KR101535795B1 - Battery Pack of Air Cooling Structure - Google Patents
Battery Pack of Air Cooling Structure Download PDFInfo
- Publication number
- KR101535795B1 KR101535795B1 KR1020120005481A KR20120005481A KR101535795B1 KR 101535795 B1 KR101535795 B1 KR 101535795B1 KR 1020120005481 A KR1020120005481 A KR 1020120005481A KR 20120005481 A KR20120005481 A KR 20120005481A KR 101535795 B1 KR101535795 B1 KR 101535795B1
- Authority
- KR
- South Korea
- Prior art keywords
- battery
- refrigerant
- battery pack
- coolant
- battery module
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 16
- 239000003507 refrigerant Substances 0.000 claims abstract description 99
- 239000002826 coolant Substances 0.000 claims abstract description 89
- 238000007599 discharging Methods 0.000 claims abstract description 6
- 238000003860 storage Methods 0.000 claims description 8
- 238000004378 air conditioning Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- 229920005989 resin Polymers 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- 238000012856 packing Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- -1 nickel hydrogen Chemical class 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/627—Stationary installations, e.g. power plant buffering or backup power supplies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/64—Heating or cooling; Temperature control characterised by the shape of the cells
- H01M10/647—Prismatic or flat cells, e.g. pouch cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6561—Gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6561—Gases
- H01M10/6563—Gases with forced flow, e.g. by blowers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/105—Pouches or flexible bags
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/117—Inorganic material
- H01M50/119—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/121—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/24—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/10—Batteries in stationary systems, e.g. emergency power source in plant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
본 발명은 충방전이 가능한 전지셀 또는 단위모듈('단위셀')들을 포함하는 전지모듈 다수 개를 팩 케이스에 내장하고 있는 전지팩으로서, 상기 단위셀 하나 이상이 하나의 전지모듈을 구성하고; 상기 전지모듈 둘 이상이 전지팩의 길이 방향으로 배열되어 하나의 전지모듈 군을 구성하며; 2개의 전지모듈 군들이 냉매 배출부를 중심으로 대칭적으로 배열되어 있고, 전지모듈에서 상기 냉매 배출부에 대향하는 위치의 팩 케이스 부위에는 전지모듈 별로 냉매 유입구가 독립적으로 위치하며; 상기 냉매 유입구가 형성되어 있는 팩 케이스와 전지모듈 사이는, 냉매 유입구를 통해 유입된 냉매가 분산되어 전지모듈로 유입되는 냉매 유동 구간의 형성을 위해, 상호 이격되어 있고; 상기 냉매 유입구 별로 유입된 냉매가 각각의 전지모듈들을 통과하면서 단위셀을 냉각한 후 냉매 배출부를 경유하여 외부로 배출될 수 있도록, 전지팩의 길이 방향에서 팩 케이스의 전면 또는 후면에 하나의 냉매 배출구가 형성되어 있는 것을 특징으로 하는 전지팩을 제공한다.The present invention relates to a battery pack in which a battery pack capable of being charged and discharged or a plurality of battery modules including unit modules ('unit cells') are packed in a pack case, wherein at least one unit cell constitutes one battery module; Wherein at least two of the battery modules are arranged in the longitudinal direction of the battery pack to constitute one battery module group; The two battery module groups are arranged symmetrically with respect to the coolant discharge portion, and the coolant inflow port is independently positioned for each battery module in the pack case portion at a position facing the coolant discharge portion of the battery module; The pack case in which the coolant inlet port is formed and the battery module are spaced apart from each other to form a coolant flow section in which the coolant introduced through the coolant inlet port is dispersed and introduced into the battery module; The refrigerant flowing in each of the refrigerant inflow ports passes through the respective battery modules, and after cooling the unit cells, the refrigerant can be discharged to the outside through the refrigerant discharging portion. In the longitudinal direction of the battery pack, And a battery pack.
Description
본 발명은 신규한 공냉식 구조의 전지팩으로서, 구체적으로는 충방전이 가능한 전지셀 또는 단위모듈('단위셀')들을 포함하는 전지모듈 다수 개를 팩 케이스에 내장하고 있는 전지팩으로서, 상기 단위셀 하나 이상이 하나의 전지모듈을 구성하고; 상기 전지모듈 둘 이상이 전지팩의 길이 방향으로 배열되어 하나의 전지모듈 군을 구성하며; 2개의 전지모듈 군들이 냉매 배출부를 중심으로 대칭적으로 배열되어 있고, 전지모듈에서 상기 냉매 배출부에 대향하는 위치의 팩 케이스 부위에는 전지모듈 별로 냉매 유입구가 독립적으로 위치하며; 상기 냉매 유입구가 형성되어 있는 팩 케이스와 전지모듈 사이는, 냉매 유입구를 통해 유입된 냉매가 분산되어 전지모듈로 유입되는 냉매 유동 구간의 형성을 위해, 상호 이격되어 있고; 상기 냉매 유입구 별로 유입된 냉매가 각각의 전지모듈들을 통과하면서 단위셀을 냉각한 후 냉매 배출부를 경유하여 외부로 배출될 수 있도록, 전지팩의 길이 방향에서 팩 케이스의 전면 또는 후면에 하나의 냉매 배출구가 형성되어 있는 것을 특징으로 하는 전지팩에 관한 것이다.The present invention relates to a novel air-cooled type battery pack, specifically, a battery pack having a battery case in which a plurality of battery modules or unit modules ('unit cells') capable of being charged and discharged are built in a pack case, At least one cell constituting one battery module; Wherein at least two of the battery modules are arranged in the longitudinal direction of the battery pack to constitute one battery module group; The two battery module groups are arranged symmetrically with respect to the coolant discharge portion, and the coolant inflow port is independently positioned for each battery module in the pack case portion at a position facing the coolant discharge portion of the battery module; The pack case in which the coolant inlet port is formed and the battery module are spaced apart from each other to form a coolant flow section in which the coolant introduced through the coolant inlet port is dispersed and introduced into the battery module; The refrigerant flowing in each of the refrigerant inflow ports passes through the respective battery modules, and after cooling the unit cells, the refrigerant can be discharged to the outside through the refrigerant discharging portion. In the longitudinal direction of the battery pack, And a battery pack.
최근, 충방전이 가능한 이차전지는 와이어리스 모바일 기기의 에너지원으로 광범위하게 사용되고 있다. 또한, 이차전지는 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로서도 주목받고 있다.BACKGROUND ART [0002] In recent years, rechargeable secondary batteries have been widely used as energy sources for wireless mobile devices. The secondary battery is also attracting attention as a power source for an electric vehicle (EV) and a hybrid electric vehicle (HEV), which are proposed as solutions for the air pollution of existing gasoline vehicles and diesel vehicles using fossil fuels .
