JPS6382424A - Production of electrophotographic sensitive body - Google Patents
Production of electrophotographic sensitive bodyInfo
- Publication number
- JPS6382424A JPS6382424A JP22895986A JP22895986A JPS6382424A JP S6382424 A JPS6382424 A JP S6382424A JP 22895986 A JP22895986 A JP 22895986A JP 22895986 A JP22895986 A JP 22895986A JP S6382424 A JPS6382424 A JP S6382424A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- gas
- region
- layer region
- photoreceptor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 45
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 24
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 20
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 17
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims abstract description 9
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 93
- 108091008695 photoreceptors Proteins 0.000 claims description 84
- 229910052799 carbon Inorganic materials 0.000 claims description 42
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 17
- 238000000354 decomposition reaction Methods 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 230000000737 periodic effect Effects 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 abstract description 32
- 239000010410 layer Substances 0.000 description 169
- 206010034972 Photosensitivity reaction Diseases 0.000 description 19
- 230000036211 photosensitivity Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 16
- 239000011241 protective layer Substances 0.000 description 13
- 125000004429 atom Chemical group 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 101100445499 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) erg-1 gene Proteins 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08278—Depositing methods
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08235—Silicon-based comprising three or four silicon-based layers
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光導電性アモルファスシリコンカーバイド層か
ら成る電子写真感光体の製法に関し、特に正極性に帯電
可能な電子写真感光体の製法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an electrophotographic photoreceptor comprising a photoconductive amorphous silicon carbide layer, and particularly relates to a method for manufacturing an electrophotographic photoreceptor that can be positively charged. be.
近年、電子写真感光体の進歩は目覚ましく、感光体を搭
載する複写機やプリンター等の開発に伴って感光体自体
にも種々の特性が要求されている、この要求に対してア
モルファスシリコン層が耐熱性、耐摩耗性、無公害性並
びに光感度特性等に優れているという理由から注目され
ている。In recent years, progress in electrophotographic photoreceptors has been remarkable, and with the development of copying machines and printers equipped with photoreceptors, various characteristics are required of the photoreceptors themselves. It is attracting attention because of its excellent properties such as hardness, abrasion resistance, non-pollution, and photosensitivity.
しかし乍ら、アモルファスシリコン(以下、a−Siと
略す)層は、それに何ら不純物元素をドーピングしない
と約10’Ω・cmの暗抵抗値しか得られず、これを電
子写真用感光体に用いる場合には10目Ω・cm以上の
暗抵抗値にして電荷保持能力を高める必要がある。その
ために酸素や窒素などの元素を微少量ドーピングして高
抵抗化にし得るが、その反面、光導電性が低下するとい
う問題がある、また、ホウ素などを添加しても高抵抗化
が期待できるが、十分に満足し得るような暗抵抗値が得
られず約10″Ω・cm程度にすぎない。However, the amorphous silicon (hereinafter abbreviated as a-Si) layer can only obtain a dark resistance value of about 10'Ωcm unless it is doped with any impurity element, and is used in electrophotographic photoreceptors. In some cases, it is necessary to increase the charge retention ability by increasing the dark resistance value to 10 Ω·cm or more. For this purpose, it is possible to increase the resistance by doping a small amount of elements such as oxygen or nitrogen, but on the other hand, there is a problem that the photoconductivity decreases.Additionally, even if boron is added, high resistance can be expected. However, a sufficiently satisfactory dark resistance value cannot be obtained, and is only about 10''Ω·cm.
一方、上記の如きドーピング剤の開発と共に、a−Si
光導電層に別の非光導電層を積層して成る積層型感光体
が提案されている。On the other hand, along with the development of doping agents as mentioned above, a-Si
A laminated photoreceptor has been proposed in which a photoconductive layer is laminated with another non-photoconductive layer.
例えば、第2図はこの積層型感光体であり、基板(1)
の上にキャリア注入阻止層(2) 、 a−Si光導電
層(3)及び表面保護層(4)が順次積層されている。For example, Figure 2 shows this laminated photoreceptor, with the substrate (1)
A carrier injection blocking layer (2), an a-Si photoconductive layer (3) and a surface protection layer (4) are sequentially laminated thereon.
この積層型感光体によれば、キャリア注入阻止層(2)
は基板(1)からのキャリアの注入を阻止するものであ
り、表面保護層(4)はa−5L光導電層(3)を保護
して耐湿性等を向上させるものであるが、両者の層(2
)及び(4)ともに感光体の暗抵抗値を大きくして帯電
能を高めることが目的であり、そのためにこれらの層を
光導電性にする必要はない。According to this laminated photoreceptor, the carrier injection blocking layer (2)
The surface protection layer (4) protects the a-5L photoconductive layer (3) and improves moisture resistance, etc., but the Layer (2
) and (4) are both intended to increase the dark resistance value of the photoreceptor to increase the charging ability, and for that purpose, it is not necessary to make these layers photoconductive.
このように従来周知のa−3i電子写真感光体は光キヤ
リア発生層をa−3i光導電層により形成させた点に大
きな特徴があり、これによって耐熱性、耐久性及び光感
度特性などに優れた長所を有している反面、暗抵抗値が
不十分であるためにドーピング剤を用いたり、或いは積
層型感光体にすることで暗抵抗値を大きくしている。即
ち、積層型感光体に形成されるキャリア注入阻止層(2
)及び表面保護層(4)はa−Si光導電層自体が有す
る欠点を補完するものであり、a−5i光導電層(3)
と実質上区別し得る層と言える。As described above, the conventionally well-known A-3I electrophotographic photoreceptor has a major feature in that the photocarrier generation layer is formed by the A-3I photoconductive layer, and as a result, it has excellent heat resistance, durability, and photosensitivity characteristics. However, since the dark resistance value is insufficient, the dark resistance value is increased by using a doping agent or by forming a laminated type photoreceptor. That is, the carrier injection blocking layer (2
) and the surface protective layer (4) complement the defects of the a-Si photoconductive layer itself, and the a-5i photoconductive layer (3)
It can be said that it is a layer that can be practically distinguished.
本発明者等は上記事情に鑑みて鋭意研究の結果、アセチ
レン及びケイ素含有ガスが一定の比率に設定された混合
ガスをグロー放電分解して得られたアモルファスシリコ
ンカーバイド(以下、a−3iC−と略す)は光導電性
を有すると共に暗抵抗値がドーピング剤の有無と無関係
に容易に1013Ω・cm以上になり、更にドーピング
剤の選択によって正極性に帯電可能な電子写真感光体と
成り得ることを見い出した。In view of the above circumstances, the present inventors conducted intensive research and found that amorphous silicon carbide (hereinafter referred to as a-3iC-) obtained by glow discharge decomposition of a mixed gas containing acetylene and silicon-containing gas at a certain ratio (omitted) has photoconductivity and has a dark resistance value of easily 1013 Ω·cm or more regardless of the presence or absence of a doping agent, and can also be an electrophotographic photoreceptor that can be positively charged by selecting a doping agent. I found it.
従って、本発明は上記知見に基いて完成されたものであ
り、その目的は大きな暗抵抗値を有する光導電性a−S
iC層から成る電子写真感光体の製法を提供することに
ある。Therefore, the present invention was completed based on the above findings, and its purpose is to provide a photoconductive a-S having a large dark resistance value.
An object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor comprising an iC layer.
本発明の他の目的は表面保護層及びキャリア注入阻止層
を実質上不要とし、全層に亘って光導電性a−3iCか
ら成る電子写真感光体の製法を提供することにある。Another object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor that substantially eliminates the need for a surface protective layer and a carrier injection blocking layer and is composed of photoconductive a-3iC throughout the entire layer.
本発明の更に他の目的は正極性に帯電可能な電子写真感
光体の製法を提供することにある。Still another object of the present invention is to provide a method for producing an electrophotographic photoreceptor that can be positively charged.
本発明の更に他の目的は高速成膜を達成した電子写真感
光体の製法を提供することにある。Still another object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor that achieves high-speed film formation.
本発明によれば、少なくともアセチレン(Cdb)及び
ケイ素(Si)含有ガスから成ると共にこのガス組成比
が0.01:1乃至3:1の範囲内に設定され、且つ1
0−”乃至1モルχの周期律表第rfia族元索含有ガ
スを含むa−3iC生成用ガスをグロー放電分解して基
板上に正極性に帯電可能なa−SiC層を形成すること
を特徴とする電子写真感光体の製法が提供される。According to the present invention, the gas contains at least acetylene (Cdb) and silicon (Si), and the gas composition ratio is set within the range of 0.01:1 to 3:1, and 1
Forming a positively chargeable a-SiC layer on a substrate by glow discharge decomposition of an a-3iC generation gas containing a gas containing 0-" to 1 mol χ of group rfia of the periodic table. A method for producing a featured electrophotographic photoreceptor is provided.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明の製法によれば、グロー放電分解法によってCt
Htガス及びSi含有ガスから基板上に光導電性a−3
iC層を形成させると大きな暗抵抗値が得られ、更に周
期律表第ma族元素ガスを10−’乃至1モル%含有さ
せると正極性に帯電することを特徴とし、第1図はその
基本構成となる感光体である。According to the production method of the present invention, Ct
Photoconductive a-3 on the substrate from Ht gas and Si-containing gas
When an iC layer is formed, a large dark resistance value can be obtained, and when it contains 10-' to 1 mol% of a gas belonging to Group Ma of the periodic table, it is positively charged. Figure 1 shows its basic characteristics. This is the photoreceptor that makes up the structure.
即ち、第1図によれば導電性基板(1)上に、グロー放
電分解法によって光導電性a−5iC層(5)を形成し
たものであり、この層厚方向に亘って炭素と周期律表第
ma族元素(以下、ma族元素と略す)をそれぞれ同一
含有比率で含有させている。That is, according to FIG. 1, a photoconductive a-5iC layer (5) is formed on a conductive substrate (1) by a glow discharge decomposition method, and carbon and a periodic rule are formed over the thickness direction of this layer. The Ma group elements in the table (hereinafter abbreviated as Ma group elements) are contained in the same content ratio.
