표면 상태를 검사하는 검사 공정을, 관통 구멍(25)이 형성된 후의 금속판(64)에 대하여, 즉 증착 마스크(20)에 대하여 실시해도 된다. 이 경우, 금속판(64) 중 관통 구멍(25)이 형성되어 있지 않은 부분이며 소정의 면적을 갖는 부분에 광을 조사함으로써, 증착 마스크(20)를 구성하는 금속판(64)의 표면 반사율을 측정할 수 있다. 예를 들어, 금속판(64) 중 증착 마스크(20)의 귀부(17a, 17b)나 중간부(18)의 주위 영역(23)을 구성하는 부분에 광을 조사할 수 있다.
실시예
이어서, 본 개시의 실시 형태를 실시예에 의해 더욱 구체적으로 설명하지만, 본 개시의 실시 형태는 그 요지를 넘지 않는 한, 이하의 실시예 기재에 한정되는 것은 아니다.
실시예 1
먼저, 36질량%의 니켈과, 잔부의 철 및 불가피한 불순물을 포함하는 철 합금으로 구성된 모재를 준비하였다. 이어서, 모재에 대하여 상술한 압연 공정, 슬릿 공정 및 어닐 공정을 실시함으로써, 15㎛의 두께를 갖는 금속판(64)이 권취된 권취체(제1 권취체)를 제조하였다. 계속해서, 제1 권취체로부터 상술한 제1 시험편(50L), 제2 시험편(50M) 및 제3 시험편(50R)을 취출하였다.
계속해서, 각 시험편(50L, 50M, 50R)의 표면(여기서는 제1 면(64a))에 있어서의 제1 반사율 및 제2 반사율을 각각 측정하였다. 그 결과, 시험편(50L)에 있어서의 제1 반사율 및 제2 반사율은 22.7% 및 23.6%였다. 또한, 시험편(50M)에 있어서의 제1 반사율 및 제2 반사율은 23.0% 및 23.6%였다. 또한, 시험편(50R)에 있어서의 제1 반사율 및 제2 반사율은 23.1% 및 22.6%였다. 또한, 각 시험편(50L, 50M, 50R)의 제2 면(64b)에 있어서의 제1 반사율 및 제2 반사율도 측정한 바, 제1 면(64a)의 경우와 동등한 결과였다.
반사율의 측정기로서는, 가부시키가이샤 무라카미 시키사이 기쥬츠 겐큐죠제의 변각 광도계 GP-200을 사용하였다. 광원은, 50W(12V)의 출력이 가능한 할로겐 램프였다. 또한, 광원으로부터 출사된 광을, 감광 필터(ND-10)에 통과시킨 후에 각 시험편(50L, 50M, 50R)에 입사시켰다. 또한, 조리개로서, 광원의 측에서는 직경 14.0mm의 홍채 조리개를 사용하고, 검출기의 측에서는 직경 11.4mm의 개구 조리개를 사용하였다. 또한, 측정에 있어서는, 검출기의 각도 또는 위치를 변화시킴으로써, 시험편(50)의 표면으로부터 30° 내지 60°의 각도로 출사하는 반사광의 강도를, 0.1°마다 각각 측정하였다. 이들의 측정 결과 중, 45°±0.2°의 범위 내의 반사광을 사용하여, 상술한 제1 반사율 및 제2 반사율을 산출하였다.
각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율 및 제2 반사율의 평균값으로서 표면 반사율을 산출한 바, 표면 반사율은 23.1%였다. 따라서, 제1 권취체에 있어서는, 상술한 판정 조건 A, B는 만족되고 있지만, 상술한 판정 조건 C는 만족되고 있지 않았다.
또한, 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율을 제2 반사율로 나눈 값(=제1 반사율/제2 반사율)을 각각 산출하였다. 결과, 값은 각각 0.96, 0.98, 1.02였다. 따라서, 제1 권취체에 있어서는, 상술한 판정 조건 D가 만족되고 있었다.
실시예 2
36질량%의 니켈과, 잔부의 철 및 불가피한 불순물을 포함하는 철 합금으로 구성된 모재에 대하여 상술한 압연 공정, 슬릿 공정 및 어닐 공정을 실시함으로써, 15㎛의 두께를 갖는 금속판(64)이 권취된 권취체(제2 권취체)를 제조하였다. 제2 권취체의 제조 조건은, 제1 권취체의 제조 조건과 개략은 동일하지만 상세는 다르다.
상술한 실시예 1의 경우와 마찬가지로 하여, 제2 권취체로 취출한 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율 및 제2 반사율을 측정하였다. 또한, 제1 반사율 및 제2 반사율의 평균값으로서 표면 반사율을 산출하였다. 또한, 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율을 제2 반사율로 나눈 값을 각각 산출하였다. 결과를 도 18a에 나타낸다. 도 18a에 있어서, 「측정 위치」의 란의 「L」은, 제1 시험편(50L)에 있어서의 측정 결과를 나타내고, 「M」은, 제2 시험편(50M)에 있어서의 측정 결과를 나타내고, 「R」은, 제3 시험편(50R)에 있어서의 측정 결과를 나타낸다.
실시예 3 내지 6
36질량%의 니켈과, 잔부의 철 및 불가피한 불순물을 포함하는 철 합금으로 구성된 모재에 대하여 상술한 압연 공정, 슬릿 공정 및 어닐 공정을 실시함으로써, 18㎛의 두께를 갖는 금속판(64)이 권취된 제3 권취체, 제4 권취체, 제5 권취체 및 제6 권취체를 각각 제조하였다. 제3 권취체 내지 제6 권취체의 제조 조건은, 개략은 동일하지만 상세는 다르다. 또한, 제5 권취체의 제조 조건(워크 롤의 직경, 압연 오일(쿨런트)의 투입량, 압연 속도)은, 상술한 제1 권취체의 제조 조건과 동일하다.
상술한 실시예 1의 경우와 마찬가지로 하여, 제3 권취체 내지 제6 권취체로부터 취출한 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율 및 제2 반사율을 각각 측정하였다. 또한, 제1 반사율 및 제2 반사율의 평균값으로서 표면 반사율을 산출하였다. 또한, 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율을 제2 반사율로 나눈 값을 각각 산출하였다. 결과를 도 18a에 나타낸다.
실시예 7 내지 12
36질량%의 니켈과, 잔부의 철 및 불가피한 불순물을 포함하는 철 합금으로 구성된 모재에 대하여 상술한 압연 공정, 슬릿 공정 및 어닐 공정을 실시함으로써, 20㎛의 두께를 갖는 금속판(64)이 권취된 제7 권취체, 제8 권취체, 제9 권취체, 제10 권취체, 제11 권취체 및 제12 권취체를 각각 제조하였다. 제7 권취체 내지 제12 권취체의 제조 조건은, 개략은 동일하지만 상세는 다르다. 또한, 제9 권취체의 제조 조건은, 상술한 제1 권취체 및 제5 권취체의 제조 조건과 동일하다. 또한, 제8 권취체의 제조 조건은, 상술한 제4 권취체의 제조 조건과 동일하다. 또한, 제11 권취체의 제조 조건은, 상술한 제6 권취체의 제조 조건과 동일하다.
상술한 실시예 1의 경우와 마찬가지로 하여, 제7 권취체 내지 제12 권취체로 취출한 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율 및 제2 반사율을 각각 측정하였다. 또한, 제1 반사율 및 제2 반사율의 평균값으로서 표면 반사율을 산출하였다. 또한, 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율을 제2 반사율로 나눈 값을 각각 산출하였다. 결과를 도 18a에 나타낸다.