소형 모바일 기기들에는 디바이스 1 대당 하나 또는 두서너 개의 전지셀들이 사용됨에 반하여, 자동차 등과 같은 중대형 디바이스에는 고출력 대용량의 필요성으로 인해, 다수의 전지셀을 전기적으로 연결한 중대형 전지모듈이 사용된다.In a small mobile device, one or two or more battery cells are used per device, while a middle- or large-sized battery module such as an automobile is used as a middle- or large-sized battery module in which a plurality of battery cells are electrically connected due to the necessity of a large-
중대형 전지모듈은 가능하면 작은 크기와 중량으로 제조되는 것이 바람직하므로, 높은 집적도로 충적될 수 있고 용량 대비 중량이 작은 각형 전지, 파우치형 전지 등이 중대형 전지모듈의 전지셀로서 주로 사용되고 있다. 특히, 알루미늄 라미네이트 시트 등을 외장부재로 사용하는 파우치형 전지는 중량이 작고 제조비용이 낮으며 형태 변형이 용이하다는 등의 이점으로 인해 최근 많은 관심을 모으고 있다.Since the middle- or large-sized battery module is preferably manufactured in a small size and weight, a prismatic battery, a pouch-shaped battery, and the like, which can be charged with a high degree of integration and have a small weight to capacity ratio, are mainly used as the battery cells of the middle- or large-sized battery modules. In particular, a pouch-shaped battery using an aluminum laminate sheet or the like as an exterior member has recently attracted a lot of attention due to its advantages such as small weight, low manufacturing cost, and easy shape deformation.
중대형 전지모듈이 소정의 장치 내지 디바이스에서 요구되는 출력 및 용량을 제공하기 위해서는, 다수의 전지셀들을 직렬 또는 직렬 및 병렬 방식으로 전기적으로 연결하여야 하고 외력에 대해 안정적인 구조를 유지할 수 있어야 한다.In order for the middle- or large-sized battery module to provide the output and capacity required by a predetermined device or device, a plurality of battery cells must be electrically connected in series or series and parallel manner, and a stable structure against external force must be maintained.
또한, 중대형 전지모듈을 구성하는 전지셀들은 충방전이 가능한 이차전지로 구성되어 있으므로, 이와 같은 고출력 대용량 이차전지는 충방전 과정에서 다량의 열을 발생시키는 바, 충방전 과정에서 발생한 단위전지의 열이 효과적으로 제거되지 못하면, 열축적이 일어나고 결과적으로 단위전지의 열화를 촉진하며, 경우에 따라서는 발화 또는 폭발의 위험성도 존재한다. 따라서, 고출력 대용량의 전지인 차량용 전지팩에는 그것에 내장되어 있는 전지셀들을 냉각시키는 냉각 시스템이 필요하다.In addition, since the battery cells constituting the middle- or large-sized battery module are composed of a rechargeable secondary battery, such a high-output large-capacity secondary battery generates a large amount of heat during the charging and discharging process, Can not be effectively removed, heat accumulation occurs, consequently promoting deterioration of the unit cell, and in some cases, there is a risk of ignition or explosion. Therefore, a cooling system for cooling the battery cells built in the vehicle battery pack, which is a high-output large-capacity battery, is required.
한편, 전력저장 장치는 다수의 전지팩들을 랙에 서랍형으로 패키징하는 방식이 주로 사용되고 있다. 서랍형 패키징은 일련의 전지팩들을 수직으로 적층하여 1개의 랙에 삽입하는 방식을 의미한다. 이러한 전력저장 장치에 포함된 전지팩의 냉각 시스템을 구성하는 경우, 전지셀 또는 단위모듈의 냉각을 위해 전지모듈 내 유로를 수직 방향으로 형성한 상태로 전지모듈들을 배열하면 냉각을 위한 유로 형성이 어려운 문제점이 있다.On the other hand, a power storage device mainly uses a method of packaging a plurality of battery packs in a drawer type in a rack. Drawer type packaging means a series of battery packs stacked vertically and inserted into one rack. In the case of constructing the cooling system of the battery pack included in such a power storage device, it is difficult to form the flow path for cooling by arranging the battery modules in a state where the flow path in the battery module is formed in the vertical direction for cooling the battery cells or the unit modules There is a problem.
즉, 전지팩들이 상하로 적층되어야 하기 때문에 전지팩의 상부와 하부에 유로를 위한 공간을 별도로 만들 수 없으므로, 서랍형 패키징을 위해서는 전지모듈들을 눕힌 상태로 배치해야 냉각 뿐만 아니라 공간적으로 효율적인 설계를 할 수 있다.In other words, since the battery packs must be stacked up and down, a space for the flow path can not be separately formed in the upper and lower parts of the battery pack. Therefore, for the drawer type packaging, .
또한, 일반적으로 전력저장 장치에서는 높은 에너지 밀도와 전지의 균일한 수명 및 성능이 요구되므로, 전지팩의 구성 뿐만 아니라 랙의 구성시에도 콤팩트 한 설계가 필요하다.Generally, a high energy density and a uniform lifetime and performance of the battery are required in a power storage device, so that a compact design is required not only in the configuration of the battery pack but also in the construction of the rack.
공간활용을 위해 예를 들어, 도 1과 같이 전지팩(100) 내부의 전지모듈 배치 및 냉매의 유로 형상이 가능하다. 그러나, 유로 방향으로 전지모듈들이 배열되면 1열의 전지모듈에는 외부의 공기가 바로 유입되고 2열의 전지모듈에는 1열의 전지들로부터 열을 흡수하여 데워진 공기가 유입되므로 1열과 2열에 위치한 전지모듈들의 냉각 정도가 달라 전지셀의 수명이 단축되는 문제점이 있다.For example, as shown in FIG. 1, battery module arrangements inside the
이러한 문제점을 극복하기 위하여, 도 2와 같이 내부의 냉매 유로 유입구가 분리된 전지팩(100a)이 제안되었다. 그러나, 분리된 유입구를 사용하는 경우, 배출구와의 이격거리 차이에 의해 냉매의 유속 또는 유량이 달라지므로, 균일한 유동 분배를 위해 적절한 비율을 찾아, 각기 다른 크기로 유입구를 제작해야만 하는 문제점이 있다.In order to overcome such a problem, a
따라서, 이러한 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.Therefore, there is a high need for a technique capable of fundamentally solving such problems.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and the technical problems required from the past.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이 전지모듈 별로 냉매 유입구가 독립적으로 위치하고, 상기 냉매 유입구가 형성되어 있는 팩 케이스와 전지모듈 사이는, 냉매 배출구에 인접한 냉매 유입구를 통해 유입된 냉매가 분산되어 전지모듈로 유입되는 냉매 유동 구간의 형성을 위해, 팩 케이스와 전지모듈을 상호 이격 시키는 경우, 전지모듈을 효율적으로 냉각시키고, 냉매 유입구를 동일한 크기로 제작할 수 있으며 콤팩트한 구조를 형성하는 것을 확인하고, 본 발명을 완성하기에 이르렀다.The inventors of the present application have conducted intensive research and various experiments and have found that the coolant inflow port is independently positioned for each battery module as will be described later and that between the pack case in which the coolant inflow port is formed and the battery module, When the pack case and the battery module are separated from each other in order to form a refrigerant flow section in which the refrigerant introduced through the coolant inlet port is dispersed into the battery module, the battery module can be efficiently cooled and the coolant inlet port can be made the same size And that a compact structure is formed, thereby completing the present invention.
