JPS63104063A - Electrophotographic sensitive body - Google Patents
Electrophotographic sensitive bodyInfo
- Publication number
- JPS63104063A JPS63104063A JP25126786A JP25126786A JPS63104063A JP S63104063 A JPS63104063 A JP S63104063A JP 25126786 A JP25126786 A JP 25126786A JP 25126786 A JP25126786 A JP 25126786A JP S63104063 A JPS63104063 A JP S63104063A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- layer region
- photoreceptor
- photoconductive
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 21
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052734 helium Inorganic materials 0.000 claims abstract description 10
- 230000000737 periodic effect Effects 0.000 claims abstract description 6
- 239000001307 helium Substances 0.000 claims abstract description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims abstract description 5
- 108091008695 photoreceptors Proteins 0.000 claims description 82
- 229910010271 silicon carbide Inorganic materials 0.000 abstract description 32
- 230000006866 deterioration Effects 0.000 abstract description 2
- 238000010348 incorporation Methods 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 210
- 239000007789 gas Substances 0.000 description 45
- 229910052799 carbon Inorganic materials 0.000 description 39
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 36
- 125000004429 atom Chemical group 0.000 description 21
- 206010034972 Photosensitivity reaction Diseases 0.000 description 19
- 230000036211 photosensitivity Effects 0.000 description 19
- 238000007600 charging Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 239000011241 protective layer Substances 0.000 description 10
- 238000000354 decomposition reaction Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- HSFWRNGVRCDJHI-UHFFFAOYSA-N Acetylene Chemical compound C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000007786 electrostatic charging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- WHOPEPSOPUIRQQ-UHFFFAOYSA-N oxoaluminum Chemical compound O1[Al]O[Al]1 WHOPEPSOPUIRQQ-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08221—Silicon-based comprising one or two silicon based layers
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光導電性アモルファスシリコンカーバイド層か
ら成る電子写真感光体に関し、特に正極性に帯電可能な
電子写真感光体に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor comprising a photoconductive amorphous silicon carbide layer, and particularly to an electrophotographic photoreceptor that can be positively charged.
近年、電子写真感光体の進歩は目覚ましく、感光体を搭
載する複写機やプリンター等の開発に伴って感光体自体
にも種々の特性が要求されている。この要求に対してア
モルファスシリコン層が耐熱性、耐摩耗性、無公害性並
びに光感度特性等に優れているという理由から注目され
ている。In recent years, progress in electrophotographic photoreceptors has been remarkable, and with the development of copying machines, printers, etc. equipped with photoreceptors, various characteristics are required of the photoreceptors themselves. In response to this demand, amorphous silicon layers are attracting attention because they have excellent heat resistance, wear resistance, non-pollution properties, and photosensitivity characteristics.
しかし乍ら、アモルファスシリコン(以下、a−3iと
略す)層は、それに何ら不純物元素をドーピングしない
と約109Ω・cmの暗抵抗率しか得られず、これを電
子写真用感光体に用いる場合には10I2Ω・cm以上
の暗抵抗率にして電荷保持能力を高める必要がある。そ
のために酸素や窒素などの元素を微少量ドーピングして
高抵抗化にし得るが、その反面、光導電性が低下すると
いう問題がある。また、ホウ素などを添加しても高抵抗
化が期待できるが、十分に満足し得るような暗抵抗率が
得られず約1011Ω・cm程度にすぎない。However, the amorphous silicon (hereinafter abbreviated as a-3i) layer only has a dark resistivity of about 109 Ωcm unless it is doped with any impurity element, and when used in an electrophotographic photoreceptor, It is necessary to increase the charge retention ability by setting the dark resistivity to 10I2Ω·cm or more. For this purpose, it is possible to increase the resistance by doping a small amount of elements such as oxygen or nitrogen, but on the other hand, there is a problem that the photoconductivity decreases. Further, even if boron or the like is added, a high resistance can be expected, but a sufficiently satisfactory dark resistivity cannot be obtained and is only about 10 11 Ω·cm.
一方、上記の如きドーピング剤の開発と共に、a−5i
光導電層に別の非光導電層を積層して成る積層型感光体
が提案されている。On the other hand, along with the development of doping agents as mentioned above, a-5i
A laminated photoreceptor has been proposed in which a photoconductive layer is laminated with another non-photoconductive layer.
例えば、第2図はこの積層型感光体であり、基Vi、(
1)の上にキャリア注入阻止層(2) 、a−3i光導
電層(3)及び表面保護層(4)が順次積層されている
。For example, FIG. 2 shows this laminated photoreceptor, with groups Vi, (
A carrier injection blocking layer (2), an a-3i photoconductive layer (3), and a surface protection layer (4) are sequentially laminated on the layer 1).
この積層型光体によれば、キャリア注入阻止層(2)は
基板(1)からのキャリアの注入を阻止するものであり
、表面保護層(4)はa−Si光導電層(3)を保護し
て耐湿性等を向上させるものであるが、両者のN(2)
及び(4)ともに感光体の暗抵抗率を大きくして帯電能
を高めることが目的であり、そのためにこれらの層を光
導電性にする必要はない。According to this laminated light body, the carrier injection blocking layer (2) blocks injection of carriers from the substrate (1), and the surface protection layer (4) blocks the a-Si photoconductive layer (3). It protects and improves moisture resistance etc., but the N(2) of both
The purpose of both (4) and (4) is to increase the dark resistivity of the photoreceptor to increase the charging ability, and for that purpose, it is not necessary to make these layers photoconductive.
このように従来周知のa−Si電子写真感光体は光キヤ
リア発生層をa−5i光導電層により形成させた点に大
きな特徴があり、これによって耐熱性、耐久性及び光感
度特性などに優れた長所を有している反面、暗抵抗率が
不十分であるためにドーピング剤を用いたり、更に積層
型感光体にすることで暗抵抗率を太き(している。即ち
、積層型感光体に形成されるキャリア注入阻止層(2)
及び表面保護層(4)はa−5i光導電層自体が有する
欠点を補完するものであり、a−Si光導電層(3)と
実質上区別し得る層と言える。As described above, the conventionally well-known a-Si electrophotographic photoreceptor has a major feature in that the photocarrier generation layer is formed of an a-5i photoconductive layer, and as a result, it has excellent heat resistance, durability, and photosensitivity characteristics. However, because the dark resistivity is insufficient, the dark resistivity is increased by using doping agents or by making the photoconductor a laminated type. Carrier injection blocking layer (2) formed on the body
The surface protective layer (4) complements the defects of the a-5i photoconductive layer itself, and can be said to be a layer that can be substantially distinguished from the a-Si photoconductive layer (3).
本発明者等は上記事情に鑑みて、既にアモルファスシリ
コンカーバイド(以下、a−5iCと略す)は光導電性
を有すると共に暗抵抗率がドーピング剤の有無と無関係
に容易に10′3Ω・cm以上になり、更にドーピング
剤の選択によって正極性に帯電可能な電子写真感光体゛
と成り得ることを見い出した。In view of the above circumstances, the present inventors have already discovered that amorphous silicon carbide (hereinafter abbreviated as a-5iC) has photoconductivity and has a dark resistivity of 10'3 Ωcm or more regardless of the presence or absence of a doping agent. Furthermore, it has been discovered that by selecting a doping agent, an electrophotographic photoreceptor that can be positively charged can be obtained.
上記a−SiC層が電子写真感光体と成り得た理由は、
その層が大きなキャリア移動度をもち、更に10− ”
(、Ω・cm)−’以下の暗導電率であり、これによ
って大きな帯電能が得られたためである。The reason why the above a-SiC layer could become an electrophotographic photoreceptor is as follows.
That layer has a large carrier mobility, and even 10-”
This is because the dark conductivity was less than (, Ω·cm)−', and a large charging ability was thereby obtained.
しかしながら、このように大きなキャリア移動度をもつ
a−5iC電子写真感光体であっても、光源の波長によ
っては未だ満足し得る電子写真特性が得られていない。However, even with the a-5iC electrophotographic photoreceptor having such a high carrier mobility, satisfactory electrophotographic characteristics have not yet been obtained depending on the wavelength of the light source.
例えば蛍光灯等の一最的な投光源(分光スペクトルが比
較的短波長側ヘシフトしている)を除電用光源に用いた
場合、画像露光時の光メモリー効果によってゴースト現
象(先の画像が完全に除去されずに残存し、次の画像形
成に伴って先の画像が再び現れる現象をいう)が生じ易
くなる傾向にある。For example, if a primary light source such as a fluorescent lamp (with a spectrum shifted toward relatively short wavelengths) is used as a light source for static elimination, the optical memory effect during image exposure may cause a ghost phenomenon (the previous image may be completely distorted). (a phenomenon in which the previous image reappears with the formation of the next image) tends to occur more easily.
このような問題を解決するためには長波長の光を発する
光源を除電用光源に用いて露光を増大させることが有効
であり、これに適した光源として発光ダイオードアレイ
がある。ところが、このダイオードアレイを用いた場合
、ゴースト現象が生じないように強請光照射を行うと、
これに伴って帯電能が低下したり、暗減衰が増大すると
いう問題が生じる。更に、製造コスト面から見た場合、
発光ダイオードは蛍光灯に比べて格段に高価であり、低
コストな光源が望まれる。In order to solve this problem, it is effective to increase exposure by using a light source that emits long wavelength light as a light source for static elimination, and a light emitting diode array is a suitable light source for this purpose. However, when using this diode array, if forced light irradiation is performed to prevent the ghost phenomenon,
This causes problems such as a decrease in charging ability and an increase in dark decay. Furthermore, from a manufacturing cost perspective,
Light emitting diodes are much more expensive than fluorescent lamps, and a low-cost light source is desired.