これによって暗抵抗率が1013co+・Ω以上となる
と共に明抵抗率に比べて1000倍以上となることを見
い出し、この知見に基づく後述する実施例から明らかな
通り、この単一組成の層だけで十分に実用性のあるa−
5iC感光体と成り得たことは予想外の成果であった。It was discovered that this resulted in a dark resistivity of 1013 co+・Ω or higher, which was also 1000 times higher than the bright resistivity. Practical a-
It was an unexpected result that a 5iC photoreceptor could be created.
更に本発明者等はこのa−SiC感光体を正極性又は負
極性に帯電させて両者の帯電性能を比較した場合、この
a−5iC層(5)にTfia族元素を0.1乃至10
、000ppmの範囲、好適には0.1乃至1000p
p−の範囲内でドーピングすると正極性で有利に帯電能
を高めることができることも見い出した。Furthermore, when the present inventors charged this a-SiC photoreceptor to positive polarity or negative polarity and compared the charging performance of the two, they found that the Tfia group element was added to this a-5iC layer (5) by 0.1 to 10%.
,000ppm, preferably from 0.1 to 1000p
It has also been found that doping within the p- range can advantageously enhance the charging ability with positive polarity.
このようにma族元素のドーピング又はノンドープによ
って正極性に帯電し易くなる点については、未だ推論の
域を脱し得ないが、a−3iC層が正電荷を保持するの
に十分に高い抵抗率をもち、また、基板からの負電荷の
注入を防ぐ効果にも優れ、更に正電荷に対する電荷移動
度が優れている等の理由によると考えられる。Although it is still a matter of speculation that doping or non-doping with Ma group elements makes it easier to charge positively, it is clear that the a-3iC layer has a sufficiently high resistivity to retain a positive charge. This is thought to be due to the fact that it has excellent durability and is also effective in preventing injection of negative charges from the substrate, and also has excellent charge mobility for positive charges.
また、このI[IIIa族元素としてはB+AI+Ga
+Inがあるが、就中、Pが共有結合性に優れて半導体
特性を敏感に変え得る点で好ましく、その上、優れた帯
電能及び感度を有するという点で望ましい。In addition, this I[IIIa group element is B+AI+Ga
Among these, P is preferable because it has excellent covalent bonding properties and can sensitively change semiconductor characteristics, and is also desirable because it has excellent charging ability and sensitivity.
上記のようにma族元素をドーピングさせるに当たって
は、a−3iC生成用ガスに10−6乃至1モルχ、好
適には10−乃至0.1モルχのma族元素ガスを含有
させるとよく、これによって上記の所要の範囲内にドー
ピングさせることが可能となる。In doping with the Ma group element as described above, it is preferable that the a-3iC generation gas contains the Ma group element gas in an amount of 10-6 to 1 mol χ, preferably 10- to 0.1 mol χ, This makes it possible to dope within the above-mentioned required range.
また、ma族元素をドープするに当たってはBgH&、
BFz+ AI (CH3) sr Ga (CHs
) 3+ In (CHs) sr等が用いられ、就中
、n*niが好ましい。In addition, when doping with ma group elements, BgH&,
BFz+ AI (CH3) sr Ga (CHs
) 3+ In (CHs) sr, etc. are used, and n*ni is particularly preferred.
更に本発明者等は上記の電子写真感光体を製作するに当
たって、グロー放電分解法に基いてC’tHtガス及び
Si含有ガスを所定の比率で混合させるとよく、これに
より、a−3iC層が高速に成膜され、且つ光導電性を
有することを見い出した。Furthermore, in manufacturing the above-mentioned electrophotographic photoreceptor, the present inventors preferably mix C'tHt gas and Si-containing gas at a predetermined ratio based on a glow discharge decomposition method, thereby forming an a-3iC layer. It was discovered that the film can be formed at high speed and has photoconductivity.
即ち、C*HtとSi含有ガスをグロー放電領域に導入
するに当たってこのガス組成比を0.01:1乃至3:
lの範囲内に、好適には0.05:1乃至1:1、最適
には0.05:1乃至0.3:1の範囲内に設定すれば
よく、0.01:1の比率から外れた場合には暗抵抗率
がIQIIΩ・CII+以下となって電荷保持能力が十
分でなく、大きな帯電電位を得ることができなくなり、
3:1の比率から外れた場合には膜中のダングリングボ
ンドが増加して暗抵抗率がIQIIΩ・cI11以下と
なる。That is, when introducing C*Ht and Si-containing gas into the glow discharge region, the gas composition ratio is set to 0.01:1 to 3:
l, preferably within the range of 0.05:1 to 1:1, optimally within the range of 0.05:1 to 0.3:1, and from a ratio of 0.01:1 to If it is off, the dark resistivity will be below IQIIΩ・CII+ and the charge retention ability will not be sufficient, making it impossible to obtain a large charged potential.
When the ratio deviates from 3:1, the number of dangling bonds in the film increases and the dark resistivity becomes less than IQIIΩ·cI11.
前記si含有ガスとして5iHa+5itHi+SiJ
@+5iPa。5iHa+5itHi+SiJ as the si-containing gas
@+5iPa.
5iC1*、5tHCh等々があり、就中I S i
Ha + S 1 t Hb +はそれ自身SiがHと
結合しているため膜中にHが取り込まれ易いので膜中の
ダングリングボンドが低減し、これによって光導電性を
向上させる点で望ましい。There are 5iC1*, 5tHCh, etc., especially I S i
Ha + S 1 t Hb + itself is desirable because Si is bonded to H, so H is easily incorporated into the film, thereby reducing dangling bonds in the film, thereby improving photoconductivity.
また、前記ダングリングボンド終端用元素としてHを用
いる場合には、H!ガスはCtHtガス及びSiH4ガ
スの流量合計値に対して3倍以下、好適には2倍以下に
配合すればよく、これから外れると膜中の水素が過剰と
なって感光体に要求される電気的特性が劣化する。Furthermore, when H is used as the dangling bond termination element, H! The gas should be mixed in an amount not more than 3 times, preferably not more than 2 times, the total flow rate of CtHt gas and SiH4 gas.If the amount exceeds this, hydrogen in the film will become excessive and the electrical power required for the photoreceptor will be reduced. Characteristics deteriorate.
本発明の製法によれば、上述した通りの製造条件によっ
てa−5iC層を生成するに当たっては、グロー放電用
の高周波電力、反応室内部のガス圧及び基板温度を次の
通りに設定するのがよい。According to the manufacturing method of the present invention, in producing the a-5iC layer under the manufacturing conditions as described above, the high frequency power for glow discharge, the gas pressure inside the reaction chamber, and the substrate temperature are set as follows. good.
即ち、高周波電力は0.05乃至0.5W/c+w”の
範囲に設定すればよ< 、0.05W/cm”未満であ
ると成膜速度が小さくなり、0.5W/cm”を越える
とプラズマダメージによって膜質が低下してキャリア移
動度が小さくなる。また、ガス圧は0.1乃至2.0T
orrの範囲に設定すればよ< 、0.1Torr未満
であると成膜速度が小さくなり、2.0Torrを越え
ると放電が不安定となる。更に、基板温度はa−St:
H膜の成膜形成に比べて30乃至80℃位高くするのが
よく、望ましくは200乃至400℃の範囲がよい、こ
の基板温度が200℃未満であれば、SiとCのネット
ワーク化が阻害され、400℃を越えると水素の脱離が
著しくなって暗抵抗率が小さくなる。In other words, the high frequency power should be set within the range of 0.05 to 0.5 W/c+w. If it is less than 0.05 W/cm, the deposition rate will be low, and if it exceeds 0.5 W/cm, the The film quality deteriorates due to plasma damage and carrier mobility decreases.In addition, the gas pressure is 0.1 to 2.0T.
If it is set within the range of 0.1 Torr, the film formation rate will be low, and if it exceeds 2.0 Torr, the discharge will become unstable. Furthermore, the substrate temperature is a-St:
The temperature should be about 30 to 80 degrees Celsius higher than the H film formation, preferably in the range of 200 to 400 degrees Celsius. If this substrate temperature is less than 200 degrees Celsius, the networking of Si and C will be inhibited. When the temperature exceeds 400°C, hydrogen desorption becomes significant and the dark resistivity decreases.
本発明の製法によって得られたa−3iC層が光導電性
を有するようになった点については、アモルフ1ス化し
たケイ素と炭素を不可欠な構成元素とし、更にそのダン
グリングボンドを終端させるべくHやハロゲン元素を所
要の範囲内で含有させることによって光導電性が生じる
ものと考えられる。本発明者等が炭素の含有比率を幾通
りにも変えて光導電性の有無を確かめる実験を行ったと
ころ、a−5iC層(5)中に炭素を1乃至90原子χ
、好適には5乃至50原子χの範囲内で含有させるとよ
く、或いはこの範囲内で層厚方向に亘って炭素含有量を
変えてもよい。The reason why the a-3iC layer obtained by the manufacturing method of the present invention has photoconductivity is that amorphous silicon and carbon are essential constituent elements, and the dangling bonds are terminated. It is believed that photoconductivity is produced by containing H or a halogen element within a required range. The present inventors conducted experiments to confirm the presence or absence of photoconductivity by changing the content ratio of carbon in many ways, and found that 1 to 90 atoms of carbon χ
, preferably within the range of 5 to 50 atoms χ, or the carbon content may be varied within this range over the layer thickness direction.
また、Hやハロゲン元素の含有量は5乃至50原子χ、
好適には5乃至40原子χ、最適には10乃至30原子
χがよく、通常、Hが用いられている。このHはダング
リングボンドの終端部に取込まれ易いのでバンドギャッ
プ中の局在準位密度を低減化させ、これにより、優れた
半導体特性が得られる。In addition, the content of H and halogen elements is 5 to 50 atoms χ,
Preferably 5 to 40 atoms χ, optimally 10 to 30 atoms χ, and H is usually used. Since this H is easily incorporated into the terminal portion of the dangling bond, the localized level density in the band gap is reduced, thereby providing excellent semiconductor characteristics.