실시예 13 내지 16
36질량%의 니켈과, 잔부의 철 및 불가피한 불순물을 포함하는 철 합금으로 구성된 모재에 대하여 상술한 압연 공정, 슬릿 공정 및 어닐 공정을 실시함으로써, 25㎛의 두께를 갖는 금속판(64)이 권취된 제13 권취체, 제14 권취체, 제15 권취체 및 제16 권취체를 각각 제조하였다. 제13 권취체 내지 제16 권취체의 제조 조건은, 개략은 동일하지만 상세는 다르다. 또한, 제13 권취체의 제조 조건은, 상술한 제4 권취체 및 제8 권취체의 제조 조건과 동일하다. 또한, 제15 권취체의 제조 조건은, 상술한 제6 권취체 및 제11 권취체의 제조 조건과 동일하다.
상술한 실시예 1의 경우와 마찬가지로 하여, 제13 권취체 내지 제16 권취체로부터 취출한 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율 및 제2 반사율을 각각 측정하였다. 또한, 제1 반사율 및 제2 반사율의 평균값으로서 표면 반사율을 산출하였다. 결과를 도 18b에 나타낸다.
실시예 17, 18
36질량%의 니켈과, 잔부의 철 및 불가피한 불순물을 포함하는 철 합금으로 구성된 모재에 대하여 상술한 압연 공정, 슬릿 공정 및 어닐 공정을 실시함으로써, 30㎛의 두께를 갖는 금속판(64)이 권취된 제17 권취체 및 제18 권취체를 각각 제조하였다. 제17 권취체 및 제18 권취체의 제조 조건은, 개략은 동일하지만 상세는 다르다.
상술한 실시예 1의 경우와 마찬가지로 하여, 제17 권취체 및 제18 권취체로부터 취출한 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율 및 제2 반사율을 각각 측정하였다. 또한, 제1 반사율 및 제2 반사율의 평균값으로서 표면 반사율을 산출하였다. 또한, 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율을 제2 반사율로 나눈 값을 각각 산출하였다. 결과를 도 18b에 나타낸다.
실시예 19, 20
36질량%의 니켈과, 잔부의 철 및 불가피한 불순물을 포함하는 철 합금으로 구성된 모재에 대하여 상술한 압연 공정, 슬릿 공정 및 어닐 공정을 실시함으로써, 35㎛의 두께를 갖는 금속판(64)이 권취된 제19 권취체 및 제20 권취체를 각각 제조하였다. 제19 권취체 및 제20 권취체의 제조 조건은, 개략은 동일하지만 상세는 다르다.
상술한 실시예 1의 경우와 마찬가지로 하여, 제19 권취체 및 제20 권취체로부터 취출한 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율 및 제2 반사율을 각각 측정하였다. 또한, 제1 반사율 및 제2 반사율의 평균값으로서 표면 반사율을 산출하였다. 또한, 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율을 제2 반사율로 나눈 값을 각각 산출하였다. 결과를 도 18b에 나타낸다.
실시예 21, 22
36질량%의 니켈과, 잔부의 철 및 불가피한 불순물을 포함하는 철 합금으로 구성된 모재에 대하여 상술한 압연 공정, 슬릿 공정 및 어닐 공정을 실시함으로써, 40㎛의 두께를 갖는 금속판(64)이 권취된 제21 권취체 및 제22 권취체를 각각 제조하였다. 제21 권취체 및 제22 권취체의 제조 조건은, 개략은 동일하지만 상세는 다르다.
상술한 실시예 1의 경우와 마찬가지로 하여, 제21 권취체 및 제22 권취체로부터 취출한 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율 및 제2 반사율을 각각 측정하였다. 또한, 제1 반사율 및 제2 반사율의 평균값으로서 표면 반사율을 산출하였다. 또한, 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율을 제2 반사율로 나눈 값을 각각 산출하였다. 결과를 도 18b에 나타낸다.
실시예 23, 24
36질량%의 니켈과, 잔부의 철 및 불가피한 불순물을 포함하는 철 합금으로 구성된 모재에 대하여 상술한 압연 공정, 슬릿 공정 및 어닐 공정을 실시함으로써, 100㎛의 두께를 갖는 금속판(64)이 권취된 제23 권취체 및 제24 권취체를 각각 제조하였다. 제23 권취체 및 제24 권취체의 제조 조건은, 개략은 동일하지만 상세는 다르다.
상술한 실시예 1의 경우와 마찬가지로 하여, 제23 권취체 및 제24 권취체로부터 취출한 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율 및 제2 반사율을 각각 측정하였다. 또한, 제1 반사율 및 제2 반사율의 평균값으로서 표면 반사율을 산출하였다. 또한, 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율을 제2 반사율로 나눈 값을 각각 산출하였다. 결과를 도 18b에 나타낸다.
상술한 바와 같이, 제1 권취체, 제5 권취체 및 제9 권취체의, 워크 롤의 직경, 압연 오일(쿨런트)의 투입량, 압연 속도에 관한 제조 조건은 동일하다. 또한, 제4 권취체, 제8 권취체 및 제13 권취체의, 워크 롤의 직경, 압연 오일(쿨런트)의 투입량, 압연 속도에 관한 제조 조건은 동일하다. 또한, 제6 권취체, 제11 권취체 및 제15 권취체의, 워크 롤의 직경, 압연 오일(쿨런트)의 투입량, 압연 속도에 관한 제조 조건은 동일하다. 도 18a 및 도 18b로부터 알 수 있는 바와 같이, 제1 권취체, 제5 권취체 및 제9 권취체 중, 가장 두께가 작은 제1 권취체에 있어서, 표면 반사율이 가장 높아져 있다. 동일한 경향이, 제4 권취체, 제8 권취체 및 제13 권취체 사이, 그리고, 제6 권취체, 제11 권취체 및 제15 권취체 사이에도 존재한다. 따라서, 동일한 제조 조건에서 제작된 금속판에 있어서는, 두께가 작을수록 표면 반사율이 높아진다고 생각된다.
실시예 25 내지 35
36질량%의 니켈과, 잔부의 철 및 불가피한 불순물을 포함하는 철 합금으로 구성된 모재에 대하여 상술한 압연 공정, 슬릿 공정 및 어닐 공정을 실시함으로써, 15㎛, 18㎛, 20㎛, 25㎛, 30㎛, 35㎛, 40㎛, 50㎛ 또는 100㎛의 두께를 갖는 금속판(64)이 권취된 제25 권취체 내지 제35 권취체를 각각 제조하였다. 제25 권취체 내지 제35 권취체의 제조 조건은, 개략은 동일하지만 상세는 다르다.
상술한 실시예 1의 경우와 마찬가지로 하여, 제25 권취체 내지 제35 권취체로부터 취출한 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율 및 제2 반사율을 각각 측정하였다. 또한, 제1 반사율 및 제2 반사율의 평균값으로서 표면 반사율을 산출하였다. 또한, 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율을 제2 반사율로 나눈 값(=제1 반사율/제2 반사율)을 각각 산출하였다. 결과를 도 18c에 나타낸다.