また、本発明者等が既に提案した光導電性a−SiC層
はそれに0.1乃至10,000ppmの周期律表第■
a族元素を含有させるだけで正極性に帯電可能な電子写
真感光体と成り得るのであり、更に他のドーピング剤を
含有させて電子写真特性を一層向上させようとする場合
、膜中のその良好な原子結合状態を乱すことなく他の不
純物元素を含有させ、これによってゴースト現象等の問
題を解決するのが望ましい。In addition, the photoconductive a-SiC layer already proposed by the present inventors has a concentration of 0.1 to 10,000 ppm in the periodic table.
An electrophotographic photoreceptor that can be charged to positive polarity can be obtained simply by containing a group A element, and when further improving the electrophotographic properties by adding other doping agents, it is necessary to improve the electrophotographic properties in the film. It is desirable to incorporate other impurity elements without disturbing the atomic bonding state, thereby solving problems such as ghost phenomena.
従って本発明は軟土に鑑みて案出されたものであり、そ
の目的は表面保護層及びキャリア注入阻止層を実質上不
要とし、全層に亘って光導電性a−SiCと成し、且つ
ゴースト現象の発生を防止することができた電子写真感
光体を提供することにある。Therefore, the present invention was devised in view of soft soil, and its purpose is to substantially eliminate the need for a surface protective layer and a carrier injection blocking layer, to make the entire layer made of photoconductive a-SiC, and to An object of the present invention is to provide an electrophotographic photoreceptor that can prevent the occurrence of a ghost phenomenon.
本発明の他の目的は膜中の原子結合状態を無理に乱すこ
となくして所要な電子写真特性を向上させることができ
た電子写真感光体を提供することにある。Another object of the present invention is to provide an electrophotographic photoreceptor in which required electrophotographic properties can be improved without forcibly disturbing the atomic bonding state in the film.
本発明の更に他の目的は正極性に帯電可能な電子写真感
光体を提供することにある。Still another object of the present invention is to provide an electrophotographic photoreceptor that can be positively charged.
〔問題点を解決するための手段〕
本発明によれば、基板上に1×10−5乃至5原子%の
ヘリウム及び0.1乃至10,000ppmの周期律表
第ma族元素(以下、IIIa族元素と略す)を含有し
た光導電性a−SiCNを形成したことを特徴とする正
極性に帯電可能な電子写真感光体が提供される。[Means for Solving the Problems] According to the present invention, 1 x 10 -5 to 5 atomic % helium and 0.1 to 10,000 ppm of an element of group Ma of the periodic table (hereinafter referred to as IIIa) are deposited on a substrate. Provided is an electrophotographic photoreceptor that can be charged to a positive polarity and is characterized by forming a photoconductive a-SiCN containing a group element (abbreviated as group element).
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明の電子写真感光体は光導電性a−5xCNに所定
の範囲内でヘリウム(He)元素を含有させることを特
徴とするものであり、また、この光導電性a−SiCf
f4についてはTJia族元素を含有させて正極性に帯
電させた感光体と成り得ることは既に本発明者等が提案
した通りである。The electrophotographic photoreceptor of the present invention is characterized in that photoconductive a-5xCN contains helium (He) element within a predetermined range, and the photoconductive a-SiCf
As for f4, it has already been proposed by the present inventors that it can be a positively charged photoreceptor containing a TJia group element.
即ち、第1図によれば4電性基板(1)上に、例えばグ
ロー放電分解法によって光導電性a−5iC層(5)を
形成したものであり、この層厚方向に亘って炭素とII
ra族元素をそれぞれ同−含有比率で含有させている。That is, according to FIG. 1, a photoconductive a-5iC layer (5) is formed on a four-electroconductive substrate (1) by, for example, glow discharge decomposition, and carbon and carbon are formed over the thickness direction of this layer. II
The RA group elements are contained in the same content ratio.
これによって暗抵抗率が1013Ω・cm以上となると
共に明抵抗率に比べて1000倍以上となることを見い
出し、この知見に基づく後述する実施例から明らかな通
り、この単一組成の層だけで十分に実用性のあるa−S
iCi光体と成り得たことは予想外の成果であった。It was discovered that this resulted in a dark resistivity of 1013 Ω・cm or higher, which was also 1000 times higher than the bright resistivity.As will be clear from the examples described below based on this knowledge, a layer of this single composition is sufficient. Practical a-S
The fact that it became an iCi light body was an unexpected result.
更に本発明者等はこの計SiC感光体を正極性又は負極
性に帯電させて両者の帯電性能を比較した場合、このa
−5iCH(5)にma族元素を0.1乃至10.00
0ppmの範囲、好適には0.1乃至11000ppの
範囲内でドーピングすると正極性で有利に帯電能を高め
ることができることも見い出した。Furthermore, when the present inventors charged this SiC photoreceptor to positive or negative polarity and compared the charging performance of the two, this a
-5iCH(5) with 0.1 to 10.00 of the ma group element
It has also been found that doping in the range of 0 ppm, preferably in the range of 0.1 to 11000 ppm, can advantageously increase the charging ability with positive polarity.
このようにma族元素のドーピングによって正極性に帯
電し易くなる点については、未だ解明されておらず、推
論の域を脱し得ないが、a−5iC層が正電荷を保持す
るのに十分に高い抵抗率をもち、また、基板からの負電
荷の注入を防ぐ効果にも優れ、更に正電荷に対する電荷
移動度が優れている等の理由によると考えられる。The reason why doping with Ma group elements makes it easier to be positively charged has not yet been elucidated and is still in the realm of speculation, but it is possible that the a-5iC layer is sufficiently charged to retain a positive charge. This is believed to be because it has high resistivity, is excellent in preventing injection of negative charges from the substrate, and has excellent charge mobility with respect to positive charges.
また、このma族元素としてはB、Al、Ga、 In
等があるが、就中、Bが共有結合性に優れて半導体特性
を敏感に変え得る点で望ましい。In addition, the ma group elements include B, Al, Ga, In
Among these, B is particularly desirable because it has excellent covalent bonding properties and can sensitively change semiconductor properties.
本発明のa−SiCNが光導電性を有するようになった
点については、アモルファス化したケイ素と炭素を不可
欠な構成元素とし、更にそのダングリングボンドを終端
させるべく水素元素(11)やハロゲン元素を所要の範
囲内で含有させることによって光導電性が生じるものと
考えられる。本発明者等が炭素の含有比率を幾通りにも
変えて光導電性の有無を確かめる実験を行ったところ、
a−5iCfi(5)中に炭素を1乃至90原子2、好
適には5乃至50原子χの範囲内で含有させるとよく、
或いはこの範囲内で層厚方向に亘って炭素台゛有量を変
えてもよい。The reason why the a-SiCN of the present invention has photoconductivity is that amorphous silicon and carbon are essential constituent elements, and hydrogen elements (11) and halogen elements are added to terminate the dangling bonds. It is believed that photoconductivity is produced by containing the following within the required range. When the present inventors conducted experiments to confirm the presence or absence of photoconductivity by varying the carbon content ratio, they found that
a-5iCfi (5) preferably contains carbon in the range of 1 to 90 atoms 2, preferably 5 to 50 atoms χ,
Alternatively, the carbon content may be varied within this range in the layer thickness direction.
また、水素元素()l)やハロゲン元素の含有量は5乃
至50原子χ、好適には5乃至40原子χ、最適にはl
O乃至30原子2がよく、通常、H元素が用いられてい
る。このH元素はダングリングボンドの終端部に取り込
まれ易いのでバンドギャップ中の局在準位密度を低減化
させ、これにより、優れた半導体特性が得られる。Further, the content of hydrogen element ()l) and halogen element is 5 to 50 atoms χ, preferably 5 to 40 atoms χ, optimally l
O to 30 atoms 2 are preferred, and H element is usually used. Since this H element is easily incorporated into the terminal portion of the dangling bond, the localized level density in the band gap is reduced, thereby providing excellent semiconductor characteristics.
更にこのH元素の一部をハロゲン元素に置換してもよく
、これにより、a−3iC層の局在準位密度を下げて光
導電性及び耐熱性(温度特性)を高めることができる。Furthermore, a part of this H element may be replaced with a halogen element, whereby the localized level density of the a-3iC layer can be lowered and the photoconductivity and heat resistance (temperature characteristics) can be improved.
その置換比率はダングリングボンド終端用全元素中0.
01乃至50原子2、好適には1乃至30原子2がよい
。また、ハロゲン元素にはP、CLIBr、 1.At
等があるが、就中、Fを用いるとその大きな電気陰性度
によって原子間の結合が大きくなり、これによって熱的
安定性に優れるという点で望ましい。Its substitution ratio is 0.0 among all elements for dangling bond termination.
01 to 50 atoms 2, preferably 1 to 30 atoms 2. In addition, halogen elements include P, CLIBr, 1. At
Among these, the use of F is preferable because its large electronegativity increases the bonding between atoms, resulting in excellent thermal stability.
本発明によれば、上記のような光導電性a−Si(:層
にHe元素を1×10−5乃至5原子χ含有された点に
特徴があり、この範囲内では上述の電子写真特性を実用
上支障がない範囲内で低下させず、且つHeを含有させ
たことによってゴースト現象の発生を防止することがで
きる。The present invention is characterized in that the photoconductive a-Si (: layer) contains 1 x 10-5 to 5 atoms χ of He element, and within this range, the electrophotographic properties described above are achieved. The ghost phenomenon can be prevented by not reducing the amount within a range that does not cause any practical problems, and by containing He.