따라서, 본 발명은 충방전이 가능한 전지셀 또는 단위모듈('단위셀')들을 포함하는 전지모듈 다수 개를 팩 케이스에 내장하고 있는 전지팩으로서,Accordingly, the present invention provides a battery pack having a pack case in which a plurality of battery modules or unit modules ('unit cells') capable of being charged and discharged are embedded,
상기 단위셀 하나 이상이 하나의 전지모듈을 구성하고;At least one of the unit cells constituting one battery module;
상기 전지모듈 둘 이상이 전지팩의 길이 방향으로 배열되어 하나의 전지모듈 군을 구성하며;Wherein at least two of the battery modules are arranged in the longitudinal direction of the battery pack to constitute one battery module group;
2개의 전지모듈 군들이 냉매 배출부를 중심으로 대칭적으로 배열되어 있고,The two battery module groups are arranged symmetrically with respect to the coolant discharge portion,
전지모듈에서 상기 냉매 배출부에 대향하는 위치의 팩 케이스 부위에는 전지모듈 별로 냉매 유입구가 독립적으로 위치하며;In the battery module, a coolant inlet port is independently located for each battery module in a portion of the pack case opposite to the coolant outlet portion;
상기 냉매 유입구가 형성되어 있는 팩 케이스와 전지모듈 사이는, 냉매 유입구를 통해 유입된 냉매가 분산되어 전지모듈로 유입되는 냉매 유동 구간의 형성을 위해, 상호 이격되어 있고;The pack case in which the coolant inlet port is formed and the battery module are spaced apart from each other to form a coolant flow section in which the coolant introduced through the coolant inlet port is dispersed and introduced into the battery module;
상기 냉매 유입구 별로 유입된 냉매가 각각의 전지모듈들을 통과하면서 단위셀을 냉각한 후 냉매 배출부를 경유하여 외부로 배출될 수 있도록, 전지팩의 길이 방향에서 팩 케이스의 전면 또는 후면에 하나의 냉매 배출구가 형성되어 있는 것을 특징으로 한다.The refrigerant flowing in each of the refrigerant inflow ports passes through the respective battery modules, and after cooling the unit cells, the refrigerant can be discharged to the outside through the refrigerant discharging portion. In the longitudinal direction of the battery pack, Is formed.
따라서, 본 발명에 따른 전지팩은 팩 케이스와 전지모듈 사이에 냉매가 분산될 수 있는 냉매 유동구간이 형성되도록 이격된 상태로 배열되어 있어서, 냉매 유입구와 전지모듈 사이를 밀폐시키는 공정을 생략할 수 있을 뿐만 아니라, 냉매 유입구를 동일한 크기로 형성할 수 있으므로, 전지팩을 콤팩트하게 구성하고, 전지팩의 제조 비용을 감소시킬 수 있다.Therefore, the battery pack according to the present invention is arranged so as to be spaced apart from the pack case and the battery module so as to form a refrigerant flow section in which the refrigerant can be dispersed, so that the step of sealing between the refrigerant inlet port and the battery module can be omitted In addition, since the refrigerant inlet port can be formed in the same size, the battery pack can be made compact and the manufacturing cost of the battery pack can be reduced.
구체적으로, 상기 유동구간을 통해 냉매 배출구에 인접한 냉매 유입구로 유입된 냉매가 냉매 배출구로부터 이격된 전지모듈 방향으로 분산되어, 냉매 배출구로부터 이격된 전지모듈을 냉각시키는 효과를 발휘하여, 결과적으로 전지모듈의 균일한 냉각이 가능하다.Specifically, the refrigerant flowing into the refrigerant inlet port adjacent to the refrigerant outlet port through the flow section is dispersed in the direction of the battery module spaced apart from the refrigerant outlet port, thereby cooling the battery module spaced apart from the refrigerant outlet port. As a result, It is possible to uniformly cool the heat exchanger.
또한, 본 발명에 따른 전지팩은, 전지모듈에서 상기 냉매 배출부에 대향하는 위치의 팩 케이스 부위에 전지모듈 별로 냉매 유입구가 독립적으로 위치하므로, 냉매가 통과하는 길이와 유속이 절반으로 감소하여 유동 방향의 전지모듈들에서 생기는 온도 편차와 차압을 감소시킬 수 있다.In addition, in the battery pack according to the present invention, since the refrigerant inlet port is independently located for each battery module in the pack case at a position facing the refrigerant discharge portion in the battery module, the length and flow rate of the refrigerant are reduced to half, It is possible to reduce the temperature deviation and the differential pressure generated in the battery modules in the direction of the battery module.
하나의 바람직한 예에서, 상기 냉매 유입구는 다수의 관통구 또는 슬릿 구조로 팩 케이스 상에 형성될 수 있으며, 이러한 구조는 별도의 냉매 유입을 위한 공간을 필요로 하지 않는 장점이 있다.In one preferred embodiment, the coolant inlet port may be formed on the pack case with a plurality of through-holes or slit structures, and this structure has an advantage that a space for introducing a separate coolant is not required.
또한, 상기 구조의 냉매 유입구는 한 번에 많은 양의 냉매를 외부로부터 유입할 수 있는 잇점도 있다.In addition, the refrigerant inlet of the structure has an advantage that a large amount of refrigerant can be introduced from the outside at a time.