계속해서, 상술한 실시예 1 내지 실시예 35에 있어서의 권취체의 금속판(64)을 사용하여, 증착 마스크(20)를 제조하였다. 또한, 얻어진 증착 마스크(20)에 대해서, 하기의 평가를 행하였다.
평가 A: 얼라인먼트 마크의 검출성의 평가
평가 B: 관통 구멍의 면적 정밀도의 평가
평가 C: 관통 구멍의 치수 변동의 평가
평가 D: 관통 구멍의 위치 정렬의 평가
평가 A에 있어서는, 증착 마스크(20)에 형성되어 있는 얼라인먼트 마크(도 17a 참조)를 검출 가능한지의 여부를 평가하였다. 결과를 도 18a 내지 18c의 「평가 A」의 란에 나타낸다. 「평가 A」의 란에 있어서, 「OK」는, 증착 마스크(20)의 모든 얼라인먼트 마크가 검출된 것을 나타내고, 「NG」는, 적어도 일부의 얼라인먼트 마크가 검출되지 않은 것을 의미한다. 얼라인먼트 마크를 검출하기 위한 장치로서는, 상술한 바와 같이, 얼라인먼트 마크(64d)를 촬영한 화상에 있어서 흑색으로서 인식되는 영역에 기초하여 얼라인먼트 마크를 검출하는 장치를 사용하였다. 증착 마스크(20)에 형성되어 있는 얼라인먼트 마크의 수는, 28개였다.
평가 B에 있어서는, 증착 마스크(20)의 관통 구멍(25)의 면적, 기준값으로부터의 어긋남이, 100㎛2 이하인지의 여부를 평가하였다. 결과를 도 18a 내지 18c의 「평가 B」의 란에 나타낸다. 기준값은, 절댓값이어도 되고, 상대값이어도 되지만, 여기에서는 상대값을 채용하였다. 구체적으로는, 기준값으로서, 평가 대상의 관통 구멍(25)의 주위 관통 구멍(25)의 면적 평균값을 채용하였다. 「평가B」의 란에 있어서, 「OK」는, 증착 마스크(20)의 각 관통 구멍(25)의 면적 기준값으로부터의 어긋남이 100㎛2 이하였던 것을 나타내고, 「NG」는, 적어도 일부의 관통 구멍(25)의 면적 기준값으로부터의 어긋남이 100㎛2를 초과하고 있었던 것을 나타낸다. 평가 대상으로 한 관통 구멍(25)의 수는, 1.29억개였다.
평가 C에 있어서는, 증착 마스크(20)를 제1 면(20a)측으로부터 본 경우의 평면도에 있어서의 제1 오목부(30)의 치수 변동 2σ가 2㎛ 이하인지의 여부를 평가하였다. 제1 오목부(30)의 치수를 측정하는 장치로서는, 신토 S 프레시죤제 AMIC를 사용하였다. 결과를 도 18a 내지 18c의 「평가 C」의 란에 나타낸다. 「평가 C」의 란에 있어서, 「OK」는, 증착 마스크(20)의 제1 오목부(30)의 치수 변동 2σ가 2㎛ 이하였던 것을 나타내고, 「NG」는, 치수의 변동 2σ가 2㎛를 초과하고 있었던 것을 나타낸다. 평가 대상으로 한 제1 오목부(30)의 수는, 3150개였다.
평가 D에 있어서는, 증착 마스크(20) 중의 복수의 관통 구멍(25)의 위치와 설정 위치 사이의 어긋남이 길이 방향 D1 및 폭 방향 D2에 있어서 3㎛ 이하가 되도록 증착 마스크(20)를 길이 방향 D1에 있어서 잡아 당길 수 있는지의 여부를 평가하였다. 평가 결과를 도 18a 내지 18c의 「평가 D」의 란에 나타낸다. 「평가 D」의 란에 있어서, 「OK」는, 복수의 관통 구멍(25)의 위치와 설정 위치 사이의 어긋남이 각각 3㎛ 이하가 되도록 증착 마스크(20)를 길이 방향 D1에 있어서 잡아 당길 수 있던 것을 나타내고, 「NG」는, 복수의 관통 구멍(25)의 위치와 설정 위치 사이의 어긋남이 3㎛ 이하가 되지 않았던 것을 나타낸다. 평가 대상으로 한 관통 구멍(25)의 수는, 756개였다.
도 19는, 도 18a 내지 18c에 나타내는 실시예 1 내지 실시예 24의 측정 결과 및 평가 결과를, 표면 반사율에 기초하여 재배열한 것이다. 또한, 도 19의 「제1 반사율」의 열에는, 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율의 평균값을 기재하고 있다. 「제2 반사율」의 열에는, 각 시험편(50L, 50M, 50R)에 있어서의 제2 반사율의 평균값을 기재하고 있다. 「제1 반사율/제2 반사율」의 열에는, 각 시험편(50L, 50M, 50R)에 있어서의 제1 반사율/제2 반사율의 값의 평균값을 기재하고 있다.
도 19에 도시하는 바와 같이, 표면 반사율이 8.0% 이상인 실시예에 있어서는, 평가 A가 OK이고, 표면 반사율이 8.0% 미만인 실시예에 있어서는, 평가 A가 NG였다. 이것으로부터, 상술한 판정 조건 A는, 얼라인먼트 마크의 검출성에 관한 유용한 판정 조건이라고 할 수 있다.
또한, 도 19에 도시하는 바와 같이, 표면 반사율이 25% 이하인 실시예에 있어서는, 평가 B가 OK이고, 표면 반사율이 25%를 초과하는 실시예에 있어서는, 평가 B가 NG였다. 이것으로부터, 상술한 판정 조건 B는, 관통 구멍의 면적 정밀도에 관한, 즉 레지스트막의 밀착성에 관한 유용한 판정 조건이라고 할 수 있다.
또한, 도 19에 도시하는 바와 같이, 표면 반사율이 20% 이하인 실시예에 있어서는, 평가 C가 OK이고, 표면 반사율이 20%를 초과하는 실시예에 있어서는, 평가 C가 NG였다. 이것으로부터, 상술한 판정 조건 C는, 관통 구멍의 치수 변동에 관한, 즉 레지스트막의 밀착성에 관한 가일층의 유용한 판정 조건이라고 할 수 있다.
또한, 도 19에 도시하는 바와 같이, 제1 반사율/제2 반사율의 값이 0.70 이상 1.30 이하인 실시예에 있어서는, 평가 D가 OK였다. 또한, 제1 반사율/제2 반사율의 값이 0.70 미만 또는 1.30을 초과하는 실시예에 있어서는, 평가 D가 NG였다. 이것으로부터, 상술한 판정 조건 D는, 관통 구멍(25)의 위치 정렬 공정의 용이성에 관한 유용한 판정 조건이라고 할 수 있다.
도 18a 내지 18c 및 도 19의 「종합 평가」의 열에 있어서, 「great」는, 평가 A, B, C 및 D가 모두 OK였던 것을 나타낸다. 또한, 「good」은, 평가 A, B 및 D는 OK인데, 평가 C는 NG였던 것을 나타낸다. 또한, 「not good」은, 평가 A, B 또는 D의 적어도 하나가 NG였던 것을 나타낸다.
10: 증착 마스크 장치
15: 프레임
20: 증착 마스크
22: 유효 영역
23: 주위 영역
25: 관통 구멍
30: 제1 오목부
31: 벽면
35: 제2 오목부
36: 벽면
41: 접속부
43: 톱부
50: 시험편
64: 금속판
65a: 제1 레지스트막
65b: 제2 레지스트막
65c: 제1 레지스트 패턴
65d: 제2 레지스트 패턴
70: 제조 장치
71: 레지스트막 형성 장치
72: 노광·현상 장치
73: 에칭 장치
74: 분리 장치
90: 증착 장치
92: 유기 EL 기판
98: 증착 재료