即ち、本発明者等はHeが常温下で不活性ガス気体とし
て存在し、これがa−SiC膜中に取り込まれても何ら
原子間結合に寄与しないという点に着目し、実験を繰り
返し行った結果、Heを所定の範囲内で含有した正極性
に帯電可能な光導電性a−5iC層は電子写真特性を劣
化させるものではなく、むしろ、Heを含有させたこと
によってa−5iC層が緻密化して膜質が向上し、これ
によってゴースト現象が解消されるということを見い出
した。そして、このゴースト現象は蛍光灯など比較的短
波長側へスペクトルがシストしている除電用光源を用い
た場合に顕著であるが、このような光源を用いても十分
に効果が認められる。That is, the present inventors focused on the fact that He exists as an inert gas at room temperature and does not contribute to interatomic bonding even if it is incorporated into the a-SiC film, and as a result of repeated experiments. , the positively chargeable photoconductive a-5iC layer containing He within a predetermined range does not deteriorate the electrophotographic properties; on the contrary, the a-5iC layer becomes denser due to the inclusion of He. It has been found that the film quality is improved and the ghost phenomenon is eliminated by this. Although this ghost phenomenon is noticeable when using a light source for static elimination, such as a fluorescent lamp, whose spectrum is shifted toward a relatively short wavelength side, a sufficient effect can be observed even when such a light source is used.
このようにして解決し得た点については本発明者等は未
だ十分に解明していないが、Heが不活性元素であるた
めに結合手をもたず、しかも、原子半径が最も小さく、
そのためにHeが膜中に含有されてもSiとCの結合ネ
ットワークが乱されず、その上、Stに対するHの結合
数が小さくなり、これにより、アモルファス化したSi
とCの原子組織が緻密化すると共にダングリングボンド
が低減し、また、キャリア移動度を低下させる原因とな
る空孔等の欠陥が生じなくなり、その結果、ゴースト現
象が生じなくなったと考えられる。Although the inventors have not yet fully elucidated the problem that could be solved in this way, since He is an inert element, it has no bonding hands, and moreover, it has the smallest atomic radius.
Therefore, even if He is contained in the film, the bond network between Si and C is not disturbed, and in addition, the number of bonds of H to St is reduced, and as a result, the amorphous Si
It is thought that this is because the atomic structure of C and C becomes denser, the number of dangling bonds decreases, and defects such as vacancies that cause a decrease in carrier mobility no longer occur, and as a result, the ghost phenomenon no longer occurs.
He元素の含有量はSiとCの含有比率やダングリング
ボンド終端用元素の種類と関係するが、約lX10−5
乃至5原子2、好適には1×10−5乃至5原子χ、最
適には1×10−5乃至3原子χの範囲内がよい。The content of He element is related to the content ratio of Si and C and the type of element for dangling bond termination, but it is approximately 1X10-5
The range is preferably from 1 x 10-5 to 5 atoms 2, preferably from 1 x 10-5 to 5 atoms χ, and optimally from 1 x 10-5 to 3 atoms χ.
上記の如き光導電性a−SiC層(5)の厚みは、少な
くとも5μm以上あればよく、これによって表面電位が
一200v以上となり、更に画像の分解能及び画像流れ
が生じない範囲内でその上限が適宜選ばれており、ユ木
発明者等の実験によれば、5乃至100μm、好適には
10乃至50μmの範囲内に設定するとよい。The thickness of the photoconductive a-SiC layer (5) as described above should be at least 5 μm or more, so that the surface potential is 1200 V or more, and the upper limit is within the range where image resolution and image blurring do not occur. The thickness is appropriately selected, and according to experiments by the inventor Yuki et al., it is preferably set within the range of 5 to 100 μm, preferably 10 to 50 μm.
更に、このa−SiC層の暗減衰曲線及び光減衰曲線を
求めたところ、高い表面電位をもつと共に優れた光感度
特性を有し、また、残留電位が小さくなっていることを
確かめ、た。Furthermore, when the dark decay curve and light decay curve of this a-SiC layer were determined, it was confirmed that it had a high surface potential and excellent photosensitivity characteristics, and also had a small residual potential.
かくして層厚方向に亘って単一組成の光導電性a−3i
C層だけで十分に実用と成り得る電子写真感光体が提供
される。Thus, the photoconductive a-3i of a single composition throughout the layer thickness direction
An electrophotographic photoreceptor that can be put into practical use with just the C layer is provided.
そこで、本発明者等は上記の結果を踏まえて、更に鋭意
研究に努めたところ、この単一組成の層内部に種々のN
?II域を生成させることによって電子写真特性を更に
向上し得ることを見い出した。Therefore, based on the above results, the present inventors conducted further research and found that various N
? It has been found that the electrophotographic properties can be further improved by producing region II.
即ち、本発明の電子写真感光体においては、構成元素で
ある炭素又はTI[a族元素の含有比率を層厚方向に亘
って変化させ、これによって複数の層領域を生成させ、
このiiI域の数に対応して下記の第1の態様乃至第4
の態様までの電子写真感光体が得られる。That is, in the electrophotographic photoreceptor of the present invention, the content ratio of the constituent element carbon or TI [group a element] is varied in the layer thickness direction, thereby forming a plurality of layer regions,
The following first to fourth aspects correspond to the number of areas iii.
An electrophotographic photoreceptor according to the embodiments described above can be obtained.
本発明によれば、このような様態の中で、基板側から感
光体表面側へ向けて第1の層領域、第2の層領域、必要
に応じて第3の層領域、第4の層領域を生成させ、少な
くとも第2の層領域及び第3の層領域のいずれか一方又
は両者共にI(e元素を1×10−5乃至5原子χ含有
させることを特徴とするものであり、これによってゴー
スト現象が生じなくなる。According to the present invention, in such an embodiment, from the substrate side to the photoreceptor surface side, the first layer region, the second layer region, and if necessary, the third layer region and the fourth layer. The method is characterized in that at least one or both of the second layer region and the third layer region contains 1×10 −5 to 5 atoms χ of the element I(e). This prevents the ghost phenomenon from occurring.
以下、本発明の電子写真感光体を第1の態様及び第2の
態様について詳細に述べ、第3の様態及び第4の態様は
これに準するものとする。Hereinafter, the electrophotographic photoreceptor of the present invention will be described in detail regarding the first aspect and the second aspect, and the third aspect and the fourth aspect shall be based thereon.
第1の態様
第1のB様によれば、基板上に光導電性a−5iC層を
形成した電子写真感光体であって、前記a−SiC層は
少なくとも第1の層領域及び第2の層領域を具備し、第
1の層領域は第2の層領域より基板側に配置され且つ第
2の層領域に比べてma族元素が多く含まれていること
を特徴とする正極性に帯電可能な電子写真感光体が提供
される。First Aspect According to the first aspect B, there is provided an electrophotographic photoreceptor in which a photoconductive a-5iC layer is formed on a substrate, wherein the a-SiC layer covers at least a first layer region and a second layer region. positively charged, comprising a layer region, the first layer region being disposed closer to the substrate than the second layer region, and containing more Ma group elements than the second layer region; A possible electrophotographic photoreceptor is provided.
即ち、この第1の態様によれば、第1図に示した単一組
成の光弓電性a−3iC層に対してma族元素を含有さ
せ、その含有比率を変えることにより少なくとも第1の
層領域及び第2の層領域を生成させるものであり、この
B様を第3図乃至第9図により説明する。That is, according to the first aspect, at least the first element is contained in the photoluminescent a-3iC layer having a single composition shown in FIG. 1, and by changing the content ratio. This method generates a layer region and a second layer region, and this type B will be explained with reference to FIGS. 3 to 9.
第3図においては導電性基板(1)上に第1の層領域(
6)及び第2の層領域(7)を順次形成し、両者の層領
域が一体化した光導電性a−5iC層(5a)から成っ
ており、そして、第1の層領域(6)には第2の層領域
(7)に比べてma族元素が多く含まれていると共に第
2の層領域(7)にはHeを所定量含有することが重要
である。In FIG. 3, a first layer region (
6) and a second layer region (7) are successively formed, both layer regions consisting of an integrated photoconductive a-5iC layer (5a); It is important that the second layer region (7) contains more Ma group elements than the second layer region (7), and that the second layer region (7) also contains a predetermined amount of He.
第2の層領域(7)はll1a族元素の含有量が0.1
乃至10.000ppmの範囲内で、好適には0.1乃
至1゜000 ppmの範囲内で適宜法められ、これに
よって正極性に帯電すると共に表面電位、光感度特性等
の所要な電子写真特性が得られる。そして、この層領域
よりもma族元素を多く含有した第1の層領域(6)を
形成すると光導電性a−5iCN (5a)の基板側領
域で導電率が太き(なり、これにより、基板側からのキ
ャリアの注入が阻止されると共にa−SiC層の全領域
で発生した光キャリアが基板へ円滑に流れ、その結果、
表面電位が大きくなると共に光感度特性が向上する。The second layer region (7) has a content of ll1a group elements of 0.1
It is appropriately controlled within the range of 10,000 ppm to 10,000 ppm, preferably 0.1 to 1,000 ppm, thereby positively charging and improving required electrophotographic properties such as surface potential and photosensitivity. is obtained. When the first layer region (6) containing more Ma group elements than this layer region is formed, the conductivity becomes thicker in the substrate side region of the photoconductive a-5iCN (5a). Injection of carriers from the substrate side is blocked, and optical carriers generated in the entire area of the a-SiC layer flow smoothly to the substrate, and as a result,
As the surface potential increases, the photosensitivity characteristics improve.
更にこの第2の層領域(7)にはlieを1×10−5
乃至5原子χ、好適には1×10−5乃至5原子χ、最
適には1×10−5乃至3原子χの範囲内に含有させる
とよく、これにより、ゴースト現象が生じなくなる。Further, in this second layer region (7), 1×10−5 lie is applied.
The content is preferably in the range of 5 to 5 atoms χ, preferably 1×10 −5 to 5 atoms χ, and optimally 1×10 −5 to 3 atoms χ, so that the ghost phenomenon does not occur.