상기 팩 케이스는 전지모듈들을 용이하게 내장할 수 있는 구조이면 특별한 제한은 없으나, 예를 들어, 전지모듈들을 탑재하고 있는 하부 케이스, 및 하부 케이스의 상면을 덮고 있는 상부 케이스로 이루어질 수 있다.The pack case is not particularly limited as long as it can easily embed the battery modules. For example, the pack case may include a lower case on which the battery modules are mounted and an upper case covering the upper surface of the lower case.
한편, 각각의 전지모듈들을 균일하게 냉각할 수 있도록 다양한 구조가 고려될 수 있다.On the other hand, various structures can be considered to uniformly cool the respective battery modules.
하나의 예로서, 상기 전지모듈 군에서 각각의 전지모듈들은 동일한 폭을 가지고 있고, 냉매 배출구에 인접한 냉매 유입구와 냉매 배출구로부터 이격된 냉매 유입구의 폭이 동일하게 설정되어 있는 구조일 수 있다.As an example, each of the battery modules in the battery module group may have the same width, and the refrigerant inlet port adjacent to the refrigerant outlet port and the refrigerant inlet port spaced from the refrigerant outlet port may have the same width.
또 다른 예로서, 상기 냉매 유입구는 각각의 전지모듈에서 냉매 배출구의 대향측 방향에서 팩 케이스 상에 형성되어 있는 구조일 수 있으며, 각각의 전지모듈에서 전지모듈의 수평축을 기준으로 냉매 배출구의 대향측 방향에서 팩 케이스 상에 형성되어 있는 구조일 수 있다.As another example, the refrigerant inlet port may be formed on the pack case in the opposite direction of the refrigerant outlet port of each battery module. In each battery module, the opposite side of the refrigerant outlet port Direction on the pack case.
더욱 바람직하게는, 상기 냉매 유입구는 각각의 전지모듈에서 냉매 배출구의 대향측 방향으로 전지모듈의 모서리에 대응하는 팩 케이스 상에 형성되어 있어서, 전지모듈들의 냉각을 전체적으로 균일하게 할 수 있다.More preferably, the coolant inlet port is formed on the pack case corresponding to the corner of the battery module in the direction opposite to the coolant outlet port of each battery module, so that the cooling of the battery modules can be made uniform as a whole.
하나의 바람직한 예로서, 상기 냉매 유입구의 폭은 전지모듈 길이를 기준으로 5 내지 50% 크기를 가지고 있을 수 있다. 앞서 설명한 바와 같이, 냉매 유입구가 다수의 관통구 또는 다수의 슬릿 구조인 경우, 상기 유입구의 폭은 이들 관통구 또는 슬릿의 폭 방향의 합으로 산정한다. 이러한 냉매 유입구가 전지모듈의 길이를 기준으로 5%의 크기보다 작은 경우, 전지모듈을 냉각 시키기에 충분한 냉매가 흐를 수 없고, 50% 크기보다 큰 경우, 전지팩의 균일한 냉각이 이루어 지지 않으므로 바람직하지 않다.In one preferred embodiment, the width of the coolant inlet may be 5 to 50% of the length of the battery module. As described above, when the coolant inlet port has a plurality of through holes or a plurality of slit structures, the width of the inlet port is calculated as the sum of the widthwise directions of the through holes or slits. If the coolant inlet port is smaller than 5% of the length of the battery module, sufficient refrigerant can not flow to cool the battery module. If the coolant inlet port is larger than 50%, the battery pack is not uniformly cooled I do not.
상기 냉매 유동 구간의 폭은 전지모듈의 폭을 기준으로 바람직하게는 1 내지 20% 크기를 가지고 있을 수 있다.The width of the refrigerant flow section may preferably be 1 to 20% of the width of the battery module.
구체적으로, 냉매 유동구간이 전지모듈의 폭을 기준으로 1%의 크기보다 작거나, 20%의 크기보다 큰 경우, 냉매 배출구에 인접한 냉매 유입구에서 유입된 냉매가 냉매 유입구로부터 이격된 전지모듈로 효과적으로 분산되지 않으므로 바람직하지 않다.Specifically, when the refrigerant flow interval is less than 1% of the width of the battery module or larger than 20% of the width of the battery module, the refrigerant introduced from the refrigerant inlet port adjacent to the refrigerant outlet port is effectively discharged to the battery module It is not dispersed.
상기 냉매 배출구에 인접한 냉매 유입구로 유입되는 냉매의 유속 또는 유량이 상기 냉매 배출구로부터 이격된 냉매 유입구로 유입되는 냉매의 유속 또는 유량보다 상대적으로 크지만, 상기 냉매 배출구에 인접한 전지모듈과 상기 냉매 배출구로부터 이격된 전지모듈을 통과하여 나오는 유속 또는 유량이 동일할 수 있다. 따라서 전지모듈의 효율적인 냉각이 가능하다.The flow rate or flow rate of the refrigerant flowing into the refrigerant inlet port adjacent to the refrigerant outlet port is relatively larger than the flow rate or flow rate of the refrigerant flowing into the refrigerant inlet port spaced from the refrigerant outlet port, The flow rate or flow rate through the spaced apart battery modules may be the same. Therefore, efficient cooling of the battery module is possible.
상기 냉매 배출부의 폭은 상기 전지팩의 폭을 기준으로 5 내지 50%의 크기를 가지고 있을 수 있다.The width of the coolant discharge portion may be 5 to 50% of the width of the battery pack.
구체적으로, 냉매 배출부의 폭이 전지팩의 폭을 기준으로 5%의 크기보다 작은 경우 소망하는 냉매의 균일성을 달성할 수 없고, 냉매 배출부의 폭이 전지팩의 폭을 기준으로 50%의 크기보다 큰 경우 전체적인 전지팩의 크기가 증가하므로 바람직하지 않다.Specifically, if the width of the coolant discharge portion is smaller than the size of 5% based on the width of the battery pack, the desired uniformity of the coolant can not be achieved, and the width of the coolant discharge portion is 50% The size of the battery pack as a whole increases, which is undesirable.
한편, 각각의 전지모듈에서 냉매 유로들은 냉매 배출구를 기준으로 대략 "ㄱ" 자형 냉매 유로를 형성하는 구조일 수 있다.On the other hand, in each of the battery modules, the refrigerant channels may have a structure in which an approximately "a" -shaped refrigerant channel is formed based on the refrigerant discharge port.
경우에 따라서는, 상기 냉매 유입구 및/또는 냉매 배출구에는 냉매 유입구로부터 유입된 냉매가 전지모듈을 관통한 후 신속하고 원활하게 냉매 배출구로 이동하여 전지팩 외부로 배출될 수 있도록, 바람직하게는, 냉매의 유동 구동력을 제공할 수 있는 구동 팬이 추가로 장착될 수 있다.In some cases, the coolant inlet port and / or the coolant outlet port may be connected to the coolant outlet port so that the coolant introduced from the coolant inlet port can be rapidly and smoothly moved to the coolant outlet port after passing through the battery module, A driving fan capable of providing a floating driving force of the driving fan can be additionally mounted.