Claims (2)

  1. 증착 마스크를 제조하는 방법이며,
    제1 면 및 제2 면을 포함하는 금속판을 준비하는 공정과,
    상기 금속판의 상기 제1 면 및 상기 제2 면에 레지스트막을 마련하는 레지스트막 형성 공정과,
    상기 레지스트막을 가공하여 레지스트 패턴을 형성하는 공정과,
    상기 레지스트 패턴을 마스크로 하여 상기 금속판을 에칭하는 에칭 공정을 구비하고,
    상기 증착 마스크는, 배열된 복수의 관통 구멍을 포함하는 유효 영역과, 상기 유효 영역의 주위에 위치하고, 얼라인먼트 마크를 포함하는 주위 영역을 포함하고,
    상기 에칭 공정은, 상기 제1 면을 에칭하여, 상기 유효 영역에 제1 오목부를 형성하고 상기 주위 영역에 오목부를 형성하는 제1 면 에칭 공정과, 상기 제2 면을 에칭하여, 상기 유효 영역에 제2 오목부를 형성하는 제2 면 에칭 공정을 포함하고,
    상기 관통 구멍은, 상기 제1 오목부와 상기 제2 오목부가 서로 통하는 것에 의해 형성되고,
    상기 얼라인먼트 마크는 오목부로 구성되는, 증착 마스크의 제조 방법.
  2. 제1항에 있어서, 상기 제1 면 에칭 공정은, 상기 얼라인먼트 마크를 구성하는 상기 오목부가 상기 제2 면까지 관통하지 않도록 실시되는 것을 특징으로 하는, 증착 마스크의 제조 방법.
KR1020237035288A 2017-11-14 2018-11-13 증착 마스크를 제조하기 위한 금속판, 금속판의 검사 방법, 금속판의 제조 방법, 증착 마스크, 증착 마스크 장치 및 증착 마스크의 제조 방법 KR20230150402A (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JPJP-P-2017-219369 2017-11-14
JP2017219369 2017-11-14
JP2017249744 2017-12-26
JPJP-P-2017-249744 2017-12-26
JP2018002932 2018-01-11
JPJP-P-2018-002932 2018-01-11
KR1020207016042A KR102591494B1 (ko) 2017-11-14 2018-11-13 증착 마스크를 제조하기 위한 금속판, 금속판의 검사 방법, 금속판의 제조 방법, 증착 마스크, 증착 마스크 장치 및 증착 마스크의 제조 방법
PCT/JP2018/041919 WO2019098168A1 (ja) 2017-11-14 2018-11-13 蒸着マスクを製造するための金属板、金属板の検査方法、金属板の製造方法、蒸着マスク、蒸着マスク装置及び蒸着マスクの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207016042A Division KR102591494B1 (ko) 2017-11-14 2018-11-13 증착 마스크를 제조하기 위한 금속판, 금속판의 검사 방법, 금속판의 제조 방법, 증착 마스크, 증착 마스크 장치 및 증착 마스크의 제조 방법