このようにHeを第2の層領域(7)に含有させるに当
たっては、この層領域(7)全体に対してlie含有量
が上記の範囲内で設定される限りにおいて層厚方向に亘
って均−又は不均一な含有分布で含有させる。In this way, when He is contained in the second layer region (7), as long as the lie content is set within the above range for the entire layer region (7), it is uniform throughout the layer thickness direction. -or it is contained in a non-uniform content distribution.
また、この第1の態様によれば、第2の層領域(7)に
不可欠に)leを含有させるものであるが、第1の層領
域(6)に対しては任意に含有させてもよい。第1の層
領域(6)にもHeを含有させた場合、I Xl0−5
乃至5原子χの範囲内で含有させればよく、これにより
、基板側からのキャリアの注入阻止を損なわず、且つ残
留電位を小さくし、その結果、ゴースト現象の発生を確
実に防止することができる。Furthermore, according to the first aspect, le is indispensably contained in the second layer region (7), but le may be optionally contained in the first layer region (6). good. When the first layer region (6) also contains He, I Xl0-5
The content may be within the range of 5 to 5 atoms χ, thereby not impairing the prevention of carrier injection from the substrate side and reducing the residual potential, thereby reliably preventing the ghost phenomenon from occurring. can.
更に第1の態様によれば、炭素含有量を第4図乃至第9
図に示す通りに設定してもよい。これらの図において、
横軸は基板から感光体表面に至る層厚を示し、縦軸は炭
素含有量を示している。尚、この横軸において(6)
、 (7)に示すそれぞれの範囲は第1の層領域及び第
2の層領域を表している。Furthermore, according to the first aspect, the carbon content is
The settings may be made as shown in the figure. In these figures,
The horizontal axis shows the layer thickness from the substrate to the photoreceptor surface, and the vertical axis shows the carbon content. Furthermore, on this horizontal axis (6)
, Each range shown in (7) represents a first layer region and a second layer region.
即ち、第4図は炭素含有比率が全層に亘って一定であり
、或いは第5図は第1の層領域で炭素含有量を少なくし
ており、これに対して第6図乃至第9図は第1の9M域
が第2の層領域に比べて炭素が多く含有されていること
を示すものであり、これによって表面電位が一段と高く
なって光感度特性が向上する。また、第7図乃至第9図
のように炭素の含有量を層厚方向に亘って石火変えると
表面電位及び光感度を一層高め且つ残留電位が小さくな
る。That is, in FIG. 4, the carbon content ratio is constant throughout the entire layer, or in FIG. 5, the carbon content is reduced in the first layer region, whereas in FIGS. This indicates that the first 9M region contains more carbon than the second layer region, which further increases the surface potential and improves the photosensitivity. Furthermore, if the carbon content is varied in the layer thickness direction as shown in FIGS. 7 to 9, the surface potential and photosensitivity will be further increased and the residual potential will be reduced.
第2の態様
第2の態様によれば、基板上に光導電性a−5iC層を
形成した電子写真感光体であって、前記a−3iC層は
少なくとも第1の層領域、第2の層領域及び第3の層領
域を具備し、第1の層領域は第2の層領域より、第2の
層領域は第3の層領域よりそれぞれ基板側に配置され、
且つ第3の層領域は第2の層領域に比べて炭素が多く含
まれていると共に第2の層領域は0.1乃至10,00
0ppmのI[Ia族元素が含まれており、更に第1の
層領域は第2の層領域よりもma族元素が多く含まれて
いることを特徴とする正極性に帯電可能な電子写真感光
体が提供される。Second Aspect According to a second aspect, there is provided an electrophotographic photoreceptor in which a photoconductive a-5iC layer is formed on a substrate, wherein the a-3iC layer is formed in at least a first layer region and a second layer region. and a third layer region, the first layer region is located closer to the substrate than the second layer region, and the second layer region is located closer to the substrate than the third layer region,
In addition, the third layer region contains more carbon than the second layer region, and the second layer region contains 0.1 to 10,000 carbon.
0 ppm I The body is provided.
即ち、この第2の態様によれば、第1O図に示す通り、
第1の態様にて示した第2の層領域(7)の上に更に第
3の層領域(8)を形成し、第3の層領域(8)の炭素
含有量を第2の層領域(7)よりも多くし、そして、第
1の層領域(6)、第2の層領域(7)及び第3の層領
域(8)を実質上一体化して光4電性a−SiC層(5
b)とした。That is, according to this second aspect, as shown in FIG. 1O,
A third layer region (8) is further formed on the second layer region (7) shown in the first embodiment, and the carbon content of the third layer region (8) is adjusted to the second layer region (7). (7), and the first layer region (6), the second layer region (7) and the third layer region (8) are substantially integrated to form a photoquaternically conductive a-SiC layer. (5
b).
この第3のN領域(8)を形成すると、a−3iC層(
5b)の表面側の暗抵抗率が大きくなり、これに伴って
感光体の表面電位が顕著に向上する。When this third N region (8) is formed, the a-3iC layer (
The dark resistivity on the surface side of 5b) increases, and the surface potential of the photoreceptor increases markedly.
即ち、第3の層領域(8)は光導電性a−SiC層(5
b)の表面側を高抵抗化させるために形成されており、
第2図にて述べた従来周知の表面保護層(4)とは全く
区別し得るものである。また、光キヤリア発生層とキャ
リア輸送層とに分けられた毅能分離型感光体によれば、
キャリア輸送層を1013Ω・cm以上に高抵抗化させ
るが、この層に格別大きな光導電性が要求されておらず
、通常、光導電率の暗導電率に対する比率が1000倍
未満の光導電性に設定されているに過ぎない。これに対
して、第3の層領域(8)はこの比率が1000倍以上
の光導電性を有しており、上記キャリア輸送層に対して
も十分に区別し得る。That is, the third layer region (8) is a photoconductive a-SiC layer (5
It is formed to increase the resistance of the surface side of b),
This layer can be completely distinguished from the conventionally known surface protective layer (4) described in FIG. In addition, according to the photoreceptor of the permissive separation type, which is divided into a photocarrier generation layer and a carrier transport layer,
Although the carrier transport layer is made to have a high resistance of 1013 Ω・cm or more, this layer is not required to have particularly high photoconductivity, and the ratio of photoconductivity to dark conductivity is usually less than 1000 times. It's just set. On the other hand, the third layer region (8) has a photoconductivity that is 1000 times higher in this ratio or more, and can be sufficiently distinguished from the carrier transport layer.
第3の層領域(8)の層厚は、第2の層領域(7)に比
べて1倍以下、好ましくは172倍以下、最適には17
4倍以下がよく、これにより、表面電位が顕著に向上す
ると共に光感度に優れ、且つ残留電位が小さくなり、望
ましいと言える。The layer thickness of the third layer region (8) is not more than 1 times, preferably not more than 172 times, optimally not more than 17 times, compared to the second layer region (7).
4 times or less is preferable, and this can be said to be desirable because the surface potential is significantly improved, the photosensitivity is excellent, and the residual potential is small.
本発明に係る第2の態様の電子写真感光体によれば、上
記第2の層領域(7)及び第3の層領域(8)の両者又
はいずれか一方に+Ie元素を含有させることを特徴と
しており、この含有量は1×10−5乃至5原子χ、好
適には1×10−5乃至5原子χ、最適には1×10−
5乃至3原子χの範囲に設定すればよく、これにより、
ゴースト現象が生じなくなる。According to the electrophotographic photoreceptor of the second aspect of the present invention, the +Ie element is contained in both or either of the second layer region (7) and the third layer region (8). The content is 1 x 10-5 to 5 atoms χ, preferably 1 x 10-5 to 5 atoms χ, optimally 1 x 10-
It is sufficient to set it in the range of 5 to 3 atoms χ, thereby,
Ghost phenomenon no longer occurs.
更に第2の態様によれば、光瘍電性a−5iC層(5b
)の炭素含有分布は第11図乃至第16図に示す通りで
あり、横軸は基板から感光体表面に至る層厚を示し、縦
軸は炭素含有量は示している。尚、この横軸において、
(6) (7) (8)に示すそれぞれの範囲は第1の
層領域、第2の層領域及び第3の層領域を表している。Further according to a second aspect, the photoselectrogenic a-5iC layer (5b
) are as shown in FIGS. 11 to 16, where the horizontal axis shows the layer thickness from the substrate to the surface of the photoreceptor, and the vertical axis shows the carbon content. Furthermore, on this horizontal axis,
The respective ranges shown in (6), (7), and (8) represent the first layer region, the second layer region, and the third layer region.
第12図、第14図、第15図及び第16図によれば、
層厚方向に亘って炭素の含有量を漸次変えており、これ
により、表面電位が向上すると共に光感度に優れ、且つ
残留電位が小さくなる。According to FIGS. 12, 14, 15, and 16,
The carbon content is gradually changed over the layer thickness direction, which improves the surface potential, provides excellent photosensitivity, and reduces residual potential.
第3の態様
第3の態様によれは、基板上に光導電性a−SiC層を
形成した電子写真感光体であって、前記a−5iC層は
少なくとも第1の層領域、第2の層領域、第3の層領域
、第4の層領域を基板側から感光体表面へ向けて順次具
備し且つ第3の層領域は第2の層領域に比べて、第4の
層領域は第3の層領域に比べてそれぞれ炭素が多く含ま
れていると共に第2の層領域は0.1乃至10,000
ppmのIIIa族元素が含まれており、更に第1の層
領域は第2の層領域よりもma族元素が多く含まれてい
ることを特徴とする正極性に帯電可能な電子写真感光体
が提供される。Third Aspect According to a third aspect, there is provided an electrophotographic photoreceptor in which a photoconductive a-SiC layer is formed on a substrate, wherein the a-5iC layer is formed in at least a first layer region and a second layer region. A third layer region, a third layer region, and a fourth layer region are sequentially provided from the substrate side toward the photoreceptor surface, and the third layer region is more dense than the second layer region, and the fourth layer region is better than the third layer region. The second layer region contains more carbon than the first layer region, and the second layer region contains 0.1 to 10,000 carbon.
ppm of group IIIa elements, and the first layer region contains more group Ma elements than the second layer region. provided.