更にこのHの一部をハロゲン元素に置換してもよく、こ
れにより、a−3iC層の局在準位密度を下げて光導電
性及び耐熱性(温度特性)を高めることができる。その
置換比率はダングリングボンド終端用全元素中0,01
乃至50原子X、好適には1乃至30原子χがよい。ま
た、このハロゲン元素にはF+C1tBr+ LAt等
があるが、就中、Fを用いるとその大きな電気陰性度に
よって原子間の結合が大きくなり、これによって熱的安
定性に優れるという点で望ましい。Further, a part of this H may be replaced with a halogen element, whereby the localized level density of the a-3iC layer can be lowered and the photoconductivity and heat resistance (temperature characteristics) can be improved. Its substitution ratio is 0.01 among all elements for dangling bond termination.
The number of atoms X is preferably from 1 to 50 atoms, preferably from 1 to 30 atoms χ. Further, the halogen element includes F+C1tBr+LAt, etc., and the use of F is particularly desirable because its large electronegativity increases the bonding between atoms, thereby providing excellent thermal stability.
また、光導電性a−5iC(5)の厚みは、少なくとも
5μm以上あればよく、これによって表面電位が一20
0V以上となり、一方、このN(5)の厚みは画像の分
解能及び画像流れが生じない範囲内でその上限が適宜選
ばれており、本発明者等の実験によれば、5乃至100
μ爾、好適には10乃至50μmの範囲内に設定すると
よい。Further, the thickness of the photoconductive a-5iC (5) should be at least 5 μm or more, so that the surface potential is 200 μm or more.
On the other hand, the upper limit of the thickness of N(5) is appropriately selected within the range of image resolution and image blurring, and according to experiments conducted by the present inventors, the thickness of N(5) is 5 to 100 V.
The thickness of μm is preferably set within the range of 10 to 50 μm.
そして、このa−3iC層の分光感度特性、並びに暗減
衰曲線及び光減衰曲線を求めたところ、前者については
可視光領域で分光感度ピーク(ピーク波長約670nm
)があり、これによって複写機用光源として一般的に
用いられているタングステンランプに十分に適用し得る
ことが判った。また、後者の減衰曲線についても高い表
面電位をもつと共に優れた光感度特性を有し、更に残留
電位が小さくなっていることが判った。When we determined the spectral sensitivity characteristics, dark decay curve, and light decay curve of this a-3iC layer, we found that the former has a spectral sensitivity peak (peak wavelength of approximately 670 nm) in the visible light region.
), and it has been found that this can be fully applied to tungsten lamps commonly used as light sources for copying machines. It was also found that the latter decay curve also had a high surface potential, excellent photosensitivity characteristics, and a small residual potential.
かくして、単一組成の光導電性a−3iC層だけで十分
に実用と成り得る電子写真感光体が提供される。In this way, an electrophotographic photoreceptor is provided which can be put into practical use with just the photoconductive a-3iC layer having a single composition.
次に本発明者等は上記の結果を踏まえて、更に鋭意研究
に努めたところ、この単一組成の層内部に種々の層領域
を生成させることによって電子写真特性を更に向上し得
ることを見い出した。Next, based on the above results, the present inventors conducted further intensive research and discovered that the electrophotographic properties could be further improved by creating various layer regions within this single composition layer. Ta.
即ち、本発明の製法においては、グロー放電分解法によ
る成膜中に炭素又はma族元素の含有比率を層厚方向に
亘って変化させ、これによって複数の層領域を生成させ
、この層領域の数に対応して下記の第1の態様乃至第4
の態様までの電子写真感光体の製法が得られる。That is, in the manufacturing method of the present invention, the content ratio of carbon or Ma group elements is varied in the layer thickness direction during film formation by glow discharge decomposition, thereby generating a plurality of layer regions, and The following first to fourth aspects correspond to the numbers.
A method for manufacturing an electrophotographic photoreceptor according to the embodiments described above is obtained.
以下、本発明に係る電子写真感光体の製法の態様を第3
図乃至24図により説明する。Hereinafter, the third embodiment of the method for manufacturing an electrophotographic photoreceptor according to the present invention will be described.
This will be explained with reference to Figures 24 to 24.
星上立腹撲
第1の態様によれば、a−3iC生成用ガスをグロー放
電分解して正極性に帯電可能な光導電性a−5tCIを
基板上に形成した電子写真感光体の製法にあって、前記
ガスはCzHt及びSt含有ガスから成り、そのガス組
成比を0.01:1乃至3:1の範囲内に設定し、且つ
ma族元素含有ガスを含有させると共に成膜中にこの含
有比率を小さくしたことを特徴とする電子写真感光体の
製法が提供される。According to the first aspect of Hoshigami Tateharabo, there is provided a method for manufacturing an electrophotographic photoreceptor in which photoconductive a-5tCI, which can be positively charged, is formed on a substrate by glow discharge decomposition of a-3iC generation gas. The gas is composed of a gas containing CzHt and St, and the gas composition ratio is set within the range of 0.01:1 to 3:1, and a gas containing a Ma group element is contained, and this content is removed during film formation. A method for manufacturing an electrophotographic photoreceptor characterized by a reduced ratio is provided.
即ち、この第1の態様によれば、第1図に示した単一組
成の光導電性a−5iC層に対して■a族元素を含有さ
せ、これに伴ってその含有比率を変えることにより少な
くとも第1の層領域及び第2の層領域を生成させるもの
であり、この態様を第3図乃至第9図により説明する。That is, according to this first aspect, by incorporating the group a element into the photoconductive a-5iC layer having a single composition shown in FIG. 1, and changing the content ratio accordingly. At least a first layer region and a second layer region are generated, and this aspect will be explained with reference to FIGS. 3 to 9.
第3図においては導電性基板(1)上に第1の層領域(
6)及び第2の1i領域(7)を順次形成し、両者の層
領域が一体化した光導電性a−3iC層(5a)から成
っており、そして、第1のIHI域(6)には第2の層
領域(7)に比べてUIa族元素が多く含まれているこ
とが重要である。In FIG. 3, a first layer region (
6) and a second 1i region (7) are successively formed, both layer regions consisting of an integrated photoconductive a-3iC layer (5a), and a first IHI region (6) is formed. It is important that the second layer region (7) contains more UIa group elements than the second layer region (7).
第2のN 9M域(7)はma族元素の含有量が0.1
乃至10.000ppmの範囲内で、好適には0.1乃
至l。The second N 9M region (7) has a content of ma group elements of 0.1
In the range from 10.000 ppm to 10.000 ppm, preferably from 0.1 to 1.
000 ppmの範囲内で適宜法められ、これによって
負極性に帯電すると共に表面電位、光感度特性等の所要
な電子写真特性が得られる。そして、この層領域よりも
I[IIIa族元素を多く含有した第1の層領域(6)
を形成すると、光導電性a−5iC層(5a)の基板側
領域で導電率が大きくなり、これにより、基板側からの
キャリアの注入が阻止されると共にa−SiC層の全領
域で発生した光キャリアが基板へ円滑に流れ、その結果
、表面電位が大きくなると共に光感度特性が向上するこ
とを見い出した。000 ppm, and as a result, it is charged to a negative polarity and required electrophotographic properties such as surface potential and photosensitivity properties are obtained. Then, a first layer region (6) containing more I[IIIa group elements than this layer region
When formed, the conductivity increases in the substrate-side region of the photoconductive a-5iC layer (5a), which prevents carrier injection from the substrate side and prevents carrier injection from occurring in the entire region of the a-SiC layer. It has been found that photocarriers flow smoothly to the substrate, resulting in an increase in surface potential and improved photosensitivity.
この第1の層領域(6)はその領域全体に亘って光導電
性を有しており、これによって第2図に示した従来のa
−St電子写真感光体のキャリア注入阻止層(2)と区
別し得る。This first layer region (6) is photoconductive over its entire region, which makes it possible to avoid the conventional a shown in FIG.
It can be distinguished from the carrier injection blocking layer (2) of the -St electrophotographic photoreceptor.
即ち、第1の層領域(6)はその領域全体の光導電性に
よって光感度特性を全層に亘って向上させる。特に、第
1の層領域(6)に到達し易い比較的長波長な光に対し
ては優れた光感度特性が得られ、これにより、半導体レ
ーザーを記録用光源とした電子写真感光体に好適となる
。That is, the first layer region (6) improves the photosensitivity characteristics over the entire layer due to the photoconductivity of the entire region. In particular, excellent photosensitivity characteristics can be obtained for relatively long wavelength light that easily reaches the first layer region (6), making it suitable for electrophotographic photoreceptors using semiconductor lasers as recording light sources. becomes.
また、従来のa−St電子写真感光体によれば、前記キ
ャリア注入阻止N(2)の層厚をa−3i光導電層(3
)に対して115倍以下に設定するのに対して、本発明
の製法によれば、第1のN jJ(域(6)の層厚は第
2の層領域(7)に比べて1倍以下であっても十分に残
留電位を小さくして光感度特性を向上させることができ
、その好適な層厚比は172以下、最適には1/4以下
に設定するのがよい。Further, according to the conventional a-St electrophotographic photoreceptor, the layer thickness of the carrier injection blocking N(2) is changed to the layer thickness of the a-3i photoconductive layer (3).
), whereas according to the manufacturing method of the present invention, the layer thickness of the first N jJ (region (6)) is set to 1 times or less than that of the second layer region (7) Even if it is less than 1, the residual potential can be sufficiently reduced and the photosensitivity characteristics can be improved, and the preferred layer thickness ratio is preferably set to 172 or less, and optimally 1/4 or less.
この光導電性a−5iC層(5a)の炭素含有量は、第
4図乃至第9図に示す通りであり、横軸は基板から感光
体表面に至る層厚方向を示し、縦軸は炭素含有量を示し
ている。尚、この横軸において(6)。The carbon content of this photoconductive a-5iC layer (5a) is as shown in FIGS. It shows the content. Note that (6) on this horizontal axis.
(7)に示すそれぞれの範囲は第1の層領域及び第2の
層領域を表している。Each range shown in (7) represents a first layer region and a second layer region.