또 다른 바람직한 예에서, 상기 냉매 유입구 및/또는 냉매 배출구는 공조 시스템과 연결되어 있는 구조일 수 있다.In another preferred embodiment, the refrigerant inlet and / or the refrigerant outlet may be connected to the air conditioning system.
구체적으로, 상기 냉매 유입구는 냉각된 저온의 공기가 유입될 수 있도록 차량의 에어컨 시스템과 같은 공조 시스템과 연결되어 있는 구조로 이루어져 있어서, 저온의 공기를 사용하여 상온의 공기를 이용하는 공냉식 냉각 구조보다 더욱 효과적으로 단위셀들을 냉각시킬 수 있다.Specifically, the refrigerant inlet port is connected to an air conditioning system such as a car air-conditioning system so that the cooled low-temperature air can be introduced. Therefore, the air-cooled cooling structure using air at room temperature using low- The unit cells can be effectively cooled.
또한, 냉매 배출구의 크기가 종래의 전지팩 구조와 비교하여 작으므로 공조시스템과 연결시 공조 시스템 구성 측면에서 재료 절감효과가 있다.In addition, since the size of the refrigerant outlet is smaller than that of the conventional battery pack structure, there is a material saving effect in terms of the structure of the air conditioning system when connected to the air conditioning system.
한편, 본 발명에 따른 전지팩은 냉각 효율성이 특히 문제가 되는 구조, 즉, 전지팩의 길이가 폭보다 1.1배 이상인 구조에서 바람직하며, 1.2배 내지 6배의 크기인 경우 더욱 바람직하다.On the other hand, the battery pack according to the present invention is preferable in the structure in which the cooling efficiency is particularly problematic, that is, the structure in which the length of the battery pack is 1.1 times or more than the width, more preferably 1.2 to 6 times.
상기 전지팩은 냉매의 균일한 유동을 위하여, 바람직하게는 냉매 배출부를 기준으로 좌우 대칭 구조로 이루어질 수 있다. 따라서, 종래의 냉매 유로와 비교하여 유로의 길이를 크게 줄일 수 있으므로 매우 바람직하다.The battery pack may have a bilaterally symmetrical structure with respect to the coolant discharge portion for uniform flow of the coolant. Therefore, the length of the flow path can be greatly reduced as compared with the conventional refrigerant flow path, which is highly desirable.
상기 전지모듈은, 예를 들어, 8 내지 24개의 단위셀들로 이루어질 수 있다.The battery module may comprise, for example, 8 to 24 unit cells.
참고로, 본 명세서에서 사용된 용어 "전지모듈"은 하나 이상의 충방전 전지셀들 또는 단위모듈들을 기계적으로 체결하고 동시에 전기적으로 연결하여 고출력 대용량의 전기를 제공할 수 있는 전지 시스템의 구조를 포괄적으로 의미하므로, 그 자체로서 하나의 장치를 구성하거나, 또는 대형 장치의 일부를 구성하는 경우를 모두 포함한다. 예를 들어, 소형 전지모듈을 다수 개 연결한 대형 전지모듈의 구성도 가능하고, 전지셀들을 소수 연결한 단위모듈을 다수 개 연결한 구성도 가능하다.As used herein, the term "battery module" as used herein refers generally to a structure of a battery system capable of mechanically fastening and electrically connecting one or more charging / discharging battery cells or unit modules to provide a large- And thus includes a case of configuring a single apparatus itself or a case of forming a part of a large apparatus. For example, a large battery module having a plurality of small battery modules may be connected, or a plurality of unit modules having a small number of battery cells may be connected.
상기 단위셀들은 냉매가 단위셀들 사이로 통과하며 단위셀들을 효과적으로 냉각할 수 있도록 단위셀의 두께를 기준으로 5 내지 50%의 크기로 상호 이격되어 있는 구조로 이루어질 수 있다.The unit cells may have a structure in which the coolant passes through the unit cells and is spaced apart from each other by 5 to 50% of the thickness of the unit cells to effectively cool the unit cells.
예를 들어, 단위셀들 사이의 이격 공간이 단위셀의 두께를 기준으로 5% 크기 미만인 경우 소망하는 냉매의 냉각 효과를 얻기 어렵고, 50% 크기를 초과하는 경우 다수 개의 단위셀들로 구성된 전지모듈의 크기가 전체적으로 커지므로 바람직하지 않다.For example, if the space between the unit cells is less than 5% of the thickness of the unit cell, it is difficult to obtain a desired cooling effect of the refrigerant. If the space is more than 50% Which is not preferable.
한편, 상기 단위모듈은, 예를 들어, 전극단자들이 상단 및 하단에 각각 형성되어 있는 판상형 전지셀들이 직렬 또는 병렬로 상호 연결되어 있는 구조로서, 상기 전극단자들이 직렬 또는 병렬로 상호 연결되어 있는 둘 또는 그 이상의 전지셀들, 및 상기 전극단자 부위를 제외하고 상기 전지셀들의 외면을 감싸도록 상호 결합되는 한 쌍의 고강도 셀 커버를 포함하는 구조로 구성될 수 있다.For example, the unit module may have a structure in which plate-shaped battery cells having electrode terminals formed at the upper and lower ends, respectively, are connected in series or in parallel, and the electrode terminals are connected to each other in series or in parallel And a pair of high-strength cell covers coupled to each other to surround the outer surfaces of the battery cells except for the electrode terminal portions.
상기 전지셀은 전지모듈의 구성을 위해 충적되었을 때 전체 크기를 최소화할 수 있도록 얇은 두께와 상대적으로 넓은 폭 및 길이를 가진 판상형 전지셀이다. 그러한 바람직한 예로는 수지층과 금속층을 포함하는 라미네이트 시트의 전지케이스에 전극조립체가 내장되어 있고 상하 양단부에 전극단자가 돌출되어 있는 구조의 이차전지를 들 수 있으며, 구체적으로, 알루미늄 라미네이트 시트의 파우치형 케이스에 전극조립체가 내장되어 있는 구조일 수 있다. 이러한 구조의 이차전지를 '파우치형 전지셀'로 칭하기도 한다.The battery cell is a plate-shaped battery cell having a thin thickness and a relatively wide width and a length so as to minimize the overall size of the battery cell when the battery cell is constructed. A preferable example thereof is a secondary battery having a structure in which an electrode assembly is embedded in a battery case of a laminate sheet including a resin layer and a metal layer, and electrode terminals protrude from both upper and lower ends. More specifically, It may be a structure in which an electrode assembly is built in the case. The secondary battery having such a structure may also be referred to as a 'pouch-shaped battery cell'.