即ち、第3の態様によれば、第17図に示す通り、第2
の態様にて示した第3の層領域(8)の上に更に第4の
層領域(9)を形成し、第4の層領域(9)が第3のN
領域(8)に比べて炭素を多く含んでおり、そして、第
1の層領域(6)から第4の層領域(9)を実質上一体
化して光導電性a−SiCi! (5c)とした。That is, according to the third aspect, as shown in FIG.
A fourth layer region (9) is further formed on the third layer region (8) shown in the embodiment, and the fourth layer region (9) is formed on the third layer region (8).
contains more carbon than the region (8), and substantially integrates the first layer region (6) to the fourth layer region (9) to form a photoconductive a-SiCi! (5c).
この第4の層領域(9)は第3の層領域(8)に比べて
炭素を多く含有させて高抵抗化させ、これより、帯電能
を高めて表面電位を向上させることができ、その結果、
耐電圧が高くて長寿命の感光体を得ることができる。This fourth layer region (9) contains more carbon than the third layer region (8) and has a high resistance, thereby increasing the charging ability and improving the surface potential. result,
A photoreceptor with high withstand voltage and long life can be obtained.
更に第3の態様によれば、光導電性a−3iC層(5C
)の炭素含有分布は第18図乃至第21図に示す通りで
あり、横軸は基板から感光体表面に至る層厚を示し、縦
軸は炭素含有量を示している。尚、この横軸において、
(6) (7) (8) (9)に示すそれぞれの範囲
は第1の層領域、第2の層領域、第3の層領域及び第4
の領域を表している。Further according to a third aspect, a photoconductive a-3iC layer (5C
) is as shown in FIGS. 18 to 21, where the horizontal axis represents the layer thickness from the substrate to the surface of the photoreceptor, and the vertical axis represents the carbon content. Furthermore, on this horizontal axis,
(6) (7) (8) The respective ranges shown in (9) are the first layer area, the second layer area, the third layer area and the fourth layer area.
represents the area of
第19図及び第21図によれば、層厚方向に亘って炭素
の含有量を漸次変えており、これにより、表面電位及び
光感度が向上し、且つ残留電位が小さくなる。According to FIGS. 19 and 21, the carbon content is gradually changed over the layer thickness direction, thereby improving the surface potential and photosensitivity, and reducing the residual potential.
第4の態様
第4図の態様によれば、基板上に光導電性a−SiCN
及びa−SiC表面保護層を順次形成した電子写真感光
体であって、前記光導電性a−5iC層は少なくとも第
1の層領域、第2の層領域及び第3の層領域を具備し、
第1の層領域は第2の層領域より基板側に、第2の領域
は第3の層領域より基板側にそれぞれ配置され、且つ第
3の層領域は第2の層領域に比べて炭素が多く含まれて
いると共に第2の層領域は0.1乃至10.000pp
mのI[[a族元素が含まれており、更に第1の層領域
は第2の層領域よりもma族元素が多く含まれているこ
とを特徴とする正極性に帯電可能な電子写真感光体が提
供される。Fourth Embodiment According to the embodiment of FIG. 4, photoconductive a-SiCN is formed on the substrate.
and an electrophotographic photoreceptor in which an a-SiC surface protective layer is sequentially formed, the photoconductive a-5iC layer comprising at least a first layer region, a second layer region, and a third layer region,
The first layer region is located closer to the substrate than the second layer region, and the second region is located closer to the substrate than the third layer region, and the third layer region has a lower carbon content than the second layer region. The second layer region contains a large amount of 0.1 to 10.000pp.
I A photoreceptor is provided.
即ち、この第4の態様によれば、第22図に示す通り、
第2の態様にて示した第3の層領域(8)の上に更にa
−SiC表面保護層(10)を形成したものであり、こ
のa−SiC表面保8IJ!(10)は光導電性a−5
tC層(5b)の表面をオーバーコートして保護するた
めに形成される。That is, according to this fourth aspect, as shown in FIG.
Further a on the third layer region (8) shown in the second embodiment
-SiC surface protection layer (10) is formed, and this a-SiC surface protection layer (10) is formed. (10) is photoconductive a-5
It is formed to overcoat and protect the surface of the tC layer (5b).
a−SiC表面保護層(10)はa−SiCから成ると
いう点では光導電性a−SiC層(5b)と同じである
が、炭素の含有量を多くして高硬度とし、これによって
表面保護作用をもたらす。The a-SiC surface protection layer (10) is the same as the photoconductive a-SiC layer (5b) in that it is made of a-SiC, but it has a high carbon content to make it highly hard, thereby protecting the surface. bring about action.
このa−SiC表面保11N(10)は、その構成元素
の組成比を変えて光導電性又は非光導電性とすることが
でき、炭素の含有量を多くすると非光導電性になる傾向
があり、これに伴って高硬度特性が得られ、高硬度a−
3iC表面保護層とな名。This a-SiC surface layer 11N (10) can be made photoconductive or non-photoconductive by changing the composition ratio of its constituent elements; increasing the carbon content tends to make it non-photoconductive. With this, high hardness characteristics are obtained, and high hardness a-
What is the name of 3iC surface protective layer?
更に第4の態様によれば、炭素含有分布は第23図及び
第24図に示す通りであり、横軸は基板から感光体表面
に至る層厚を示し、縦軸は炭素含有量を示している。尚
、この横軸において(6) (7) (8) (10)
に示すそれぞれの範囲は第1の層領域、第2の層領域、
第3の層領域及びa−SiC表面保護層を表している。Furthermore, according to the fourth aspect, the carbon content distribution is as shown in FIGS. 23 and 24, where the horizontal axis represents the layer thickness from the substrate to the photoreceptor surface, and the vertical axis represents the carbon content. There is. Furthermore, on this horizontal axis (6) (7) (8) (10)
The respective ranges shown in are the first layer region, the second layer region,
It represents the third layer region and the a-SiC surface protection layer.
かくして、第1の態様乃至第4の態様によれば、第1図
に示した単一組成のa−3iC9光体に比べて格段に高
性能な電子写真感光体が提供される。Thus, according to the first to fourth aspects, an electrophotographic photoreceptor with significantly higher performance than the single-composition a-3iC9 photoreceptor shown in FIG. 1 is provided.
また、本発明によれば、単一組成のa−5iCN並びに
第1乃至第3の態様のa−5iC層は、いずれも光導電
性a−3iC層から成り、これによって十分実用的な電
子写真特性が得られるが、これらのa−Siclの表面
上に従来周知の表面保護層を形成してもよい。Further, according to the present invention, the single-composition a-5iCN and the a-5iC layers of the first to third embodiments are all composed of photoconductive a-3iC layers, which makes it possible to use electrophotography for practical use. However, a conventionally known surface protective layer may be formed on the surface of these a-SiCl.
この表面保護層はそれ自体高絶縁性、高耐食性及び高硬
度特性を有するものであれば種々の材料を用いることが
でき、例えばポリイミド樹脂などの有機材料、 a−3
iC,5iOz+ Sin、 Al2O2,SiC層
5i3)L、 、 a−Si、a−Si:H,a−5i
:F、a−SiC:11.a−SiC:Fなどの無機材
料を用いることができる。Various materials can be used for this surface protective layer as long as they themselves have high insulation properties, high corrosion resistance, and high hardness characteristics, such as organic materials such as polyimide resin, a-3
iC, 5iOz+ Sin, Al2O2, SiC layer
5i3) L, , a-Si, a-Si:H, a-5i
:F, a-SiC: 11. Inorganic materials such as a-SiC:F can be used.
次に本発明の電子写真感光体の製法を述べる。Next, a method for manufacturing the electrophotographic photoreceptor of the present invention will be described.
本発明に係るa−SiC層を形成するに当たってグロー
放電分解法、イオンブレーティング法、反応性スパッタ
リング法、真空蒸着法、CVD法などのml(生成技術
を用いることができ、また、これに用いられる原料には
固体、液体、気体のいずれでもよい。例えばグロー放電
分解法に用いられる気体原料としてSiH4,5izH
6+5iJsなどのSi系ガス、ClI4.C2H2,
CzH4,CzHh、 C311sなどのC系ガスがあ
り、そして、Heガスをキャリアガスとして用いればよ
い。In forming the a-SiC layer according to the present invention, a glow discharge decomposition method, an ion blating method, a reactive sputtering method, a vacuum evaporation method, a CVD method, etc. can be used. The raw material to be used may be solid, liquid, or gas.For example, SiH4,5izH is used as a gaseous raw material for glow discharge decomposition method.
Si-based gas such as 6+5iJs, ClI4. C2H2,
There are C-based gases such as CzH4, CzHh, and C311s, and He gas may be used as a carrier gas.
本発明の電子写真感光体を製作するに当たっては、グロ
ー放電分解によってケイ素(Si)含有ガス及びアセチ
レン(CzHz)ガスの混合ガスよりa−SiC層を形
成させた場合、著しく大きな高速成膜性が達成できる点
で望ましい。本発明者等が繰り返し行った実験によれば
、このSi含有ガスとして前述した種々のSi系ガスを
用いることができるが、例えばSiH4ガス及びCzH
zガスを用いた場合、5乃至20μm7時の成膜速度が
得られた。因にSiH4ガスとCH4ガスを用いてa−
5iC膜を生成した場合、その成膜速度は約0.3乃至
1μm/時である。In manufacturing the electrophotographic photoreceptor of the present invention, when an a-SiC layer is formed from a mixed gas of a silicon (Si)-containing gas and an acetylene (CzHz) gas by glow discharge decomposition, a significantly high rate of film formation is achieved. Desirable because it can be achieved. According to experiments repeatedly conducted by the present inventors, various Si-based gases mentioned above can be used as this Si-containing gas, but for example, SiH4 gas and CzH
When z gas was used, a film formation rate of 5 to 20 μm 7 hours was obtained. Incidentally, using SiH4 gas and CH4 gas, a-
When a 5iC film is produced, the deposition rate is about 0.3 to 1 μm/hour.