即ち、第4図は炭素含有比率が全層に亘って一定であり
、或いは第5図は第1のN ell域で炭素含有量を少
なくしており、これに対して第6図乃至第9図は第1の
層領域が第2のMW域に比べて炭素が多く含有されてい
ることを示すものであり、これによって表面電位が一段
と高(なって光感度特性が向上する。また、第7図乃至
第9図のように炭素の含有量を層厚方向に亘って漸次変
えると表面電位及び光感度を一層高め且つ残留電位が小
さくなる。That is, in FIG. 4, the carbon content ratio is constant throughout the entire layer, or in FIG. 5, the carbon content is reduced in the first NELL region, whereas in FIGS. The figure shows that the first layer region contains more carbon than the second MW region, which further increases the surface potential (and improves the photosensitivity characteristics. If the carbon content is gradually changed in the layer thickness direction as shown in FIGS. 7 to 9, the surface potential and photosensitivity will be further increased and the residual potential will be reduced.
また、前記第1のN61域(6)には酸素や窒素の少な
(とも一種を含有させてもよく、これによってa−Si
C層(5a)の基板(1)に対する密着性が向上する。Further, the first N61 region (6) may contain a small amount of oxygen or nitrogen (or at least one kind of it).
The adhesion of the C layer (5a) to the substrate (1) is improved.
茅裟」すl儂
第2の態様によれば、a−SiC生成用ガスをグロー放
電分解して正極性に帯電可能な光導電性a−SiC層を
基板上に形成した電子写真感光体の製法であって、前記
ガスはC!Bg及びSt含有ガスから成りそのガス組成
比を0.01:1乃至3:1の範囲内に設定し、成膜中
にCJt含有組成比を変えて前記a−5iC層に少なく
とも第1の領域、第2のM’pM域及び第3の領域を具
備させ、第1のN領域は第2の層領域より基板側に、第
2のjileI域は第3のNTi1域より基板側にそれ
ぞれ配置され、第3のN領域は第2の層領域に比べて炭
素が多く含まれ、且つ前記第2の層領域の形成時に前記
a−3iC生成用ガスに10−”乃至1モルχのHa族
元素含有ガスを含むとともに第1の層領域の形成時にa
−3iC生成用ガス中におけるma族元素含有ガスの占
める割合が第2のNF4域の形成時に比べて大きいこと
を特徴とする電子写真感光体の製法が提供される。According to a second aspect of the invention, an electrophotographic photoreceptor is provided, in which a photoconductive a-SiC layer that can be charged to a positive polarity is formed on a substrate by glow discharge decomposition of an a-SiC generation gas. In the manufacturing method, the gas is C! At least a first region is formed in the a-5iC layer by setting a gas composition ratio of a gas containing Bg and St in a range of 0.01:1 to 3:1, and changing a composition ratio containing CJt during film formation. , a second M'pM region and a third region, the first N region is arranged closer to the substrate than the second layer region, and the second jileI region is arranged closer to the substrate than the third NTi1 region. The third N region contains more carbon than the second layer region, and when forming the second layer region, 10-'' to 1 mol χ of Ha group is added to the a-3iC generation gas. containing an element-containing gas and a during formation of the first layer region.
Provided is a method for manufacturing an electrophotographic photoreceptor, characterized in that the ratio of the Ma group element-containing gas in the -3iC generating gas is larger than that during the formation of the second NF4 region.
即ち、この第2の態様によれば、第10図に示す通り、
第1の態様にて示した第2の層領域(7)の上に更に第
3の層領域(8)を形成し、これに伴って第3の層領域
(8)の炭素含有量を第2のN領域(7)よりも多くし
、そして、第1の層領域(6)、第2の層領域(7)及
び第3の層領域(8)を実質上一体化して光導電性a−
SiC層(5b)とした。That is, according to this second aspect, as shown in FIG.
A third layer region (8) is further formed on the second layer region (7) shown in the first embodiment, and the carbon content of the third layer region (8) is accordingly increased. 2, and the first layer region (6), the second layer region (7) and the third layer region (8) are substantially integrated to form a photoconductive a −
A SiC layer (5b) was formed.
この第3の層領域(8)を形成すると、a−SiC層(
5b)の表面側の暗抵抗値が大きくなり、これに伴って
感光体の表面電位が顕著に向上することを見い出した。When this third layer region (8) is formed, the a-SiC layer (
It has been found that the dark resistance value on the surface side of 5b) increases, and the surface potential of the photoreceptor increases markedly.
この第3の層領域(8)は光導電性a−3iC層(5b
)の表面側を高抵抗化させるために形成されており、第
2図にて述べた従来周知の表面像ff1Ji(4)とは
全く区別し得るものである。また、光キヤリア発生層と
キャリア輸送層とに分けられた機能分離型感光体によれ
ば、キャリア輸送層を10′!Ω・0111以上に高抵
抗化させるが、この層に格別大きな光導電性が要求され
ておらず、通常、光導電率の暗導電率に対する比率が1
000倍未満の光導電性に設定されているに過ぎない、
これに対して、第3の層領域(8)はこの比率が100
0倍以上の光導電性を有しており、上記キャリア輸送層
に対しても十分に区別し得る。This third layer region (8) is a photoconductive a-3iC layer (5b
) is formed to increase the resistance on the surface side, and is completely distinguishable from the conventionally known surface image ff1Ji(4) described in FIG. Furthermore, according to a functionally separated photoreceptor that is divided into a photocarrier generation layer and a carrier transport layer, the carrier transport layer can be 10'! Although the resistance is increased to Ω・0111 or higher, this layer is not required to have particularly high photoconductivity, and the ratio of photoconductivity to dark conductivity is usually 1.
The photoconductivity is set to be less than 1,000 times,
On the other hand, in the third layer region (8), this ratio is 100.
It has a photoconductivity of 0 times or more and can be sufficiently distinguished from the carrier transport layer.
第3の層領域(8)の層厚は、第2の層領域(7)に比
べて1倍以下、好ましくは172倍以下、最適には17
4倍以下がよく、これにより、表面電位が顕著に向上す
ると共に光感度に優れ、且つ残留電位が小さくなり、望
ましいと言える。The layer thickness of the third layer region (8) is not more than 1 times, preferably not more than 172 times, optimally not more than 17 times, compared to the second layer region (7).
4 times or less is preferable, and this can be said to be desirable because the surface potential is significantly improved, the photosensitivity is excellent, and the residual potential is small.
本発明によれば、光導電性a−5iC層(5b)の炭素
含有分布は第11図乃至第16図に示す通りであり、横
軸は基板から感光体表面に至る層厚方向を示し、縦軸は
炭素含有量を示している。尚、この横軸において、(6
) (7) (8)に示すそれぞれの範囲は第1の層領
域、第2のN領域及び第3の層領域を表している。According to the present invention, the carbon content distribution of the photoconductive a-5iC layer (5b) is as shown in FIGS. 11 to 16, where the horizontal axis indicates the layer thickness direction from the substrate to the surface of the photoreceptor, The vertical axis shows carbon content. Furthermore, on this horizontal axis, (6
) (7) Each range shown in (8) represents a first layer region, a second N region, and a third layer region.
第12図、第14図、第15図及び第16図は層厚方向
に亘って炭素の含有量を漸次変え、これにより、表面電
位が向上すると共に光感度に優れ、且つ残留電位が小さ
くなる。Figures 12, 14, 15, and 16 show that the carbon content is gradually changed in the layer thickness direction, which improves the surface potential, provides excellent photosensitivity, and reduces residual potential. .
員り立腹様
第3の態様によれば、a−SiC生成用ガスをグロー放
電分解して正極性に帯電可能な光導電性a−StC層を
基板上に形成した電子写真感光体の製法であって、前記
ガスはCzHz及びSi含有ガスから成り、そのガス組
成比を0.01:1乃至3:1の範囲内に設定し、成膜
中にC,Ht含有組成比を変えて前記a−3tC層に少
なくとも第1の層領域、第2の層領域、第3の層領域及
び第4の層領域を基板側から感光体表面へ向けて順次具
備し、且つ第3ONeI域は第2の層領域に比べて、第
4の層領域は第3の層領域に比べてそれぞれ炭素が多く
含まれ前記第2の層領域の形成時に前記a−SiC生成
用ガスに10−乃至1モル2のma族元素含有ガスを含
むとともに第1の層領域の形成時にa−SiC生成用ガ
ス中におけるma族元素含有ガスの占める割合が第2の
層領域の形成時に比べて大きいことを特徴とする電子写
真感光体の製法が提供される。According to a third aspect of the invention, there is provided a method for producing an electrophotographic photoreceptor in which a photoconductive a-StC layer that can be positively charged is formed on a substrate by glow discharge decomposition of an a-SiC generation gas. The gas is composed of CzHz and Si-containing gas, and the gas composition ratio is set within the range of 0.01:1 to 3:1, and the C and Ht composition ratios are changed during film formation. -3tC layer is provided with at least a first layer region, a second layer region, a third layer region and a fourth layer region in order from the substrate side toward the photoreceptor surface, and the third ONeI region is provided with a second layer region. Compared to the layer regions, the fourth layer region contains more carbon than the third layer region, and when forming the second layer region, 10 − to 1 mol 2 of carbon is added to the a-SiC generation gas. An electron containing a Ma group element-containing gas, and characterized in that the proportion of the Ma group element-containing gas in the a-SiC generation gas during formation of the first layer region is larger than that during formation of the second layer region. A method of making a photographic photoreceptor is provided.
即ち、第3の態様によれば、第17図に示す通り、第2
のB様にて示した第3の層領域(8)の上に更に第4の
層領域(9)を形成し、これに伴って第4の層領域(9
)が第3のN領域(8)に比べて炭素を多く含んでおり
、そして、第1の層領域(6)から第4の層領域(9)
を実質上一体化して光導電性a−SiC層(5c)とし
た。That is, according to the third aspect, as shown in FIG.
A fourth layer region (9) is further formed on the third layer region (8) shown in B of FIG.
) contains more carbon than the third N region (8), and the first layer region (6) to the fourth layer region (9)
were substantially integrated to form a photoconductive a-SiC layer (5c).
この第4の層領域(9)は第3の層領域(8)に比べて
炭素を多く含有させて高抵抗化させ、これより、帯電能
を高めて表面電位を向上させることができ、その結果、
耐電圧が高くて長寿命の感光体を得ることができる。This fourth layer region (9) contains more carbon than the third layer region (8) and has a high resistance, thereby increasing the charging ability and improving the surface potential. result,
A photoreceptor with high withstand voltage and long life can be obtained.