Publications (1)

Publication Number Publication Date
KR20230150402A true KR20230150402A (ko) 2023-10-30

Family

ID=66496400

Family Applications (6)

Application Number Title Priority Date Filing Date
KR1020207016170A KR102596249B1 (ko) 2017-11-14 2018-11-13 증착 마스크를 제조하기 위한 금속판 및 금속판의 제조 방법, 그리고 증착 마스크, 증착 마스크의 제조 방법 및 증착 마스크를 구비하는 증착 마스크 장치
KR1020207016042A KR102591494B1 (ko) 2017-11-14 2018-11-13 증착 마스크를 제조하기 위한 금속판, 금속판의 검사 방법, 금속판의 제조 방법, 증착 마스크, 증착 마스크 장치 및 증착 마스크의 제조 방법
KR1020237035288A KR20230150402A (ko) 2017-11-14 2018-11-13 증착 마스크를 제조하기 위한 금속판, 금속판의 검사 방법, 금속판의 제조 방법, 증착 마스크, 증착 마스크 장치 및 증착 마스크의 제조 방법
KR1020207016167A KR20200087184A (ko) 2017-11-14 2018-11-13 증착 마스크를 제조하기 위한 금속판 및 금속판의 제조 방법, 그리고 증착 마스크 및 증착 마스크의 제조 방법
KR1020237036866A KR20230154477A (ko) 2017-11-14 2018-11-13 증착 마스크를 제조하기 위한 금속판 및 금속판의 제조 방법, 그리고 증착 마스크, 증착 마스크의 제조 방법 및 증착 마스크를 구비하는 증착 마스크 장치
KR1020190145054A KR102650066B1 (ko) 2017-11-14 2019-11-13 증착 마스크를 제조하기 위한 금속판 및 금속판의 제조 방법, 그리고 증착 마스크, 증착 마스크의 제조 방법 및 증착 마스크를 구비하는 증착 마스크 장치

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020207016170A KR102596249B1 (ko) 2017-11-14 2018-11-13 증착 마스크를 제조하기 위한 금속판 및 금속판의 제조 방법, 그리고 증착 마스크, 증착 마스크의 제조 방법 및 증착 마스크를 구비하는 증착 마스크 장치
KR1020207016042A KR102591494B1 (ko) 2017-11-14 2018-11-13 증착 마스크를 제조하기 위한 금속판, 금속판의 검사 방법, 금속판의 제조 방법, 증착 마스크, 증착 마스크 장치 및 증착 마스크의 제조 방법

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR1020207016167A KR20200087184A (ko) 2017-11-14 2018-11-13 증착 마스크를 제조하기 위한 금속판 및 금속판의 제조 방법, 그리고 증착 마스크 및 증착 마스크의 제조 방법
KR1020237036866A KR20230154477A (ko) 2017-11-14 2018-11-13 증착 마스크를 제조하기 위한 금속판 및 금속판의 제조 방법, 그리고 증착 마스크, 증착 마스크의 제조 방법 및 증착 마스크를 구비하는 증착 마스크 장치
KR1020190145054A KR102650066B1 (ko) 2017-11-14 2019-11-13 증착 마스크를 제조하기 위한 금속판 및 금속판의 제조 방법, 그리고 증착 마스크, 증착 마스크의 제조 방법 및 증착 마스크를 구비하는 증착 마스크 장치

Country Status (8)