次に本発明の実施例に用いられる容量結合型グロー放電
分解装置を第25図により説明する。Next, a capacitively coupled glow discharge decomposition device used in an embodiment of the present invention will be explained with reference to FIG.
図中、第1.第2.第3.第4.第5.第6タンク(1
1)(12) (13) (14) (15) (16
)には、それぞれ5iHt+CJz+Bzt16(He
ガス希釈で0.2χ含有)、BJ6(tleHeガス希
釈8ppm含IT′) + He、 Noガスが密封さ
れており、fleはキャリアーガスとしても用いられる
。これらのガスは対応する第1.第2.第3.第4.第
5.第6調整弁(17) (18) (19) (20
) (21) (22)を開放することにより放出され
、その流量がマスフローコントローラ(23)(24)
(25)(26) (27) (28)により制御され
、第1、第21第31第4.第5タンク(11) (1
2) (13) (14) (15)からのガスは第1
主管(29)へ、第6タンク(16)からのNoガスは
第2主管(30)へ送られる。尚、(31)(32)は
止め弁である。第1主管(29)及び第2主管(30)
を通じて流れるガスは反応管(33)へと送り込まれる
が、この反応管(33)の内部には容量結合型放電用電
極(34)が設置されており、それに印加される高周波
電力は50w乃至3Kwが、また周波数はl MHz乃
至10MHzが適当である。反応管(33)の内部には
、アルミニウムから成る筒状の成膜用基板(35)が試
料保持台(36)の上に載置されており、この保持台(
36)はモーター(37)により回転駆動されるように
なっており、そして、基板(35)は適当な加熱手段に
より、約200乃至400℃好ましくは約200乃至3
50℃の温度に均一に加熱される。更に、反応管(33
)の内部はa−SiC膜形成時に高度の真 ′空状態
(放電圧0.1乃至2.0Torr )を必要とするこ
とにより回転ポンプ(38)と拡散ポンプ(39)に連
結されている。In the figure, 1st. Second. Third. 4th. Fifth. 6th tank (1
1) (12) (13) (14) (15) (16
), 5iHt+CJz+Bzt16(He
BJ6 (contains 8 ppm IT' when diluted with tleHe gas) + He, No gas is sealed, and fle is also used as a carrier gas. These gases correspond to the first. Second. Third. 4th. Fifth. Sixth regulating valve (17) (18) (19) (20
) (21) is released by opening (22), and its flow rate is controlled by the mass flow controllers (23) and (24).
(25), (26), (27), and (28). 5th tank (11) (1
2) The gas from (13) (14) (15) is the first
The No gas from the sixth tank (16) is sent to the main pipe (29) and to the second main pipe (30). Note that (31) and (32) are stop valves. First main pipe (29) and second main pipe (30)
The gas flowing through is sent to the reaction tube (33), and a capacitively coupled discharge electrode (34) is installed inside this reaction tube (33), and the high frequency power applied to it is 50W to 3KW. However, a suitable frequency is 1 MHz to 10 MHz. Inside the reaction tube (33), a cylindrical film-forming substrate (35) made of aluminum is placed on a sample holder (36).
36) is rotatably driven by a motor (37), and the substrate (35) is heated to about 200 to 400°C, preferably about 200 to 300°C, by suitable heating means.
It is heated uniformly to a temperature of 50°C. Furthermore, a reaction tube (33
) is connected to a rotary pump (38) and a diffusion pump (39) because a high degree of vacuum condition (discharge voltage of 0.1 to 2.0 Torr) is required during a-SiC film formation.
以上のように構成されたグロー放電分解装置において、
例えば、a−5iC膜(He、Bを含有する)を基板(
35)に形成する場合には、第1.第2.第3.第5調
整弁(17) (18) (19) (21)を開いて
それぞれよりSiH4,Czllz+BzHb、)He
ガスを放出する。放出量はマスフローコントローラ(2
3) (24) (25) in> により制御され、
SiH4+CzHz+BzHa、lleの混合ガスは第
1主管(29)を介して反応管(33)へと流し込まれ
る。In the glow discharge decomposition device configured as above,
For example, an a-5iC film (containing He and B) is deposited on a substrate (
35), the first. Second. Third. Open the fifth regulating valve (17) (18) (19) (21) and add SiH4, Czllz+BzHb, )He
Release gas. The release amount is determined by a mass flow controller (2
3) (24) (25) controlled by in>,
The mixed gas of SiH4+CzHz+BzHa,lle is flowed into the reaction tube (33) via the first main pipe (29).
そして、反応管(33)の内部が0.1乃至2.0To
rr程度の真空状態、基板温度が200乃至400℃、
容量型放電用電極(34)の高周波電力が50W乃至3
Kw、または周波数が1乃至50MHzに設定されてい
ることに相俟ってグロー放電が起こり、ガスが分解して
He及びBを含有したa−5iC膜が基板上に高速で形
成される。Then, the inside of the reaction tube (33) is 0.1 to 2.0 To
rr vacuum state, substrate temperature 200 to 400℃,
The high frequency power of the capacitive discharge electrode (34) is 50W to 3
Coupled with the Kw or frequency being set to 1 to 50 MHz, glow discharge occurs, gas decomposes, and an a-5iC film containing He and B is formed on the substrate at high speed.
次に本発明の実施例を詳細に説明する。 Next, embodiments of the present invention will be described in detail.
(例1)
本例においては、光導電性計SiC層をアルミニウム製
成膜用基板に生成し、そのC2H2ガスの配合比率に対
する導電率を測定した。(Example 1) In this example, a photoconductivity meter SiC layer was formed on an aluminum film-forming substrate, and its conductivity with respect to the blending ratio of C2H2 gas was measured.
即ち、第25図に示した容量結合型グロー放電分解装置
を用いて第1タンク(11)よりSiH4ガスを150
secmの流量で、第5タンク(15)よりtieガス
を101005eの流量で放出し、第2タンク(12)
よりCzHzガスを10〜101005eの流量で放出
し、グロー放電分解法に基いて約5μmの厚みのa−S
iC膜を製作し、暗導電率及び光導電率を測定したとこ
ろ、第26図に示す通りの結果が得られた。That is, using the capacitively coupled glow discharge decomposition device shown in FIG.
Tie gas is released from the fifth tank (15) at a flow rate of 101005e at a flow rate of secm, and the tie gas is released from the second tank (12).
CzHz gas is released at a flow rate of 10~101005e, and a-S with a thickness of about 5 μm is produced based on the glow discharge decomposition method.
When an iC film was manufactured and its dark conductivity and photoconductivity were measured, the results shown in FIG. 26 were obtained.
第26図によれば、横軸はC211□ガス流量(scc
m)を、縦軸は導電率〔(Ω・cm)−”Jを表わし、
・印は暗導電率のプロット、○印はl1e−Neレーザ
ー(波長632.8nm 、100μm W/cm2)
を照射した時の光導電率のプロットであり、a、bはそ
れぞれの特性曲線である。According to FIG. 26, the horizontal axis is C211□ gas flow rate (scc
m), the vertical axis represents the conductivity [(Ω・cm)-”J,
・The mark is a plot of dark conductivity, and the ○ mark is a l1e-Ne laser (wavelength 632.8nm, 100μm W/cm2)
This is a plot of photoconductivity when irradiated with , and a and b are respective characteristic curves.
第26図から明らかな通り、暗導電率はio−’ ”
<Ω・cm)−’以下と成り得、最小で1O−16(Ω
・cm) −’まで得られた。また、光導電率は暗導電
率に比べて1000倍以上となり、このa−5iC層が
電子写真感光体用として十分に満足し得る光導電性をも
っていることが判る。As is clear from Fig. 26, the dark conductivity is io-'
<Ω・cm)-' or less, and the minimum is 1O-16(Ω
・cm) -' was obtained. Further, the photoconductivity was 1000 times or more as compared to the dark conductivity, indicating that this a-5iC layer had photoconductivity sufficiently satisfactory for use in electrophotographic photoreceptors.
(例2)
本例においては、(例1)に基いてBtHbガス(又は
PH,ガス)を導入して暗導電率及び光導電率を測定し
たところ、第27図に示す通りの結果が得られた。(Example 2) In this example, when BtHb gas (or PH, gas) was introduced and the dark conductivity and photoconductivity were measured based on (Example 1), the results shown in Figure 27 were obtained. It was done.
図中、横軸はSiH4とCzHzの合計流量に対するB
ZH6純量(これはHeガスの希釈比率より換算して求
められる8 2 l bの絶対流量を表わす)である。In the figure, the horizontal axis is B for the total flow rate of SiH4 and CzHz.
This is the pure amount of ZH6 (this represents the absolute flow rate of 8 2 lb calculated from the dilution ratio of He gas).
尚、82II 6純量をPH3純量に置き換えた場合も
参考例として記載する。Furthermore, a case where the pure amount of 82II6 is replaced with the pure amount of PH3 is also described as a reference example.
第27図によれば、・印は暗導電率のプロットであり、
○印は光導電率(この光感電率は(例1)と同様にして
求められる)のプロットであり、C1dはそれぞれの特
性曲線である。According to FIG. 27, the mark is a plot of dark conductivity,
The circle marks are plots of photoconductivity (this photosensitivity is obtained in the same manner as in (Example 1)), and C1d is the respective characteristic curve.