상기 전지셀은 이차전지로서, 대표적으로 니켈 수소 이차전지, 리튬 이차전지 등을 들 수 있으며, 그 중에서도 에너지 밀도가 높고 방전 전압이 큰 리튬 이차전지가 특히 바람직하다.Typically, the battery cell is a secondary battery such as a nickel hydrogen secondary battery or a lithium secondary battery. Among them, a lithium secondary battery having a high energy density and a large discharge voltage is particularly preferable.
한편, 상기 냉매는 바람직하게는 공기일 수 있지만, 그것만으로 한정되지 않음은 물론이다.On the other hand, the refrigerant is preferably air but is not limited thereto.
바람직하게는, 상기 전지팩은 전력저장 장치의 랙(rack)에 서랍형 팩키징 방식으로 장착되는 구조일 수 있다.Preferably, the battery pack may be mounted on a rack of a power storage device in a drawer-type packaging manner.
본 발명은 또한, 상기 전지팩을 전원으로 사용하는 것을 특징으로 하는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력저장 장치 등의 디바이스를 제공한다.The present invention also provides a device such as an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage device, wherein the battery pack is used as a power source.
특히, 상기 전지팩을 전원으로 사용하는 전기자동차, 하이브리드 전기자동차, 또는 플러그-인 하이브리드 전기자동차의 경우, 상기 전지팩이 차량의 트렁크에 장착되는 구조가 더욱 바람직하다.Particularly, in the case of an electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle in which the battery pack is used as a power source, the battery pack is preferably mounted on the trunk of the vehicle.
전지팩을 전원으로 사용하는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력저장 장치 등은 당업계에 공지되어 있으므로, 그에 대한 자세한 설명은 생략한다.Electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric power storage devices, etc. using a battery pack as a power source are well known in the art, so a detailed description thereof will be omitted.
이상에서 설명한 바와 같이, 본 발명에 따른 전지팩은, 팩 케이스와 전지모듈 사이에 냉매가 분산될 수 있는 냉매 유동구간이 형성되도록 이격된 상태로 배열되어 있어서, 냉매 유입구와 전지모듈 사이를 밀폐시키는 공정을 생략할 수 있을 뿐만 아니라, 냉매 유입구를 동일한 크기로 형성할 수 있으므로, 전지팩을 콤팩트하게 구성하고, 전지팩의 제조 비용을 감소시킬 수 있다. 또한, 전지모듈에서 상기 냉매 배출부에 대향하는 위치의 팩 케이스 부위에 전지모듈 별로 냉매 유입구가 독립적으로 위치하므로, 냉매가 통과하는 길이와 유속이 절반으로 감소하여 유동 방향의 전지모듈들에서 생기는 온도 편차와 차압을 감소시킬 수 있다.As described above, the battery pack according to the present invention is arranged so as to be spaced apart from the pack case so as to form a refrigerant flow section in which the refrigerant can be dispersed between the pack case and the battery module, The process can be omitted and the coolant inlet port can be formed in the same size, so that the battery pack can be made compact and the manufacturing cost of the battery pack can be reduced. In addition, since the coolant inlet port is independently located for each battery module in the pack case at a position opposite to the coolant discharge port in the battery module, the length and the flow rate of the coolant are reduced to half and the temperature It is possible to reduce the deviation and the differential pressure.
도 1은 종래기술에 따른 전지팩의 평면도이다;
도 2는 또 다른 종래기술에 따른 전지팩의 평면도이다;
도 3은 본 발명의 하나의 실시예에 따른 전지팩의 평면도이다;
도 4는 도 3의 사시도이다;
도 5는 본 발명의 또다른 실시예에 따른 전지팩의 사시도이다;
도 6은 파우치형 전지셀의 사시도이다;
도 7은 단위모듈의 구성을 위해 도 7의 전지셀이 장착될 셀 커버의 사시도이다.
도 8는 본 발명의 하나의 실시예에 따른 velocity vector를 도시한 전지팩의 평면도이다.1 is a plan view of a battery pack according to the prior art;
2 is a plan view of a battery pack according to still another prior art;
3 is a plan view of a battery pack according to one embodiment of the present invention;
Figure 4 is a perspective view of Figure 3;
5 is a perspective view of a battery pack according to another embodiment of the present invention;
6 is a perspective view of a pouch-shaped battery cell;
7 is a perspective view of a cell cover to which the battery cell of FIG. 7 is to be mounted for the configuration of a unit module.
8 is a plan view of a battery pack showing a velocity vector according to an embodiment of the present invention.
이하, 본 발명의 실시예에 따른 도면을 참조하여 본 발명을 더욱 상술하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited by the scope of the present invention.
도 3에는 본 발명의 하나의 실시예에 따른 전지팩의 평면도가 모식적으로 도시되어 있고, 도 4에는 도 3의 사시도가 모식적으로 도시되어 있다.3 is a schematic plan view of a battery pack according to an embodiment of the present invention, and FIG. 4 is a perspective view of FIG. 3 schematically.