本発明の製法によれば、光導電性a−SiC層(5c)
の炭素含有分布は第18図乃至第21図に示す通りであ
り、横軸は基板から感光体表面に至る層厚方向を示し、
縦軸は炭素含有量を示している。尚、この横軸において
、(6) (7) (8) (9)に示すそれぞれの範
囲は第1のl′!領域、第2のFJ 領域、第3の層領
域及び第4の領域を表している。According to the manufacturing method of the present invention, the photoconductive a-SiC layer (5c)
The carbon content distribution of is as shown in FIGS. 18 to 21, where the horizontal axis indicates the layer thickness direction from the substrate to the photoreceptor surface,
The vertical axis shows carbon content. Note that on this horizontal axis, each range shown in (6), (7), (8), and (9) is the first l'! area, the second FJ area, the third layer area, and the fourth area.
第19図及び第21図は層厚方向に亘って炭素の含有量
を漸次変え、これにより、表面電位及び光感度が向上し
、且つ残留電位が小さくなる。In FIGS. 19 and 21, the carbon content is gradually changed in the layer thickness direction, thereby improving the surface potential and photosensitivity, and reducing the residual potential.
策[至旭盪
第4図の態様によれば、a−SiC生成用ガスをグロー
放電分解して正極性に帯電可能な光導電性a−SiC1
!及びa−SiC表面保護層を順次形成した電子写真感
光体の製法にあって、前記光導電性a−3iC生成用ガ
スはczuz及びSi含有ガスから成り、そのガス組成
比を0.01:1乃至3:1の範囲内に設定し、成膜中
にC,H!含有組成比を変えて前記a−SiC層に少な
くとも第1の層領域、第2の層領域及び第3の層領域を
具備させ、第1の層領域は第2の層領域より基板側に、
第2の層領域は第3の層領域より基板側にそれぞれ配置
され、第3の層領域は第2の領域に比べて炭素が多く含
まれ、且つ前記第2のHfJ域の形成時に前記a−Si
C生成用ガスに10−1乃至1モルχのma族元素含有
ガスを含むとともに第1の層領域の形成時にa−SiC
生成用ガス中におけるI[Ia族元素含有ガスの占める
割合が第2の層領域の形成時に比べて大きいことを特徴
とする電子写真感光体の製法が提供される。According to the embodiment shown in FIG.
! In the method for manufacturing an electrophotographic photoreceptor in which an a-SiC surface protective layer is sequentially formed, the photoconductive a-3iC generating gas is composed of czuz and a Si-containing gas, and the gas composition ratio is 0.01:1. to 3:1, and C, H! during film formation. The a-SiC layer is provided with at least a first layer region, a second layer region, and a third layer region by changing the content composition ratio, the first layer region being closer to the substrate than the second layer region,
The second layer regions are each disposed closer to the substrate than the third layer regions, and the third layer regions contain more carbon than the second regions, and when forming the second HfJ region, the a -Si
The C generating gas contains a gas containing 10-1 to 1 mol χ of a group element, and when forming the first layer region, a-SiC
Provided is a method for manufacturing an electrophotographic photoreceptor, characterized in that the proportion of the I[Ia group element-containing gas in the generation gas is larger than that during the formation of the second layer region.
即ち、この第4の態様によれば、第22図に示す通り、
第2の態様にて示した第3の層領域(8)の上に更にa
−SiC表面保護層(10)を形成したものであり、こ
のa−3iC表面保護層(10)は光導電性a−9iC
層(5b)の表面をオーバーコートして保護するために
形成される。That is, according to this fourth aspect, as shown in FIG.
Further a on the third layer region (8) shown in the second embodiment
-SiC surface protective layer (10) is formed, and this a-3iC surface protective layer (10) is made of photoconductive a-9iC
It is formed to overcoat and protect the surface of layer (5b).
a−5iC表面保護層(10)はa−SiCから成ると
いう点では光導電性a−5iC層(5b)と同じである
が、炭素の含有量を多(して高硬度とし、これによって
表面保護作用をもたらす。The a-5iC surface protection layer (10) is the same as the photoconductive a-5iC layer (5b) in that it is made of a-SiC, but it has a high carbon content (and high hardness), which makes the surface hard. Provides protection.
このa−3iC表面保護層(10)は、その構成元素の
組成比を変えて光導電性又は非光導電性とすることがで
き、炭素の含有量を多くすると非光導電性になる傾向が
あり、これに伴って高硬度特性が得られ、高硬度a−3
iC表面保護層となる。This a-3iC surface protective layer (10) can be made photoconductive or non-photoconductive by changing the composition ratio of its constituent elements; increasing the carbon content tends to make it non-photoconductive. With this, high hardness characteristics are obtained, and high hardness is A-3.
It becomes an iC surface protective layer.
第4の態様によれば、炭素含有分布は第23図及び第2
4図に示す通りであり、横軸は基板から感光体表面に至
る層厚方向を示し、縦軸は炭素含有量を示している。尚
、この横軸において(6) (7) (8) (10)
に示すそれぞれの範囲は第1のN’pM域、第2の層領
域、第3のJi fil域及びa−SiC表面保護層を
表している。According to the fourth aspect, the carbon content distribution is shown in FIGS.
As shown in FIG. 4, the horizontal axis indicates the layer thickness direction from the substrate to the surface of the photoreceptor, and the vertical axis indicates the carbon content. Furthermore, on this horizontal axis (6) (7) (8) (10)
The respective ranges shown in the figure represent the first N'pM region, the second layer region, the third Ji fil region, and the a-SiC surface protective layer.
本発明によれば、単一組成のa−3iC層並びに第1乃
至第3の態様のa−3iC層は、いずれも光導電性a−
3iC層から成り、これによって十分実用的な電子写真
特性が得られるが、これらのa−SiC層の表面上に従
来周知の表面保護層を形成してもよい。According to the present invention, the a-3iC layer of a single composition and the a-3iC layer of the first to third aspects are both photoconductive a-3iC layers.
3iC layers, which provide sufficient practical electrophotographic properties, but a conventionally known surface protective layer may be formed on the surface of these a-SiC layers.
この層はそれ自体高絶縁性、高耐食性及び高硬度特性を
有するものであれば種々の材料を用いることができ、例
えばポリイミド樹脂などの有機材料、 a−5iC,5
lOz+ sto、 A has + SiC,Si
3N4.、 a−5i 、 a−Si :H,a−St
:P、a−3iC:H,Ha−5iC:Fなどの無機材
料を用いることができる。Various materials can be used for this layer as long as they themselves have high insulating properties, high corrosion resistance, and high hardness properties, such as organic materials such as polyimide resin, a-5iC, 5
lOz + sto, A has + SiC, Si
3N4. , a-5i, a-Si:H, a-St
:P, a-3iC:H, Ha-5iC:F, and other inorganic materials can be used.
次に本発明の実施例に用いられる容量結合型グロー放電
分解装置を第25図により説明する。Next, a capacitively coupled glow discharge decomposition device used in an embodiment of the present invention will be explained with reference to FIG.
図中、第1.第2.第3.第4.第5.第6タンク(1
1)(12) (13) (14) (15) (16
)には、それぞれSiH4,CJt。In the figure, 1st. Second. Third. 4th. Fifth. 6th tank (1
1) (12) (13) (14) (15) (16
) are SiH4 and CJt, respectively.
BtHh(Hzガス希釈で0.2χ含有) 、 BtH
h (Hzガス希釈で38pp園含有)、Hz、NOガ
スが密封されており、H2はキャリアーガスとしても用
いられる。これらのガスは対応する第1.第2.第3.
第4.第5.第6調整弁(17) (18) (19)
(20) (21) (22)を開放することにより
放出され、その流量がマスフローコントローラ(23)
(24)(25)(26) (27) (28)により
制御され、第1、第2.第3.第4.第5タンク(11
) (12) (13) (14) (15)からのガ
スは第1主管(29)へ、第6タンク(16)からのN
Oガスは第2主管(30)へ送られる。尚、(31)(
32)は止め弁である。第1主管(29)及び第2主管
(30)を通じて流れるガスは反応管(33)へと送り
込まれるが、この反応管(33)の内部には容量結合型
放電用電極(34)が設置されており、それに印加され
る高周波電力は50賀乃至3Kwが、また周波数はIM
Hz乃至10MHzが適当である。反応管(33)の内
部には、アルミニウムから成る筒状の成膜基板(35)
が試料保持第(36)の上に載置されており、この保持
台(36)はモーター(37)により回転駆動されるよ
うになっており、そして、基板(35)は適当な加熱手
段により、約200乃至400℃好ましくは約200乃
至350℃の温度に均一に加熱される。更に、反応管(
33)の内部はa−3iC膜形成時に高度の真空状態(
敷電圧0.1乃至2,0Torr )を必要とすること
により回転ポンプ(38)と拡散ポンプ(39)に連結
されている。BtHh (contains 0.2χ with Hz gas dilution), BtH
h (contains 38pp when diluted with Hz gas), Hz, and NO gas are sealed, and H2 is also used as a carrier gas. These gases correspond to the first. Second. Third.
4th. Fifth. 6th regulating valve (17) (18) (19)
(20) (21) It is released by opening (22), and the flow rate is controlled by the mass flow controller (23).
(24), (25), (26), (27), and (28). Third. 4th. 5th tank (11
) (12) (13) (14) Gas from (15) goes to the first main pipe (29), N from the sixth tank (16)
O gas is sent to the second main pipe (30). Furthermore, (31) (
32) is a stop valve. Gas flowing through the first main pipe (29) and the second main pipe (30) is sent into the reaction tube (33), and a capacitively coupled discharge electrode (34) is installed inside this reaction tube (33). The high frequency power applied to it is 50 Kw to 3 Kw, and the frequency is IM
Hz to 10 MHz is suitable. Inside the reaction tube (33) is a cylindrical film-forming substrate (35) made of aluminum.
is placed on the sample holder (36), this holder (36) is rotated by a motor (37), and the substrate (35) is heated by suitable heating means. , uniformly heated to a temperature of about 200 to 400°C, preferably about 200 to 350°C. Furthermore, the reaction tube (
33) is in a highly vacuum state (
It is connected to a rotary pump (38) and a diffusion pump (39) by requiring a ground voltage of 0.1 to 2.0 Torr.