Country Link
US (5) US11237481B2 (ko)
EP (3) EP3712294A4 (ko)
JP (13) JP6787503B2 (ko)
KR (6) KR102596249B1 (ko)
CN (7) CN117187746A (ko)
DE (2) DE202018006883U1 (ko)
TW (5) TWI765121B (ko)
WO (3) WO2019098168A1 (ko)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108977762B (zh) * 2017-06-05 2019-12-27 京东方科技集团股份有限公司 掩膜板、套装掩膜板和蒸镀系统
WO2019098168A1 (ja) * 2017-11-14 2019-05-23 大日本印刷株式会社 蒸着マスクを製造するための金属板、金属板の検査方法、金属板の製造方法、蒸着マスク、蒸着マスク装置及び蒸着マスクの製造方法
EP3653747A1 (en) * 2018-11-13 2020-05-20 Dainippon Printing Co., Ltd. Metal plate for producing vapor deposition masks, production method for metal plates, vapor deposition mask, production method for vapor deposition mask, and vapor deposition mask device comprising vapor deposition mask
KR102109037B1 (ko) * 2018-11-13 2020-05-11 (주)애니캐스팅 다중배열전극을 이용한 유기 증착 마스크 제조 방법
CN118102829A (zh) * 2018-11-19 2024-05-28 Lg伊诺特有限公司 合金板和包括合金板的沉积掩模
KR20200096877A (ko) * 2019-02-06 2020-08-14 다이니폰 인사츠 가부시키가이샤 증착 마스크 장치, 마스크 지지 기구 및 증착 마스크 장치의 제조 방법
CN109778116B (zh) * 2019-03-28 2021-03-02 京东方科技集团股份有限公司 一种掩膜版及其制作方法、掩膜版组件
KR102515692B1 (ko) * 2019-10-04 2023-03-29 도판 인사츠 가부시키가이샤 증착 마스크, 증착 마스크의 제조 방법, 및, 표시 장치의 제조 방법
KR20210042026A (ko) * 2019-10-08 2021-04-16 다이니폰 인사츠 가부시키가이샤 증착 마스크를 제조하기 위한 금속판, 금속판의 제조 방법, 증착 마스크 및 증착 마스크의 제조 방법
JP2021175824A (ja) * 2020-03-13 2021-11-04 大日本印刷株式会社 有機デバイスの製造装置の蒸着室の評価方法、評価方法で用いられる標準マスク装置及び標準基板、標準マスク装置の製造方法、評価方法で評価された蒸着室を備える有機デバイスの製造装置、評価方法で評価された蒸着室において形成された蒸着層を備える有機デバイス、並びに有機デバイスの製造装置の蒸着室のメンテナンス方法
US11613802B2 (en) * 2020-04-17 2023-03-28 Rockwell Collins, Inc. Additively manufactured shadow masks for material deposition control
CN114481018B (zh) * 2020-10-23 2024-08-09 悟劳茂材料公司 掩模制造方法
KR102485407B1 (ko) * 2020-10-23 2023-01-06 주식회사 오럼머티리얼 마스크의 제조 방법
CN112376015A (zh) * 2020-11-09 2021-02-19 京东方科技集团股份有限公司 一种掩膜版及其制作方法、显示基板及其制作方法
CN112323019A (zh) * 2020-11-18 2021-02-05 匠博先进材料科技(广州)有限公司 一种蒸镀掩模、组件、装置及有机显示装置
JP7151912B1 (ja) * 2020-12-03 2022-10-12 Jfeスチール株式会社 溶接鋼管のシーム部および加熱部の位置検出装置、溶接鋼管の製造設備、溶接鋼管のシーム部および加熱部の位置検出方法、溶接鋼管の製造方法および溶接鋼管の品質管理方法
CN113410151B (zh) * 2021-06-01 2022-10-14 云谷(固安)科技有限公司 一种确定掩膜版的位置偏移量的方法、装置及设备
CN113373406A (zh) * 2021-06-17 2021-09-10 浙江众凌科技有限公司 一种精密金属遮罩及其蚀刻激光复合制作方法
WO2023033001A1 (ja) * 2021-08-31 2023-03-09 凸版印刷株式会社 蒸着マスク基材、蒸着マスク基材の検査方法、蒸着マスクの製造方法、および、表示装置の製造方法
TWI828015B (zh) * 2021-12-01 2024-01-01 達運精密工業股份有限公司 精密金屬遮罩的製造方法
CN115558928B (zh) * 2022-08-31 2024-10-22 浙江众凌科技有限公司 一种基于表面平坦度的蒸镀基材蚀刻装置及蚀刻方法
KR20240044840A (ko) * 2022-09-29 2024-04-05 엘지이노텍 주식회사 금속판 및 이를 포함하는 증착용 마스크
US20240166705A1 (en) 2022-11-07 2024-05-23 Xencor, Inc. Il18-fc fusion proteins
CN118773543A (zh) * 2023-04-07 2024-10-15 京东方科技集团股份有限公司 一种掩模版及制备方法
KR20240154439A (ko) 2023-04-18 2024-10-25 다이니폰 인사츠 가부시키가이샤 금속판, 금속판의 제조 방법, 마스크, 마스크 장치 및 마스크의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382259U (ko) 1976-12-08 1978-07-07
JP2001234385A (ja) 2000-02-24 2001-08-31 Tohoku Pioneer Corp メタルマスク及びその製造方法