이들 도면을 참조하면, 전지팩(100b)은 각각 2개씩의 전지모듈들이 전지팩(100b)의 길이(L) 방향으로 배열된 2개의 전지모듈 군들(110, 120)을 팩 케이스(150)에 내장하고 있다. 예를 들어, 전지모듈 군(110)은 2개의 전지모듈들(101, 102)이 전지팩(100b)의 길이(L) 방향으로 배열되어 있는 구조로 이루어져 있고, 각각의 전지모듈들(101, 102)은 동일한 폭을 가지고 있다.Referring to these figures, the
또한, 냉매 유동 구간(A)이 형성되도록 2개의 전지모듈 군들(110, 120)은 팩 케이스(150)와 이격된 상태로 배열되어 있고, 전지모듈에서 냉매 배출부(140)에 대향하는 위치의 팩 케이스(150) 부위에는 전지모듈 별로 냉매 유입구(160, 162)가 독립적으로 위치하고 있다.The two
더욱이, 전지팩(100b)의 길이(L) 방향에서 팩 케이스(150)의 전면에 하나의 냉매 배출구(130)가 형성되어 있어서, 냉매 유입구(160, 162) 별로 유입된 냉매가 각각의 전지모듈들(101, 102)을 통과하면서 단위셀을 냉각시킨 후 함께 외부로 배출된다.One
특히, 팩 케이스(150)와 전지모듈들(101, 102) 사이에는, 냉매 유입구(160, 162)를 통해 유입된 냉매가 분산되어 전지모듈들(101, 102)로 유입되는 냉매 유동 구간(A)이 형성되어 있다. 따라서, 냉매 배출구(130)에 인접한 냉매 유입구(162)로 유입된 냉매(144)의 일부(146)가 분산되면서 냉매 배출구(130)로부터 이격된 전지모듈(101)을 냉각시킨다. 이와 반대로, 냉매 배출구(130)로 이격된 냉매 유입구(160)로 유입된 냉매의 일부가 분산되면서 냉매 배출구(130)에 인접한 전지모듈(102)을 냉각시키기도 한다. 결과적으로, 냉매 배출구(130)에 인접한 냉매 유입구(162)를 통해 유입되는 유량(144)이 냉매 배출(130)로부터 이격된 냉매 유입구(160)로부터 유입되는 유량(142)보다 상대적으로 많음에도 불구하고, 각각의 전지모듈들(101, 102)를 통과하여 나오는 유량은 거의 동일하다.Particularly, between the
냉매 유입구(160, 162)는 다수의 관통구 구조로 팩 케이스(150) 상에 형성되어 있고, 예를 들어, 각각의 전지모듈들(101, 102)의 모서리에 대응하는 팩 케이스 상에 형성되어 있다.The
또한, 상기 냉매 유입구(160, 162)는 전지모듈(101)의 수평축(B)을 기준으로 냉매 배출구(130)의 대향측 방향에서 팩 케이스(150) 상에 형성되어 있다.The
각각의 냉매 유입구(160)의 폭은 관통구들의 폭 방향의 합이 모듈 길이를 기준으로 대략 20%의 크기를 가지고 있으며, 냉매 배출부(140)의 폭(w)은 전지팩(100b)의 폭(W)을 기준으로 대략 20%의 크기를 가지고 있다.The width of each
각각의 전지모듈에서 냉매 유로들(142, 144)은 냉매 배출구(130)를 기준으로 "ㄱ" 자형 냉매 유로를 형성하고 있고, 전지팩(100b)은 길이(L)가 폭(W)보다 약 1.3배 구조로 이루어져 있다.The
한편, 전지모듈 군들(110, 120)은 냉매 배출부(140)를 기준으로 좌우 대칭 구조로 이루어져 있다.On the other hand, the
도 5에는 본 발명의 또 다른 실시예에 따른 전지팩의 사시도가 모식적으로 도시되어 있다.5 is a perspective view of a battery pack according to another embodiment of the present invention.
도 5를 참조하면, 팩 케이스는 전지모듈들을 탑재하고 있는 하부 케이스(150), 및 하부 케이스(150)의 상면을 덮고 있는 상부 케이스(170)로 이루어진 점을 제외하고는 도 3의 구조와 동일하므로 자세한 설명은 생략하기로 한다.5, the pack case is the same as the structure of FIG. 3 except that it is composed of a
도 6에는 파우치형 전지셀의 사시도가 모식적으로 도시되어 있다.Fig. 6 schematically shows a perspective view of a pouch-shaped battery cell.
도 6을 참조하면, 파우치형 전지(50)는 두 개의 전극리드(51, 52)가 서로 대향하여 전지 본체(53)의 상단부와 하단부에 각각 돌출되어 있는 구조로 이루어져 있다. 외장부재(54)는 상하 2 단위로 이루어져 있고, 그것의 내면에 형성되어 있는 수납부에 전극조립체(도시하지 않음)를 장착한 상태로 상호 접촉 부위인 양 측면(55)과 상단부 및 하단부(56, 57)를 부착시킴으로써 전지(50)가 만들어진다.Referring to FIG. 6, the pouch-shaped
외장부재(54)는 수지층/금속박층/수지층의 라미네이트 구조로 이루어져 있어서, 서로 접하는 양 측면(55)과 상단부 및 하단부(56, 57)에 열과 압력을 가하여 수지층을 상호 융착시킴으로써 부착시킬 수 있으며, 경우에 따라서는 접착제를 사용하여 부착할 수도 있다. 양 측면(55)은 상하 외장부재(54)의 동일한 수지층이 직접 접하므로 용융에 의해 균일한 밀봉이 가능하다. 반면에, 상단부(56)와 하단부(57)에는 전극리드(51, 52)가 돌출되어 있으므로 전극리드(51, 52)의 두께 및 외장부재(54) 소재와의 이질성을 고려하여 밀봉성을 높일 수 있도록 전극리드(51, 52)와의 사이에 필름상의 실링부재(58)를 개재한 상태에서 열융착시킨다.The
도 7에는 단위모듈의 구성을 위해 도 7의 전지셀이 장착될 셀 커버의 사시도가 모식적으로 도시되어 있다.7 is a perspective view of a cell cover to which the battery cell of FIG. 7 is to be mounted for the configuration of a unit module.
도 7을 참조하면, 셀 커버(500)는 도 5에서와 같은 파우치형 전지셀(도시하지 않음) 2 개를 내장하며 그것의 기계적 강성을 보완할 뿐만 아니라 모듈 케이스(도시하지 않음)에 대한 장착을 용이하게 하는 역할을 한다. 상기 2개의 전지셀들은 그것의 일측 전극단자들이 직렬로 연결된 후 절곡되어 상호 밀착된 구조로 셀 커버(500) 내부에 장착된다.Referring to FIG. 7, the
셀 커버(500)는 상호 결합 방식의 한 쌍의 부재들(510, 520)로 구성되어 있으며, 고강도 금속 판재로 이루어져 있다. 셀 커버(500)의 좌우 양단에 인접한 외면에는 모듈의 고정을 용이하게 하기 위한 단차(530)가 형성되어 있으며, 상단과 하단에도 역시 동일한 역할을 하는 단차(540)가 형성되어 있다. 또한, 셀 커버(500)의 상단과 하단에는 폭방향으로 고정부(550)가 형성되어 있어서, 모듈 케이스(도시하지 않음)에 대한 장착을 용이하게 한다.The
도 8를 참조하면, 본 발명의 전지팩에서의 velocity vector가 도시되어 있다.Referring to FIG. 8, a velocity vector in the battery pack of the present invention is shown.
도 8를 참조하면, 냉매 배출구(130)에 인접한 냉매 유입구(162)에서 유입된 냉매가 냉매 유동구간(A)을 통해, 냉매 유입구로부터 이격된 전지모듈(101)로 분산되는 것을 확인할 수 있다.