以上のように構成されたグロー放電分解装置において、
例えば、a−3iC膜(Bを含有する)を基板(35)
に形成する場合には、第1.第2.第3.第5調整弁(
17) (1B) (19) (21)を開いてそれぞ
れよりSiH4゜CzHz、BJ&Hzガスを放出する
。放出量はマスフローコントローラ(23) (24)
(25) (27)により制御され、SiH*、CJ
g、BJi、Hzの混合ガスは第1主管(29)を介し
て反応管(33)へと流し込まれる。そして、反応管(
33)の内部が0.1乃至2.0Torr程度の真空状
態、基板温度が200乃至400℃、容量型放電用電極
(34)の高周波電力が50−乃至3KM、または周波
数が1乃至10MHzに設定されていることに相俟って
グロー放電が起こり、ガスが分解してBを含有したa−
SiC膜が基板上に高速で形成される。In the glow discharge decomposition device configured as above,
For example, an a-3iC film (containing B) is placed on the substrate (35).
1. Second. Third. Fifth regulating valve (
17) (1B) (19) Open (21) and release SiH4°CzHz and BJ&Hz gas from each. The amount of release is determined by the mass flow controller (23) (24)
(25) Controlled by (27), SiH*, CJ
The mixed gas of g, BJi, and Hz is flowed into the reaction tube (33) through the first main pipe (29). Then, the reaction tube (
33) is in a vacuum state of about 0.1 to 2.0 Torr, the substrate temperature is 200 to 400°C, the high frequency power of the capacitive discharge electrode (34) is set to 50 to 3 KM, or the frequency is set to 1 to 10 MHz. In conjunction with this, a glow discharge occurs, and the gas decomposes into a-
A SiC film is formed on the substrate at high speed.
次に本発明の実施例を詳細に説明する。 Next, embodiments of the present invention will be described in detail.
(例1)
本例においては、光導電性a−SiC層をアルミニウム
製成膜基板に生成し、そのCt)!tガスの配合比率に
対する導電率を測定した。(Example 1) In this example, a photoconductive a-SiC layer is produced on an aluminum deposition substrate, and its Ct)! The conductivity was measured with respect to the blending ratio of t-gas.
即ち、第25図に示した容量結合型グロー放電分解装置
を用いて第1タンク(11)よりSignガスを100
sectaの流量で、第5タンク(15)よりH2ガス
を300sccn+の流量で放出し、第2タンク(12
)よりcztitガスを10〜101005cの流量で
放出し、グロー放電分解法に基いて約5μ糟の厚みのa
−SiC膜を製作し、その暗導電率及び光導電率を測定
したところ、第26図に示す通りの結果が得られた。尚
、製造条件として基板温度を300℃、ガス圧を0.4
5Torr、高周波電力を15囲に設定した。That is, using the capacitively coupled glow discharge decomposition device shown in FIG.
secta, H2 gas is released from the fifth tank (15) at a flow rate of 300sccn+, and the second tank (12
), the cztit gas was released at a flow rate of 10 to 101005 c, and a
When a -SiC film was produced and its dark conductivity and photoconductivity were measured, the results shown in FIG. 26 were obtained. The manufacturing conditions are a substrate temperature of 300℃ and a gas pressure of 0.4℃.
The high frequency power was set at 5 Torr and 15 Torr.
第26図によれば、横軸にC,H,ガス流量(sccm
)を、縦軸に導電率〔(Ω・c+++)−’)を表わし
、・印は暗導電率のプロット、Q印は光導電率のプロッ
トであり、a、bはそれぞれの特性曲線である。According to FIG. 26, the horizontal axis shows C, H, gas flow rate (sccm
), the vertical axis represents the conductivity [(Ω・c+++)-'), the mark is a plot of dark conductivity, the mark Q is a plot of photoconductivity, and a and b are the respective characteristic curves. .
第26図から明らかな通り、暗導電率は10− ” (
Ω・cm)−’以上と成り得、最大で10− ” (Ω
・co+)−’以上まで得られた。また、光導電率は暗
導電率に比べて1000倍以上となり、このa−SiC
層が電子写真感光体用として十分に満足し得る光導電性
をもっていることが判る。As is clear from Fig. 26, the dark conductivity is 10-'' (
It can be more than 10-''(Ωcm)-' at maximum
・co+)-' or higher was obtained. In addition, the photoconductivity is more than 1000 times that of the dark conductivity, and this a-SiC
It can be seen that the layer has sufficiently satisfactory photoconductivity for use in electrophotographic photoreceptors.
(例2)
本例においては、(例1)に基いてBzHbガス(又は
PHsガス)を導入して暗導電率及び光導電率を測定し
たところ、第27図に示す通りの結果が得られた。(Example 2) In this example, when BzHb gas (or PHs gas) was introduced and the dark conductivity and photoconductivity were measured based on (Example 1), the results shown in Figure 27 were obtained. Ta.
図中、横軸はSiLとCJgの合計流量に対するBJi
純量(これはH2ガスの希釈比率より換算して求められ
るB、H,の絶対流量のことである)である。尚、B、
H6純量をpus純量に置き換えた場合も参考例として
記載する。In the figure, the horizontal axis is BJi relative to the total flow rate of SiL and CJg.
The pure amount (this is the absolute flow rate of B, H, calculated from the dilution ratio of H2 gas). Furthermore, B.
A case where the pure amount of H6 is replaced with the pure amount of pus is also described as a reference example.
第27図によれば、・印は暗導電率のプロットであり、
O印は光導電率のプロットであり、c、dはそれぞれの
特性曲線である。According to FIG. 27, the mark is a plot of dark conductivity,
O mark is a plot of photoconductivity, and c and d are respective characteristic curves.
第27図から明らかな通り、光導電率は暗導電率に比べ
て1000倍以上となり、PやBをドーピングしたa−
3iC層が電子写真感光体用として満足し得る光導電性
をもっている。As is clear from Fig. 27, the photoconductivity is more than 1000 times that of the dark conductivity, and the a-
The 3iC layer has satisfactory photoconductivity for use in electrophotographic photoreceptors.
(例3)
本例においては、(例1)中CtHzガス流量を101
05eに設定して得られたa−5iC層に対して分光感
度特性を測定し、その結果は第28図に示された分光感
度曲線eとなった。尚、この図は各波長において等エネ
ルギー光を照射した時の光導電率を示す。(Example 3) In this example, (Example 1) medium CtHz gas flow rate is 101
The spectral sensitivity characteristics of the a-5iC layer obtained with the setting of 05e were measured, and the results were the spectral sensitivity curve e shown in FIG. Note that this figure shows the photoconductivity when irradiated with equal energy light at each wavelength.
第28図より明らかな通り、可視光領域に光感度が認め
られ、これによって電子写真用の光導電体として十分に
用いることができる。As is clear from FIG. 28, photosensitivity is observed in the visible light region, and as a result, it can be satisfactorily used as a photoconductor for electrophotography.
(例4)
本例においては、(例1)中CJzガス流量を10sc
ca+に設定して得られたa−SiC層(厚み30μ+
1)に対して表面電位、暗減衰及び光減衰のそれぞれの
特性を測定した。この測定は+5.6KVのコロナチャ
ージャで正帯電し、暗中での表面電位の経時変化と、6
50na+の単色光照射直後の表面電位の経時変化を追
ったものである。(Example 4) In this example, (Example 1) medium CJz gas flow rate is 10sc
a-SiC layer obtained by setting ca+ (thickness 30μ+
For 1), the characteristics of surface potential, dark decay, and light decay were measured. This measurement was performed using a +5.6KV corona charger to positively charge the surface potential, and the change in surface potential over time in the dark.
This figure follows the change in surface potential over time immediately after irradiation with 50na+ monochromatic light.
その結果は第29図に示す通りであり、Lgはそれぞれ
暗減衰曲線及び光減衰曲線である。The results are shown in FIG. 29, where Lg is the dark decay curve and the light decay curve, respectively.
第29図より明らかな通り、表面電位が約+600Vと
大きくなっており、暗減衰も5秒後で25χ程度であり
、電荷保持能力に優れている。また、光導電率にも優れ
ており、残留電位も小さいと言える。As is clear from FIG. 29, the surface potential is as large as about +600V, and the dark decay is about 25χ after 5 seconds, indicating excellent charge retention ability. It can also be said that it has excellent photoconductivity and low residual potential.
尚、(例4)にて得られたa−SiCNを−5,6KV
おコロナチャージャで負帯電させたところ、表面電位が
数十Vであった。In addition, the a-SiCN obtained in (Example 4) was heated to -5.6 KV.
When negatively charged with a corona charger, the surface potential was several tens of volts.
そして、この(例4)に基づいて製作されたa−SiC
層感光感光体+5.6KVのコロナチャージャによって
正極性に帯電させ、次いで画像露光して磁気ブラシ現象
を行った結果、画像濃度が高く、高コントラストで良質
な画像が得られ、20万回の繰り返しテスト後において
も初期画像の劣化が見られず、耐久性も良好であること
が確認できた。And a-SiC manufactured based on this (Example 4)
The layered photoreceptor was positively charged with a +5.6KV corona charger, and then exposed to image light to perform a magnetic brush phenomenon. As a result, a high-quality image with high image density and contrast was obtained, and the process was repeated 200,000 times. Even after the test, no deterioration of the initial image was observed, and it was confirmed that the durability was good.
(例5) 本例においては第1の態様の感光体を製作した。(Example 5) In this example, a photoreceptor of the first embodiment was manufactured.
即ち、基板用アルミニウム製ドラムを第25図に示した
容量結合型グロー放電分解装置の反応管(33)内に設
置し、そして、第1タンク(11)より5iHaガスを
、第2タンク(12)よりczuzガスを、第3タンク
(13)よりBzHiガスを、第5タンク(15)より
H!ガスを、第6タンク(16)よりNOガスをそれぞ
れ放出し、第1表に示す製造条件で第1のM fil域
及び第2の層領域を形成した。That is, the aluminum drum for the substrate is installed in the reaction tube (33) of the capacitively coupled glow discharge decomposition device shown in FIG. ), BzHi gas from the third tank (13), and H! gas from the fifth tank (15). Gas and NO gas were released from the sixth tank (16), respectively, and the first M fil region and the second layer region were formed under the manufacturing conditions shown in Table 1.