第27図から明らかな通り、光導電率は暗導電率に比べ
て1000倍以上となり、Heと共にPやBをドーピン
グしたa−3iC層が電子写真感光体用として満足し得
る光導電性をもっている。As is clear from FIG. 27, the photoconductivity is more than 1000 times that of the dark conductivity, and the a-3iC layer doped with P and B along with He has photoconductivity that is satisfactory for use in electrophotographic photoreceptors. .
(例3)
本例においては、(例2)に基づき下記の通りにガス流
量を設定して得られたa−5iC層に対して分光感度特
性を測定しており、その結果は第28図に示された分光
感度特性eとなった。尚、この図は各波長において等エ
ネルギー光を照射した時の光導電率を示す。(Example 3) In this example, the spectral sensitivity characteristics were measured for the a-5iC layer obtained by setting the gas flow rate as shown below based on (Example 2), and the results are shown in Figure 28. The spectral sensitivity characteristic e was as shown in . Note that this figure shows the photoconductivity when irradiated with equal energy light at each wavelength.
ガス流量
SiH4ガス流量・・・1003ccm1003cガス
流量・・・103103c、H6ガス流量(38ppm
含有)・・・10031003cガス流量・・・・10
1005c
第28図より明らかな通り、可視光領域に光感度が認め
られ、特に長波長側に増悪があり、これによって電子写
真用の光導電体として十分に用いることができる。Gas flow rate SiH4 gas flow rate...1003ccm1003c Gas flow rate...103103c, H6 gas flow rate (38ppm
Contains)...10031003c Gas flow rate...10
1005c As is clear from FIG. 28, photosensitivity is observed in the visible light region, with deterioration in particular on the long wavelength side, so that it can be satisfactorily used as a photoconductor for electrophotography.
(例4)
本例においては、(例3)と同じように製作したa−3
iC層(厚み30μm)に対して表面電位、暗減衰及び
光減衰のそれぞれの特性を測定した。この測定は+5.
6KVのコロナチャージャで正帯電し、暗中での表面電
位の経時変化と、650nmの単色光照射直後の表面電
位の経時変化を追ったものである。(Example 4) In this example, a-3 manufactured in the same way as (Example 3)
The characteristics of surface potential, dark decay, and light decay were measured for the iC layer (thickness: 30 μm). This measurement is +5.
The surface potential was positively charged with a 6KV corona charger, and the change in surface potential over time in the dark and the change in surface potential over time immediately after irradiation with 650 nm monochromatic light were tracked.
その結果は第29図に示す通りであり、f、gはそれぞ
れ暗減衰曲線及び光減衰曲線である。The results are shown in FIG. 29, where f and g are the dark decay curve and the light decay curve, respectively.
第29図より明らかな通り、表面電位が約+620Vと
大きくなっており、暗減衰も5秒後で27χ程度であり
、電荷保持能力に優れている。また、光導電率にも優れ
ており、残留電位も小さいと言える。As is clear from FIG. 29, the surface potential is as large as about +620V, and the dark decay is about 27χ after 5 seconds, indicating excellent charge retention ability. It can also be said that it has excellent photoconductivity and low residual potential.
尚、(例4)にて得られたa−5iC層を−5,6KV
のコロナチャージャで正帯電させたところ、表面電位が
数十Vであった。In addition, the a-5iC layer obtained in (Example 4) was heated to -5.6 KV.
When positively charged with a corona charger, the surface potential was several tens of volts.
そして、この(例4)に基いて製作されたa−SiC感
光体のHe含有量を測定したところ、約0.1原子χで
あり、また、この感光体を+5.6KVのコロナチャー
ジャによって正極性に帯電させ、次いで画像露光して磁
気ブラシ現像を行った結果、画像濃度が高く、高コント
ラストでゴースト現象が全く生じない良質な画像が得ら
れた。然るに前述のlieガス導入に代えてH2ガスを
101005eの流量で導入し、他は全く同一条件にて
製作した電子写真感光体はゴースト現象が現れた。When the He content of the a-SiC photoconductor manufactured based on this (Example 4) was measured, it was approximately 0.1 atom χ, and this photoconductor was connected to the positive electrode using a +5.6KV corona charger. As a result of electrostatic charging, imagewise exposure, and magnetic brush development, a high-quality image with high image density, high contrast, and no ghost phenomenon was obtained. However, a ghost phenomenon appeared in the electrophotographic photoreceptor manufactured under the same conditions except that H2 gas was introduced at a flow rate of 101005e instead of the above-mentioned lie gas introduction.
(例5) 本例においては第1の態様の感光体を製作した。(Example 5) In this example, a photoreceptor of the first embodiment was manufactured.
即ち、基板用アルミニウム製ドラムを第25図に示した
容量結合型グロー放電分解装置の反応管(33)内に設
置し、そして、第1タンク(11)よりS i 11
aガスを、第2タンク(12)よりCzHzガスを、第
3タンク及び第4タンク(13) (14)よりB、H
6ガスを、第5タンク(15)よりHeガスを、第6タ
ンク(16)よりHeガスをそれぞれ放出し、第1表に
示す製造条件で第1の層領域及び第2の層領域を形成し
た。That is, the aluminum drum for the substrate is installed in the reaction tube (33) of the capacitively coupled glow discharge decomposition apparatus shown in FIG.
A gas, CzHz gas from the second tank (12), B, H from the third tank and fourth tank (13) (14)
6 gas from the fifth tank (15) and He gas from the sixth tank (16) to form the first layer region and the second layer region under the manufacturing conditions shown in Table 1. did.
かくして得られた感光体を、暗中で+5.6KVの高圧
源に接続されたコロナチャージャで正極性に帯電させ、
次いで分光された単色光(650nm)を感光体表面に
照射し、これによって下記の通りの電子写真特性が得ら
れた。尚、残留電位は露光開始5秒後の値である。The thus obtained photoreceptor was positively charged with a corona charger connected to a +5.6 KV high voltage source in the dark.
Next, the surface of the photoreceptor was irradiated with spectrally monochromatic light (650 nm), thereby obtaining the following electrophotographic characteristics. Note that the residual potential is the value 5 seconds after the start of exposure.
表面電位・・・+730V
光感度・・・0.420m2erg−1残留型位・・・
29V
次に(例4)と同様に正極性に帯電させ、次いで画像露
光して磁気ブラシ現像を行った結果、画像濃度が高く、
高コントラストでゴースト現象が全く生じない良質な画
像が得られた。Surface potential...+730V Photosensitivity...0.420m2erg-1 Residual level...
29V Next, as in (Example 4), it was charged to positive polarity, imagewise exposed, and developed with a magnetic brush. As a result, the image density was high;
A high-quality image with high contrast and no ghost phenomenon was obtained.
然るに、第1の層領域及び第2の層領域の形成に当たっ
て用いられるキャリアーガスO1eガス101005e
流量)、並びに第1の層領域の形成に用いられるB2H
4(0,2χ含有)の希釈用Heガス及び第2層領域の
形成に用いられるBztlb (38ppm)の希釈用
HeガスをH2ガスに置換し、他は全く同一条件にて製
作した電子写真感光体にはゴースト現象が見られた。However, the carrier gas O1e gas 101005e used in forming the first layer region and the second layer region
flow rate), as well as B2H used to form the first layer region.
4 (containing 0.2χ) and Bztlb (38 ppm) diluent He gas used to form the second layer region were replaced with H2 gas, and the other conditions were exactly the same. A ghost phenomenon was observed on the body.
(以下余白)
(例6)
本例においては第2の態様の感光体を゛第2表に示す条
件で製作し、これによって下記の電子写真特性が得られ
た。また、ゴースト現象は全く生じなかった。(Left below) (Example 6) In this example, a photoreceptor of the second embodiment was manufactured under the conditions shown in Table 2, and the following electrophotographic properties were obtained. Further, no ghost phenomenon occurred at all.
表面電位・・・+770■
光感度・・・0.39cm2erg伺
残留電位・・・25V
(以下余白)
(例7)
本例においては第3の態様の感光体を第3表に示す条件
で製作し、これによって下記の電子写真 ′特性が得ら
れた。また、ゴースト現象は全く生じなかった。Surface potential: +770 ■ Photosensitivity: 0.39 cm2erg Residual potential: 25 V (blank below) (Example 7) In this example, the photoreceptor of the third embodiment was manufactured under the conditions shown in Table 3. As a result, the following electrophotographic characteristics were obtained. Further, no ghost phenomenon occurred at all.
表面電位・・・+800■
光感度・・・0.40cm2erg−’残留電位・・・
35V
更に、この感光体の表面電位、暗減衰及び光減衰のそれ
ぞれの特性を(例4)と同様に測定したところ、第30
図に示す通りの結果が得られた。図中、h、iはそれぞ
れ暗減衰曲線及び光減衰曲線である。Surface potential...+800■ Photosensitivity...0.40cm2erg-'Residual potential...
35V Furthermore, when the surface potential, dark decay, and light decay characteristics of this photoreceptor were measured in the same manner as in (Example 4), the 30th
The results shown in the figure were obtained. In the figure, h and i are a dark decay curve and a light decay curve, respectively.
第30図より明らかな通り、表面電位が約+800vと
著しく大きくなっており、暗減衰も5秒後で15χ程度
であって電荷保持能力に優れている。As is clear from FIG. 30, the surface potential is significantly large, approximately +800V, and the dark decay is approximately 15χ after 5 seconds, indicating excellent charge retention ability.
(以下余白)
(例8 )
本例においては、第4図の態様の感光体を第4表に示す
条件で製作し、これによって下記の電子写真特性が得ら
れた。また、ゴースト現象は全く生じなかった。(The following is a blank space) (Example 8) In this example, a photoreceptor according to the embodiment shown in FIG. 4 was manufactured under the conditions shown in Table 4, and the following electrophotographic characteristics were obtained. Further, no ghost phenomenon occurred at all.