Referring to FIG. 8, it can be seen that the coolant introduced from the
이상 본 발명의 실시예에 따른 도면을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments.
Claims (25)
상기 단위셀 하나 이상이 하나의 전지모듈을 구성하고;
상기 전지모듈 둘 이상이 전지팩의 길이 방향으로 배열되어 하나의 전지모듈 군을 구성하며;
2개의 전지모듈 군들이 냉매 배출부를 중심으로 대칭적으로 배열되어 있고,
전지모듈에서 상기 냉매 배출부에 대향하는 위치의 팩 케이스 부위에는 전지모듈 별로 냉매 유입구가 독립적으로 위치하며;
상기 냉매 유입구가 형성되어 있는 팩 케이스와 전지모듈 사이는, 냉매 유입구를 통해 유입된 냉매가 분산되어 전지모듈로 유입되는 냉매 유동 구간의 형성을 위해, 상호 이격되어 있고;
상기 냉매 유입구 별로 유입된 냉매가 각각의 전지모듈들을 통과하면서 단위셀을 냉각한 후 냉매 배출부를 경유하여 외부로 배출될 수 있도록, 전지팩의 길이 방향에서 팩 케이스의 전면 또는 후면에 하나의 냉매 배출구가 형성되어 있으며;
상기 냉매 유입구는 각각의 전지모듈에서 냉매 배출구의 대향측 방향으로 전지모듈의 모서리에 대응하는 팩 케이스 상에 형성되어 있는 것을 특징으로 하는 전지팩.A battery pack in which a plurality of battery modules including chargeable and dischargeable battery cells or unit modules ('unit cells') are built in a pack case,
At least one of the unit cells constituting one battery module;
Wherein at least two of the battery modules are arranged in the longitudinal direction of the battery pack to constitute one battery module group;
The two battery module groups are arranged symmetrically with respect to the coolant discharge portion,
In the battery module, a coolant inlet port is independently located for each battery module in a portion of the pack case opposite to the coolant outlet portion;
The pack case in which the coolant inlet port is formed and the battery module are spaced apart from each other to form a coolant flow section in which the coolant introduced through the coolant inlet port is dispersed and introduced into the battery module;
The refrigerant flowing in each of the refrigerant inflow ports passes through the respective battery modules, and after cooling the unit cells, the refrigerant can be discharged to the outside through the refrigerant discharging portion. In the longitudinal direction of the battery pack, ;
Wherein the coolant inlet port is formed on a pack case corresponding to an edge of the battery module in a direction opposite to the coolant outlet port of each battery module.
25. The device of claim 24, wherein the device is an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a power storage device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120005481A KR101535795B1 (en) | 2012-01-18 | 2012-01-18 | Battery Pack of Air Cooling Structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120005481A KR101535795B1 (en) | 2012-01-18 | 2012-01-18 | Battery Pack of Air Cooling Structure |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140137550A Division KR20140130086A (en) | 2014-10-13 | 2014-10-13 | Battery Pack of Air Cooling Structure |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130084722A KR20130084722A (en) | 2013-07-26 |
KR101535795B1 true KR101535795B1 (en) | 2015-07-10 |
Family
ID=48995190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120005481A KR101535795B1 (en) | 2012-01-18 | 2012-01-18 | Battery Pack of Air Cooling Structure |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101535795B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101692790B1 (en) | 2013-07-31 | 2017-01-04 | 주식회사 엘지화학 | Battery Module Assembly Having Coolant Flow Channel |
KR101709555B1 (en) * | 2013-07-31 | 2017-02-23 | 주식회사 엘지화학 | Battery Module Assembly Having Coolant Flow Channel |
CN107768771A (en) * | 2017-10-17 | 2018-03-06 | 夏文庆 | A kind of power battery thermal management system and method based on bionical calorifics |
KR20220100423A (en) | 2021-01-08 | 2022-07-15 | 주식회사 엘지에너지솔루션 | Battery module and battery pack including the same and vehicle including the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100937897B1 (en) * | 2008-12-12 | 2010-01-21 | 주식회사 엘지화학 | Middle or large-sized battery pack of novel air cooling structure |
KR20100081942A (en) * | 2009-01-06 | 2010-07-15 | 주식회사 엘지화학 | Battery module of noble structure and middle or large-sized battery pack containing the same |
KR20110140070A (en) * | 2010-06-24 | 2011-12-30 | 에스비리모티브 주식회사 | Battery assembly |
JP2012009310A (en) * | 2010-06-25 | 2012-01-12 | Sanyo Electric Co Ltd | Storage system of electricity |
-
2012
- 2012-01-18 KR KR1020120005481A patent/KR101535795B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100937897B1 (en) * | 2008-12-12 | 2010-01-21 | 주식회사 엘지화학 | Middle or large-sized battery pack of novel air cooling structure |
KR20100081942A (en) * | 2009-01-06 | 2010-07-15 | 주식회사 엘지화학 | Battery module of noble structure and middle or large-sized battery pack containing the same |
KR20110140070A (en) * | 2010-06-24 | 2011-12-30 | 에스비리모티브 주식회사 | Battery assembly |
JP2012009310A (en) * | 2010-06-25 | 2012-01-12 | Sanyo Electric Co Ltd | Storage system of electricity |
Also Published As
Publication number | Publication date |
---|---|
KR20130084722A (en) | 2013-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101475737B1 (en) | Battery Pack of Novel Air Cooling Structure | |
KR101535800B1 (en) | Battery Pack of Novel Air Cooling Structure | |
KR101390224B1 (en) | Battery Pack Providing Improved Distribution Uniformity in Coolant | |
KR101586197B1 (en) | Battery Pack Having Novel Cooling Structure | |
KR101400079B1 (en) | Battery Pack of Novel Air Cooling Structure | |
KR100937897B1 (en) | Middle or large-sized battery pack of novel air cooling structure | |
KR101803958B1 (en) | A Battery Pack Case Having Efficient Cooling Structure | |
KR101143279B1 (en) | Battery Pack Having Novel Cooling Structure | |
KR101833526B1 (en) | Battery Module Having Water-Cooled Type Cooling Structure | |
KR101535795B1 (en) | Battery Pack of Air Cooling Structure | |
KR20140130086A (en) | Battery Pack of Air Cooling Structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
A107 | Divisional application of patent | ||
J201 | Request for trial against refusal decision | ||
J301 | Trial decision |
Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20141013 Effective date: 20150420 |
|
S901 | Examination by remand of revocation | ||
GRNO | Decision to grant (after opposition) | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20180619 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20190625 Year of fee payment: 5 |