かくして得られた感光体の電子写真特性は、暗中で+5
.6KVの高圧源に接続されたコロナチャージ中で正極
性に帯電させ、次いで分光された単色光(650n+m
)を感光体表面に照射し、これによって下記の通りの特
性が得られた。尚、残留電位は露光開始の5秒後の値で
ある。The electrophotographic properties of the photoreceptor thus obtained were +5 in the dark.
.. It was positively charged in a corona charge connected to a 6KV high voltage source, and then the monochromatic light (650n+m
) was irradiated onto the surface of the photoreceptor, and the following characteristics were obtained. Note that the residual potential is the value 5 seconds after the start of exposure.
表面電位・・・+700v
光感度・・4.38cm”erg−’
残留電位・・・25V
(例6)
本例においては第2の態様の感光体を第2表に示す条件
で製作し、これによって下記の電子写真特性が得られた
。Surface potential: +700v Photosensitivity: 4.38cm"erg-' Residual potential: 25V (Example 6) In this example, a photoreceptor of the second embodiment was manufactured under the conditions shown in Table 2. The following electrophotographic properties were obtained.
表面電位・・・+760■
光感度・・・0.40cm”erg−’残留電位・・・
30V
(例7)
本例においては第3の態様の感光体を第3表に示す条件
で製作し、これによって下記の電子写真特性が得られた
。Surface potential...+760■ Photosensitivity...0.40cm"erg-'Residual potential...
30V (Example 7) In this example, a photoreceptor of the third embodiment was manufactured under the conditions shown in Table 3, and the following electrophotographic characteristics were obtained.
表面電位・・・+820■
光感度・・・0.42CI!erg−1また、この感光
体の表面電位、暗減衰及び光減衰のそれぞれの特性を(
例4)と同様に測定したところ、第30図に示す通りの
結果が得られた0図中、h、iはそれぞれ暗減衰曲線及
び光減衰曲線である。Surface potential...+820■ Light sensitivity...0.42CI! erg-1 Also, the characteristics of the surface potential, dark decay, and light decay of this photoreceptor are (
As a result of measurement in the same manner as in Example 4), the results shown in FIG. 30 were obtained. In FIG. 30, h and i are the dark decay curve and the light decay curve, respectively.
第30図より明らかな通り、表面電位が約+820Vと
著しく大きくなっており、暗減衰も5秒後で8χ程度で
あって電荷保持能力に優れている。As is clear from FIG. 30, the surface potential is significantly large, approximately +820V, and the dark decay is approximately 8χ after 5 seconds, indicating excellent charge retention ability.
(例8)
本例においては第4の態様の感光体を第4表に示す条件
で製作し、これによって下記の電子写真特性が得られた
。(Example 8) In this example, a photoreceptor of the fourth embodiment was manufactured under the conditions shown in Table 4, and the following electrophotographic characteristics were obtained.
(例9)
本例においては、第25図に示したグロー放電分解装置
を用いて下記の製造条件によって成膜速度を測定したと
ころ、第31図に示す通りの結果が得られた。(Example 9) In this example, the film formation rate was measured under the following manufacturing conditions using the glow discharge decomposition apparatus shown in FIG. 25, and the results shown in FIG. 31 were obtained.
製遺粂佳
RF電力・・・150W
ガス圧力・−−0,45Torr
基板温度・・・300℃
5iHiガス流量・・・1003cc11H雪ガス流量
・・・300sccll
第31図中○印は測定結果のプロットであり、jはその
特性曲線である。Seika RF power...150W Gas pressure--0.45Torr Substrate temperature...300℃ 5iHi gas flow rate...1003cc11H snow gas flow rate...300sccll The circles in Figure 31 are plots of measurement results. and j is its characteristic curve.
第31図より明らかな通り、cantガスの含有比率が
大きくなるのに伴って成膜速度が大きくなっており、約
5〜13μ−7時の成膜速度となった。As is clear from FIG. 31, as the content ratio of cant gas increases, the film forming rate increases, reaching a film forming rate of about 5 to 13 μ-7.
(例10)
本例においては、(例9)と同一の製造条件によってC
,H,ガスの含有比率を変えながら膜中の水素含有量を
追ったところ、第32図に示す通りの結果が得られた。(Example 10) In this example, C
, H, and the hydrogen content in the film while changing the content ratio of the gases, the results shown in FIG. 32 were obtained.
第32図中、○印及び・印はそれぞれC及びStと結合
したHの結合量を示すプロットであり、k、1はそれぞ
れその特性曲線である。In FIG. 32, the marks ◯ and * are plots showing the amount of H bonded to C and St, respectively, and k and 1 are their characteristic curves, respectively.
第32図より明らかな通り、C!Hzガスの含有比率が
太き(なるのに伴ってC−H結合が増大すると共に5−
1t結合が減少することが判る。As is clear from Figure 32, C! As the content ratio of Hz gas becomes thicker, the number of C-H bonds increases and 5-
It can be seen that the 1t coupling decreases.
以上の通り、本発明の電子写真感光体の製法によれば、
全層に亘って光導電性を有するa−5iCが高い暗抵抗
値となり、且つ光感度特性にも優れていることによって
実質上表面保護層及びキャリア注入■止層を不要とする
ことができ、その結果、光導電性a−SiC層だけから
成る電子写真感光体が提供できた。As described above, according to the method for manufacturing an electrophotographic photoreceptor of the present invention,
Since a-5iC, which has photoconductivity throughout the entire layer, has a high dark resistance value and excellent photosensitivity characteristics, it is possible to substantially eliminate the need for a surface protective layer and a carrier injection stop layer. As a result, an electrophotographic photoreceptor consisting only of a photoconductive a-SiC layer could be provided.
また、本発明の製法によれば、CgHxガスとSi含有
ガスを組合せてグロー放電分解すると著しい高い成膜速
度が得られ、これによって製造効率及び製造コストが改
善される。Furthermore, according to the manufacturing method of the present invention, a significantly high film formation rate can be obtained by glow discharge decomposition using a combination of CgHx gas and Si-containing gas, thereby improving manufacturing efficiency and manufacturing cost.
更に本発明の製法によれば、層厚方向に亘って炭素及び
ma族元素の含有量を変えることによって表面電位を向
上させると共に光感度特性を高め、且つ゛残留電位を顕
著に小さくすることができる。Furthermore, according to the manufacturing method of the present invention, by changing the content of carbon and Ma group elements in the layer thickness direction, it is possible to improve the surface potential, enhance the photosensitivity characteristics, and significantly reduce the residual potential. can.
特に、炭素の含有量を層厚方向に亘って変えると、抵抗
率が制御されて所要の層領域が得られ、その結果、格段
に高性能な電子写真感光体が提供できる。In particular, when the carbon content is varied in the layer thickness direction, the resistivity can be controlled and a desired layer area can be obtained, and as a result, an electrophotographic photoreceptor with significantly higher performance can be provided.
また、本発明の製法によれば、正極性に有利に帯電する
ことができる正極性用電子写真感光体が提供される。Further, according to the manufacturing method of the present invention, a positive polarity electrophotographic photoreceptor that can be charged advantageously to positive polarity is provided.
更に、従来のa−Si感光体を長期間に亘って使用した
場合にはコロナ放電に伴って感光体表面の局所的な放電
破壊が発生し易(なり、これに起因して画像に流点が生
じるという問題があったが、本発明の製法によれば、a
−5tの誘電率がε−12であるのに対してa−5iC
はε=7と約半分程度であるために帯電能に優れており
、これにより、表面電位を高くしても何ら上記の放電破
壊が発生しなくなり、その結果、高品質且つ高信頼性の
電子写真感光体が提供される。Furthermore, when a conventional a-Si photoreceptor is used for a long period of time, local discharge damage on the surface of the photoreceptor is likely to occur due to corona discharge, which causes spots on the image. However, according to the manufacturing method of the present invention, a
-5t has a dielectric constant of ε-12, while a-5iC
Since ε=7, which is about half, it has excellent charging ability.As a result, the above-mentioned discharge breakdown does not occur even if the surface potential is increased, and as a result, high-quality and highly reliable electronic A photographic photoreceptor is provided.
また、本発明の電子写真感光体の製法によれば、それ自
体で帯電能及び耐環境性に優れていることから特に保護
層を設ける必要がなく、例えばコロナ放電による被曝或
いは現像剤の樹脂成分の感光体表面へのフィルミング等
によって表面が劣化した場合、その劣化した表面を研摩
剤等で研摩再生を繰り返し行ってもその研摩量において
制限を受けずに感光体の初期特性を維持することができ
、それによって初期における良好な画像を長期に亘り安
定して供給することが可能となる。Further, according to the method for producing an electrophotographic photoreceptor of the present invention, since it has excellent charging ability and environmental resistance by itself, there is no need to provide a special protective layer, and, for example, it is not necessary to provide a protective layer due to exposure to corona discharge or the resin component of the developer. When the surface of a photoconductor is deteriorated due to filming, etc., the initial characteristics of the photoconductor can be maintained without being limited in the amount of polishing even if the deteriorated surface is repeatedly polished and regenerated with an abrasive. This makes it possible to stably supply a good initial image over a long period of time.
更に本発明の製法により得られる電子写真感光体を、従
来のa−Si感光体と比較して場合、このa−Si感光
体の問題点として耐湿性に劣っているので画像流れが生
じ易く、また、帯電能に劣っているのでゴースト現象が
発生するが、これを解決するためにa−3t悪感光の使
用時にヒータを用いてその感光体を加熱し、その発生を
防止している。これに対して本発明の製法に係る電子写
真感光体は耐湿性且つ帯電能に優れているために上記の
ようにヒータを用いて使用する必要はないという長所が
ある。Furthermore, when the electrophotographic photoreceptor obtained by the manufacturing method of the present invention is compared with a conventional a-Si photoreceptor, the problem with this a-Si photoreceptor is that it is inferior in moisture resistance and tends to cause image deletion. Furthermore, since the charging ability is poor, a ghost phenomenon occurs, but in order to solve this problem, a heater is used to heat the photoreceptor when using the a-3t photoreceptor, thereby preventing the occurrence of this phenomenon. On the other hand, the electrophotographic photoreceptor according to the manufacturing method of the present invention has excellent moisture resistance and charging ability, and therefore has the advantage that it does not require the use of a heater as described above.