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104141A (en) * 1980-12-22 1982-06-29 Dainippon Printing Co Ltd Photomask and photomask substrate
JPS5968146A (ja) * 1982-10-08 1984-04-18 Toshiba Corp フラツトマスクの表裏判別方法
JPS6139344A (ja) * 1984-07-31 1986-02-25 Toshiba Corp シャドウマスク
JPH0687398B2 (ja) * 1986-07-08 1994-11-02 株式会社東芝 シヤドウマスクの製造方法
US5130203A (en) * 1988-07-28 1992-07-14 Nippon Leakless Industry Co., Ltd. Metal gasket and method of producing the same
JPH05144384A (ja) * 1991-09-25 1993-06-11 Toshiba Corp シヤドウマスク用素材
JPH0634623A (ja) * 1992-07-17 1994-02-10 Nkk Corp 鋼板の表面のカーボン汚れ分析方法
JPH08220778A (ja) 1995-02-17 1996-08-30 Dainippon Screen Mfg Co Ltd エッチング方法及び装置
JPH08269742A (ja) * 1995-03-30 1996-10-15 Nikko Kinzoku Kk 精密エッチング加工用冷間圧延金属材料及びその製造方法
JPH11219986A (ja) * 1998-02-03 1999-08-10 Hitachi Cable Ltd Tab用テープキャリアの製造方法
CN1117881C (zh) * 1999-06-10 2003-08-13 日本冶金工业株式会社 Fe-Ni系荫罩用材料
JP4595143B2 (ja) 1999-09-06 2010-12-08 双葉電子工業株式会社 有機elデバイスとその製造方法
JP2001131707A (ja) 1999-10-29 2001-05-15 Dainippon Printing Co Ltd カラーブラウン管用シャドウマスク
EP1134300A3 (en) 2000-03-17 2002-05-22 Hitachi Metals, Ltd. Fe-Ni alloy
JP3370316B2 (ja) * 2000-04-28 2003-01-27 福田金属箔粉工業株式会社 プリント配線板用銅箔及びその表面処理方法
US6524723B2 (en) 2000-04-28 2003-02-25 Fukuda Metal Foil & Powder Co., Ltd. Copper foil for printed circuit boards and its surface treatment method
JP3545684B2 (ja) * 2000-07-17 2004-07-21 日鉱金属加工株式会社 エッチング穿孔性に優れたFe−Ni系合金シャドウマスク用素材
JP2002035804A (ja) * 2000-07-31 2002-02-05 Hitachi Metals Ltd 高強度シャドウマスク用あるいはアパーチャグリル用薄板の製造方法
JP2002194573A (ja) * 2000-12-27 2002-07-10 Mitsubishi Gas Chem Co Inc 銅および銅合金の表面処理剤
JP3740105B2 (ja) 2001-11-20 2006-02-01 日鉱金属加工株式会社 シャドウマスク用Fe−Ni系およびFe−Ni−Co系合金条
JP2004061121A (ja) 2002-07-24 2004-02-26 Nippon Light Metal Co Ltd 表面分析用標準試料及びその製造方法
JP3975439B2 (ja) * 2002-12-02 2007-09-12 日立金属株式会社 メタルマスク
JP2004185890A (ja) * 2002-12-02 2004-07-02 Hitachi Metals Ltd メタルマスク
JP4170179B2 (ja) * 2003-01-09 2008-10-22 株式会社 日立ディスプレイズ 有機elパネルの製造方法および有機elパネル
JP2006010576A (ja) * 2004-06-28 2006-01-12 Chugoku Electric Power Co Inc:The 物体表面における測定対象凹部或いは凸部の幅測定方法および体積測定方法
US20060068132A1 (en) * 2004-09-30 2006-03-30 Asahi Glass Company, Limited Ink jet recording sheet for plate-making mask film, and process for producing flexographic printing plate
DE602006003856D1 (de) * 2006-02-28 2009-01-08 Agfa Graphics Nv Verfahren zur Herstellung eines lithographischen Druckplattenträgers
JP4983399B2 (ja) * 2007-05-25 2012-07-25 シンフォニアテクノロジー株式会社 マスクアライメント装置
JP2009054512A (ja) * 2007-08-29 2009-03-12 Seiko Epson Corp マスク
JP2010106358A (ja) * 2008-09-30 2010-05-13 Canon Inc 成膜用マスク及びそれを用いた成膜方法
JP5294072B2 (ja) * 2009-03-18 2013-09-18 日立金属株式会社 エッチング加工用素材の製造方法及びエッチング加工用素材
JP2010247500A (ja) * 2009-04-20 2010-11-04 Sonocom Co Ltd マスク及びマスクの製造方法
WO2012110516A1 (de) * 2011-02-15 2012-08-23 Plansee Se Schichtaufbau sowie seine verwendung zur ausbildung eines keramischen schichtaufbaus zwischen einem interkonnektor und einer kathode einer hochtemperaturbrennstoffzelle
WO2012175126A1 (en) * 2011-06-22 2012-12-27 Aixtron Se Method and apparatus for vapor deposition
CN102692184B (zh) * 2012-02-29 2014-07-23 首钢总公司 一种同时测量腐蚀坑体积、面积、深度的方法
JP5382259B1 (ja) 2013-01-10 2014-01-08 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いて蒸着マスクを製造する方法
JP6432722B2 (ja) * 2013-07-30 2018-12-05 俊 保坂 半導体センサー・デバイスおよびその製造方法
JP5455099B1 (ja) * 2013-09-13 2014-03-26 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いてマスクを製造する方法
JP2015129334A (ja) * 2014-01-08 2015-07-16 大日本印刷株式会社 積層マスクの製造方法、積層マスクおよび保護フィルム付き積層マスク
JP2015140464A (ja) * 2014-01-29 2015-08-03 大日本印刷株式会社 蒸着マスク装置及び熱バリア材
JP5626491B1 (ja) 2014-03-06 2014-11-19 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いて蒸着マスクを製造する方法
JP5641462B1 (ja) 2014-05-13 2014-12-17 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いてマスクを製造する方法
WO2015182586A1 (ja) * 2014-05-28 2015-12-03 日立金属株式会社 熱間工具材料および熱間工具の製造方法
JP6341039B2 (ja) 2014-09-29 2018-06-13 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いて蒸着マスクを製造する方法
JP6459040B2 (ja) 2014-12-10 2019-01-30 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いて蒸着マスクを製造する方法
JP6515520B2 (ja) * 2014-12-15 2019-05-22 大日本印刷株式会社 蒸着マスクの製造方法、蒸着マスクを作製するために用いられる金属板および蒸着マスク
JP6372755B2 (ja) * 2014-12-24 2018-08-15 大日本印刷株式会社 蒸着マスクの製造方法、蒸着マスクを作製するために用いられる金属板および蒸着マスク
JP6628082B2 (ja) * 2015-01-20 2020-01-08 日立金属株式会社 Fe−Ni系合金薄板の製造方法
JP2015098650A (ja) * 2015-02-05 2015-05-28 Jx日鉱日石金属株式会社 メタルマスク材料及びメタルマスク
CN114774854B (zh) * 2015-02-10 2024-09-06 大日本印刷株式会社 金属板以及蒸镀掩模的制造方法
CN107208251B (zh) 2015-02-10 2019-10-25 大日本印刷株式会社 蒸镀掩模的制造方法和蒸镀掩模
JP6666656B2 (ja) * 2015-04-02 2020-03-18 東洋鋼鈑株式会社 Rfマグネトロンスパッタリング装置
CN106304689A (zh) * 2015-06-05 2017-01-04 Jx日矿日石金属株式会社 压延铜箔、覆铜层叠板、以及柔性印刷基板和电子设备
KR101810824B1 (ko) * 2015-07-17 2017-12-19 도판 인사츠 가부시키가이샤 메탈 마스크 기재, 메탈 마스크 기재의 관리 방법, 메탈 마스크, 및, 메탈 마스크의 제조 방법
KR102341452B1 (ko) * 2015-07-17 2021-12-21 도판 인사츠 가부시키가이샤 증착용 메탈 마스크 기재, 증착용 메탈 마스크, 증착용 메탈 마스크 기재의 제조 방법, 및, 증착용 메탈 마스크의 제조 방법
DE112016003231T5 (de) * 2015-07-17 2018-05-03 Toppan Printing Co., Ltd. Verfahren zum herstellen von substrat für metallmasken, verfahren zum herstellen von metallmaske zur dampfabscheidung, substrat für metallmasken und metallmaske zur dampfabscheidung
CN105004786B (zh) * 2015-08-17 2017-10-31 苏州热工研究院有限公司 一种基于涡流检测的换热管管壁凹陷程度评估方法
JP6598007B2 (ja) 2015-09-30 2019-10-30 日立金属株式会社 Fe−Ni系合金薄板の製造方法
JP6177298B2 (ja) * 2015-11-04 2017-08-09 Jx金属株式会社 メタルマスク材料及びメタルマスク
JP6177299B2 (ja) * 2015-11-04 2017-08-09 Jx金属株式会社 メタルマスク材料及びメタルマスク
JP6624504B2 (ja) 2015-12-03 2019-12-25 大日本印刷株式会社 蒸着マスク及び蒸着マスクの製造方法
KR102586048B1 (ko) 2016-01-12 2023-10-10 삼성디스플레이 주식회사 마스크 조립체, 이의 제조방법 및 이를 포함한 표시 장치의 제조장치
JP6720564B2 (ja) 2016-02-12 2020-07-08 大日本印刷株式会社 蒸着マスクおよび蒸着マスクの製造方法
JP6460131B2 (ja) * 2016-02-16 2019-01-30 Jfeスチール株式会社 溶融亜鉛めっき鋼板の表面性状評価方法、溶融亜鉛めっき鋼板の表面性状評価装置、及び溶融亜鉛めっき鋼板の製造方法
JP6670469B2 (ja) * 2016-03-16 2020-03-25 大日本印刷株式会社 蒸着マスクおよび蒸着マスク中間体
EP3231588A1 (de) * 2016-04-12 2017-10-18 Evonik Röhm GmbH Sprühgetrocknetes weichphasenemulsionspolymerisat für das auffüllen der zwickel in perlpolymerisatschichten im binder jetting verfahren
WO2018043642A1 (ja) 2016-08-31 2018-03-08 日立金属株式会社 メタルマスク用素材およびその製造方法
CN109642289B (zh) 2016-08-31 2021-06-01 日立金属株式会社 金属掩模用原材料及其制造方法
KR101819367B1 (ko) * 2016-09-08 2018-01-17 주식회사 포스코 철-니켈 합금 박 및 이의 제조방법
KR102294111B1 (ko) 2017-06-20 2021-08-26 히다찌긴조꾸가부시끼가이사 메탈 마스크용 박판의 제조 방법 및 메탈 마스크용 박판
WO2019098168A1 (ja) * 2017-11-14 2019-05-23 大日本印刷株式会社 蒸着マスクを製造するための金属板、金属板の検査方法、金属板の製造方法、蒸着マスク、蒸着マスク装置及び蒸着マスクの製造方法
KR20200058819A (ko) * 2018-11-20 2020-05-28 엘지이노텍 주식회사 합금 금속판 및 이를 포함하는 증착용 마스크