また、本発明の電子写真感光体の製法はa−St感光体
と比べて炭素の含有量を変えるだけで幅広い分光感度特
性(ピーク600〜700nm )が得られると共に光
感度自体を増大させることができ、更に必要に応じて不
純物元素をドーピングすれば長波長側の増感も可能にな
るという利点がある。Furthermore, compared to the a-St photoreceptor, the manufacturing method of the electrophotographic photoreceptor of the present invention allows a wide range of spectral sensitivity characteristics (peak 600 to 700 nm) to be obtained by simply changing the carbon content, and it is also possible to increase the photosensitivity itself. Furthermore, there is an advantage that sensitization on the long wavelength side is also possible by doping with an impurity element as necessary.
第1図は本発明の製法に係る電子写真感光体の層構成を
示す説明図、第2図は従来の電子写真感光体の層構造を
示す説明図、第3図は本発明に係る第1の態様の感光体
の層領域を示す説明図、第4図、第5図、第6図、第7
図、第8図及び第9図はそれぞれ本発明に係る第1の態
様の感光体の炭素含有量を示す説明図、第10図は本発
明に係る第2の態様の感光体の層領域を示す説明図、第
11図、第12図、第13図、第14図、第15図及び
第16図はそれぞれ本発明に係る第2の態様の感光体の
炭素含有量を示す説明図、第17図は本発明に係る第3
の態様の感光体のN領域を示す説明図、第18図、第1
9図、第20図及び第21図はそれぞれ本発明に係る第
3の態様の感光体の炭素含有量を示す説明図、第22図
は本発明に係る第4の態様の感光体の層領域を示す説明
図、第23図及び第24図は本発明に係る第4の態様の
感光体の炭素含有量を示す説明図、第25図は本発明の
実施例に用いられる容量結合型グロー放電分解装置の説
明図、第26図はC7Htガスの流量比率に対する導電
率を示す線図、第27図はPH,ガス及びBzHhガス
のそれぞれの流量比率に対する導電率を示す線図、第2
8図はアモルファスシリコンカーバイド層の分光感度特
性を示す線図、第29図はアモルファスシリコンカーバ
イド層の暗減衰及び光減衰を示す線図、第30図は第3
の態様のアモルファスシリコンカーバイド層の暗減衰及
び光減衰を示す線図、第31図はC,H,ガスの流量比
率に対する成膜速度を示す線図、第32図はCzHzガ
スの流量比率に対する水素原子の結合比率を示す線図で
ある。
1・・・基板
5.5a、5b、5c・・・・光導電性アモルファスシ
リコンカーバイド層
6・・・第1の層領域
7・・・第2の層領域
8・・・第3の層領域
9・・・第4の層領域
10・・・アモルファスシリコンカーバイド表面保護層
特許出願人 (663)京セラ株式会社同 河村
孝夫FIG. 1 is an explanatory diagram showing the layer structure of an electrophotographic photoreceptor according to the manufacturing method of the present invention, FIG. 2 is an explanatory diagram showing the layer structure of a conventional electrophotographic photoreceptor, and FIG. 4, 5, 6, and 7
8 and 9 are explanatory diagrams showing the carbon content of the photoreceptor of the first embodiment of the present invention, respectively, and FIG. 10 is an explanatory diagram showing the layer area of the photoreceptor of the second embodiment of the invention. 11, 12, 13, 14, 15, and 16 are explanatory diagrams showing the carbon content of the photoreceptor of the second embodiment of the present invention, respectively. Figure 17 is the third diagram according to the present invention.
An explanatory diagram showing the N area of the photoreceptor in the embodiment, FIG.
9, FIG. 20, and FIG. 21 are explanatory views showing the carbon content of the photoreceptor of the third embodiment of the present invention, respectively, and FIG. 22 is a layer region of the photoreceptor of the fourth embodiment of the present invention. FIG. 23 and FIG. 24 are explanatory diagrams showing the carbon content of the photoreceptor of the fourth embodiment of the present invention, and FIG. 25 is a capacitively coupled glow discharge used in the embodiment of the present invention. An explanatory diagram of the decomposition device, Fig. 26 is a diagram showing the conductivity with respect to the flow rate ratio of C7Ht gas, Fig. 27 is a diagram showing the conductivity with respect to the flow rate ratio of PH, gas, and BzHh gas, and Fig. 2
FIG. 8 is a diagram showing the spectral sensitivity characteristics of the amorphous silicon carbide layer, FIG.
Figure 31 is a diagram showing the dark attenuation and optical attenuation of the amorphous silicon carbide layer in the embodiment, Figure 31 is a diagram showing the film formation rate with respect to the flow rate ratio of C, H, and gases, and Figure 32 is a diagram showing the film formation rate with respect to the flow rate ratio of CzHz gas. FIG. 3 is a diagram showing the bonding ratio of atoms. 1...Substrates 5.5a, 5b, 5c...Photoconductive amorphous silicon carbide layer 6...First layer region 7...Second layer region 8...Third layer region 9...Fourth layer region 10...Amorphous silicon carbide surface protective layer Patent applicant (663) Kyocera Corporation Takao Kawamura
Claims (3)
ロー放電分解して正極性に帯電可能な光導電性アモルフ
ァスシリコンカーバイド層を基板上に形成した電子写真
感光体の製法であって、前記ガスはアセチレン及びケイ
素含有ガスから成り、そのガス組成比を0.01:1乃
至3:1の範囲内に設定し、成膜中にアセチレン含有組
成比を変えて前記アモルファスシリコンカーバイド層に
少なくとも第1の層領域、第2の層領域、第3の層領域
及び第4の層領域を基板側から感光体表面へ向けて順次
具備し、且つ第3の層領域は第2の層領域に比べて、第
4の層領域は第3の層領域に比べてそれぞれ炭素が多く
含まれ前記第2の層領域の形成時に前記アモルファスシ
リコンカーバイド生成用ガスに10^−^6乃至1モル
%の周期律表第IIIa族元素含有ガスを含むとともに第
1の層領域の形成時にアモルファスシリコンカーバイド
生成用ガス中における周期律表第IIIa族元素含有ガス
の占める割合が第2の層領域の形成時に比べて大きいこ
とを特徴とする電子写真感光体の製法。(1) A method for producing an electrophotographic photoreceptor in which a photoconductive amorphous silicon carbide layer that can be positively charged is formed on a substrate by glow discharge decomposition of an amorphous silicon carbide generating gas, wherein the gas contains acetylene and silicon. containing gas, the gas composition ratio is set within the range of 0.01:1 to 3:1, and the acetylene content composition ratio is changed during film formation to form at least a first layer region on the amorphous silicon carbide layer; A second layer region, a third layer region, and a fourth layer region are sequentially provided from the substrate side toward the surface of the photoreceptor, and the third layer region is larger than the second layer region. Each layer region contains more carbon than the third layer region, and when forming the second layer region, the amorphous silicon carbide generating gas contains 10^-^6 to 1 mol% of Group IIIa of the periodic table. It is characterized by containing an element-containing gas and at the time of forming the first layer region, the proportion of the gas containing the Group IIIa element of the periodic table in the amorphous silicon carbide generating gas is larger than that at the time of forming the second layer region. A method for manufacturing an electrophotographic photoreceptor.
90原子%の炭素を含有していることを特徴とする特許
請求の範囲第(1)項記載の電子写真感光体の製法。(2) The method for manufacturing an electrophotographic photoreceptor according to claim (1), wherein the amorphous silicon carbide layer contains 1 to 90 atomic percent carbon.
90原子%の炭素と5乃至50原子%の水素を含有して
いることを特徴とする特許請求の範囲第(1)項記載の
電子写真感光体の製法。(3) The electrophotographic photoreceptor according to claim (1), wherein the amorphous silicon carbide layer contains 1 to 90 atomic % carbon and 5 to 50 atomic % hydrogen. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22895986A JPS6382424A (en) | 1986-09-27 | 1986-09-27 | Production of electrophotographic sensitive body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22895986A JPS6382424A (en) | 1986-09-27 | 1986-09-27 | Production of electrophotographic sensitive body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6382424A true JPS6382424A (en) | 1988-04-13 |
Family
ID=16884541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22895986A Pending JPS6382424A (en) | 1986-09-27 | 1986-09-27 | Production of electrophotographic sensitive body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6382424A (en) |
-
1986
- 1986-09-27 JP JP22895986A patent/JPS6382424A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6067955A (en) | Electrophotographic sensitive body | |
JPS6382424A (en) | Production of electrophotographic sensitive body | |
JPS6382422A (en) | Production of electrophotographic sensitive body | |
JPS6382417A (en) | Production of electrophotographic sensitive body | |
JPS6382419A (en) | Production of electrophotographic sensitive body | |
JPS6382421A (en) | Production of electrophotographic sensitive body | |
JPS6382423A (en) | Production of electrophotographic sensitive body | |
JP2657491B2 (en) | Electrophotographic photoreceptor | |
JPS6382418A (en) | Production of electrophotographic sensitive body | |
JPS6382420A (en) | Production of electrophotographic sensitive body | |
JPS6381439A (en) | Electrophotographic sensitive body | |
JPS63104063A (en) | Electrophotographic sensitive body | |
JPS6381441A (en) | Electrophotographic sensitive body | |
JPS6381442A (en) | Electrophotographic sensitive body | |
JPS6382416A (en) | Electrophotographic sensitive body | |
JPS63104062A (en) | Electrophotographic sensitive body | |
JPS63108348A (en) | Manufacture of electrophotographic sensitive body | |
JP2657490B2 (en) | Electrophotographic photoreceptor | |
JPS6381444A (en) | Electrophotographic sensitive body | |
JPS63108347A (en) | Manufacture of electrophotographic sensitive body | |
JPS6381440A (en) | Electrophotographic sensitive body | |
JPH01271761A (en) | Electrophotographic sensitive body | |
JPS6381438A (en) | Electrophotographic sensitive body | |
JPS6381443A (en) | Electrophotographic sensitive body | |
JPH0789233B2 (en) | Electrophotographic photoreceptor |