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382259U (ko) 1976-12-08 1978-07-07
JP2001234385A (ja) 2000-02-24 2001-08-31 Tohoku Pioneer Corp メタルマスク及びその製造方法

Also Published As

Publication number Publication date
KR102650066B1 (ko) 2024-03-22
KR20230154477A (ko) 2023-11-08
CN109778114B (zh) 2021-10-15
CN109778113A (zh) 2019-05-21
JP7167936B2 (ja) 2022-11-09
JP7334833B2 (ja) 2023-08-29
JP2021038461A (ja) 2021-03-11
WO2019098165A1 (ja) 2019-05-23
JP2023171717A (ja) 2023-12-05
KR102591494B1 (ko) 2023-10-20
JP2020190033A (ja) 2020-11-26
JPWO2019098168A1 (ja) 2019-11-14
TW201932621A (zh) 2019-08-16
TW202026439A (zh) 2020-07-16
JP2022174040A (ja) 2022-11-22
KR102596249B1 (ko) 2023-11-01
EP3712296A4 (en) 2021-08-11
JP6896801B2 (ja) 2021-06-30
US20220121115A1 (en) 2022-04-21
WO2019098167A1 (ja) 2019-05-23
JPWO2019098165A1 (ja) 2020-11-26
US12117727B2 (en) 2024-10-15
JP7125683B2 (ja) 2022-08-25
EP3712295A4 (en) 2021-12-15
TWI776990B (zh) 2022-09-11
US20210157232A1 (en) 2021-05-27
JPWO2019098167A1 (ja) 2020-12-17
EP3712294A4 (en) 2022-02-16
DE202018006883U1 (de) 2024-02-19
CN109778113B (zh) 2021-02-12
JP6787503B2 (ja) 2020-11-18
TW201923121A (zh) 2019-06-16
EP3712295A1 (en) 2020-09-23
WO2019098168A1 (ja) 2019-05-23
CN111455312B (zh) 2022-12-20
JP2024010051A (ja) 2024-01-23
KR20200087184A (ko) 2020-07-20
JP2023012491A (ja) 2023-01-25
TWI832926B (zh) 2024-02-21
US20200017951A1 (en) 2020-01-16
JP2019214788A (ja) 2019-12-19
EP3712296A1 (en) 2020-09-23
EP3712294A1 (en) 2020-09-23
KR20200087185A (ko) 2020-07-20
US11237481B2 (en) 2022-02-01
KR20200055679A (ko) 2020-05-21
US11733607B2 (en) 2023-08-22
TW201923115A (zh) 2019-06-16
CN113061843B (zh) 2023-07-11
TWI827235B (zh) 2023-12-21
CN109778115A (zh) 2019-05-21
DE202018006884U1 (de) 2024-01-24
CN113774323B (zh) 2023-12-12
JP6814420B2 (ja) 2021-01-20
JP6792829B2 (ja) 2020-12-02
US20200019056A1 (en) 2020-01-16
KR20200086691A (ko) 2020-07-17
US20200017950A1 (en) 2020-01-16
JP2021059783A (ja) 2021-04-15
JP2020079441A (ja) 2020-05-28
CN117187746A (zh) 2023-12-08
CN111455312A (zh) 2020-07-28
CN113774323A (zh) 2021-12-10
TW202305155A (zh) 2023-02-01
CN113061843A (zh) 2021-07-02
JP2021193211A (ja) 2021-12-23
TWI757562B (zh) 2022-03-11
TWI765121B (zh) 2022-05-21
JP7478364B2 (ja) 2024-05-07
CN109778114A (zh) 2019-05-21
JP7116929B2 (ja) 2022-08-12

Similar Documents

Publication Publication Date Title
KR102591494B1 (ko) 증착 마스크를 제조하기 위한 금속판, 금속판의 검사 방법, 금속판의 제조 방법, 증착 마스크, 증착 마스크 장치 및 증착 마스크의 제조 방법
KR102369814B1 (ko) 금속판, 금속판의 제조 방법, 및 금속판을 사용하여 마스크를 제조하는 방법
JP2024099678A (ja) 蒸着マスクを製造するための金属板及び金属板の製造方法並びに蒸着マスク、蒸着マスクの製造方法及び蒸着マスクを備える蒸着マスク装置

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E601 Decision to refuse application