表面電位・・・+900V
光感度・・・0.40cm”erg−’残留電位・・・
40V
(以下余白)
〔発明の効果〕
以上の通り、本発明の電子写真感光体によれば、全層に
亘って光導電性を有するa−SiCが高い暗抵抗率とな
り、且つ光感度特性にも優れていることによって実質上
表面保護層及びキャリア注入阻止層を不要とすることが
でき、その結果、光感電性a−5iC層だけから成る電
子写真感光体が提供できた。Surface potential...+900V Photosensitivity...0.40cm"erg-'Residual potential...
40V (Hereinafter, blank) [Effects of the Invention] As described above, according to the electrophotographic photoreceptor of the present invention, the a-SiC having photoconductivity throughout the entire layer has a high dark resistivity, and the photosensitivity characteristics are improved. Due to the excellent properties of the present invention, it was possible to substantially eliminate the need for a surface protective layer and a carrier injection blocking layer, and as a result, an electrophotographic photoreceptor consisting only of a photosensitive a-5iC layer could be provided.
また本発明の電子写真感光体によれば、lleを膜中に
所定量含有させることによってゴースト現象が生じなく
なり、その結果、一段と高性能な電子写真感光体が提供
できる。Further, according to the electrophotographic photoreceptor of the present invention, by containing a predetermined amount of lle in the film, a ghost phenomenon does not occur, and as a result, an electrophotographic photoreceptor with even higher performance can be provided.
更に本発明の電子写真感光体によれば、層厚方向に亘っ
て炭素及びma族元素の含有量を変えることによって表
面電位を向上させると共に光感度特性を高め、且つ残留
電位を顕著に小さくすることができる。特に、炭素の含
有量を層厚方向に亘って変えると、抵抗率が制御されて
所要の層領域が得られ、その結果、格段に高性能な電子
写真感光体が提供できる。Further, according to the electrophotographic photoreceptor of the present invention, by changing the content of carbon and MA group elements in the layer thickness direction, the surface potential is improved, the photosensitivity characteristics are enhanced, and the residual potential is significantly reduced. be able to. In particular, when the carbon content is varied in the layer thickness direction, the resistivity can be controlled and a desired layer area can be obtained, and as a result, an electrophotographic photoreceptor with significantly higher performance can be provided.
また、本発明によれば、正極性に有利に帯電することが
できる負極性用電子写真感光体が提供される。Further, according to the present invention, there is provided an electrophotographic photoreceptor for negative polarity that can be advantageously charged to positive polarity.
本発明の電子写真感光体によれば、それ自体で帯電能及
び耐環境性に優れていることから、特に保護層を設ける
必要がなく、例えばコロナ放電による被曝或いは現像剤
の樹脂成分の感光体表面へのフィルミング等によって表
面が劣化した場合、その劣化した表面を研摩剤等で研摩
再生を繰り返し行ってもその研摩量において制限を受け
ずに感光体の初期特性を維持することができ、それによ
って初期における良好な画像を長期に亘り安定して供給
することが可能となる。According to the electrophotographic photoreceptor of the present invention, since the electrophotographic photoreceptor itself has excellent charging ability and environmental resistance, there is no need to particularly provide a protective layer. When the surface has deteriorated due to filming, etc., the initial characteristics of the photoconductor can be maintained without being limited in the amount of polishing even if the deteriorated surface is repeatedly polished and regenerated with an abrasive. This makes it possible to stably supply a good initial image over a long period of time.
更に、従来のa−Si感光体を長期間に亘って使用した
場合にはコロナ放電に伴って感光体表面の局所的な放電
破壊が発生し易くなり、これに起因して画像に斑点が生
じるという問題があったが、本発明によれば、a−5i
の誘電率がε=12であるのに対してa−5iCはε=
7と約半分程度であるために帯電能に優れており、これ
により、表面電位を高くしても何ら上記の放電破壊が発
生しなくなり、その結果、高品質且つ高信頬性の電子写
真感光体が提供される。Furthermore, when a conventional a-Si photoreceptor is used for a long period of time, local discharge damage on the photoreceptor surface is likely to occur due to corona discharge, which causes spots to appear on the image. However, according to the present invention, a-5i
The dielectric constant of a-5iC is ε=12, while the dielectric constant of a-5iC is ε=12.
7, it has excellent charging ability, and as a result, even if the surface potential is raised, the above-mentioned discharge breakdown will not occur.As a result, high quality and high reliability electrophotographic photosensitive materials can be produced. The body is provided.
更に本発明の電子写真感光体を従来のa−Si感光体と
比較した場合、このa−5t悪感光の問題点として耐湿
性に劣っているので画像流れが生じ易く、また、帯電能
に劣っているのでゴースト現象が発生するが、これを解
決するためにa−3i悪感光の使用時にヒータを用いて
その感光体を加熱し、その発生を防止している。これに
対して本発明の電子写真感光体は耐湿性且つ帯電能に優
れているために上記のようにヒータを用いて使用する必
要はないという利点がある。Furthermore, when the electrophotographic photoreceptor of the present invention is compared with a conventional a-Si photoreceptor, the problem with this a-5t bad sensitivity is that it has poor moisture resistance, which tends to cause image deletion, and that it has poor charging ability. To solve this problem, a heater is used to heat the photoreceptor when using the a-3i photoreceptor, thereby preventing the ghost phenomenon from occurring. On the other hand, the electrophotographic photoreceptor of the present invention has an advantage in that it is not necessary to use a heater as described above because it has excellent moisture resistance and charging ability.
また、本発明の電子写真感光体はa−5i悪感光と比べ
て炭素の含有量を変えるだけで幅広い分光感度特性(ピ
ーク600〜700nm )が得られると共に光感度自
体を増大させることができ、更に必要に応じて不純物元
素をドーピングすれば長波長側の増感も可能になるとい
う利点がある。Further, compared to the a-5i photoreceptor, the electrophotographic photoreceptor of the present invention can obtain a wide range of spectral sensitivity characteristics (peak 600 to 700 nm) by simply changing the carbon content, and can increase the photosensitivity itself. Furthermore, there is an advantage that sensitization on the long wavelength side is also possible by doping with an impurity element as necessary.
第1図は本発明の電子写真感光体の層構成を示す説明図
、第2図は従来の電子写真感光体の層構造を示す説明図
、第3図は本発明に係る第1の態様の感光体の層領域を
示す説明図、第4図、第5図、第6図、第7図、第8図
及び第9図はそれぞれ本発明に係る第1の態様の感光体
の炭素含有量を示す説明図、第1O図は本発明に係る第
2の態様の感光体の層領域を示す説明図、第11図、第
12図、第13図、第14図、第15図及び第16図は
それぞれ本発明に係る第2の態様の感光体の炭素含有量
を示す説明図、第17図は本発明に係る第3の態様の感
光体の層領域を示す説明図、第18図、第19図、第2
0図及び第21図はそれぞれ本発明に係る第3の態様の
感光体の炭素含有量を示す説明図、第22図は本発明に
係る第4の態様の感光体の層領域を示す説明図、第23
図及び第24図は本発明に係る第4の態様の感光体の炭
素含有量を示す説明図、第25図は本発明の実施例に用
いられる容量結合型グロー放電分解装置の説明図、第2
6図はCzH□ガスの流量比率に対する導電率を示す線
図、第27図はPl(3ガス及びBzH6ガスのそれぞ
れの流量比率に対する導電率を示す線図、第28図はア
モルファスシリコンカーバイド層の分光感度特性を示す
線図、第29図はアモルファスシリコンカーバイド層の
暗減衰及び光減衰を示す線図、第30図は第3の態様の
アモルファスシリコンカーバイド層の暗減衰及び光減衰
を示す線図である。
1・・・基板
5、5a、 5b、 5c・・・・光導電性アモルファ
スシリコンカーバイド層
6・・・第1の層領域
7・・・第2の層領域
8・・・第3の層領域
9・・・第4の層領域
10・・・アモルファスシリコンカーバイド表面保護層
特許出願人 (663)京セラ株式会社同 河村
孝夫FIG. 1 is an explanatory diagram showing the layer structure of the electrophotographic photoreceptor of the present invention, FIG. 2 is an explanatory diagram showing the layer structure of a conventional electrophotographic photoreceptor, and FIG. Explanatory diagrams showing the layer regions of the photoreceptor, FIG. 4, FIG. 5, FIG. 6, FIG. 7, FIG. 8, and FIG. 9 respectively show the carbon content of the photoreceptor of the first embodiment according to the present invention. FIG. 1O is an explanatory diagram showing layer regions of a photoreceptor according to the second embodiment of the present invention, FIGS. 11, 12, 13, 14, 15, and 16. The figures are an explanatory diagram showing the carbon content of the photoconductor of the second embodiment according to the present invention, FIG. 17 is an explanatory diagram showing the layer region of the photoconductor of the third embodiment according to the present invention, and FIG. Figure 19, 2nd
FIG. 0 and FIG. 21 are explanatory views showing the carbon content of the photoreceptor of the third embodiment of the present invention, respectively, and FIG. 22 is an explanatory view showing the layer regions of the photoreceptor of the fourth embodiment of the invention. , 23rd
24 and 24 are explanatory diagrams showing the carbon content of the photoreceptor of the fourth embodiment of the present invention, and FIG. 2
Figure 6 is a diagram showing the electrical conductivity versus the flow rate ratio of CzH A diagram showing the spectral sensitivity characteristics, FIG. 29 is a diagram showing the dark attenuation and optical attenuation of the amorphous silicon carbide layer, and FIG. 30 is a diagram showing the dark attenuation and optical attenuation of the amorphous silicon carbide layer of the third embodiment. 1...Substrates 5, 5a, 5b, 5c...Photoconductive amorphous silicon carbide layer 6...First layer region 7...Second layer region 8...Third Layer region 9...Fourth layer region 10...Amorphous silicon carbide surface protective layer Patent applicant (663) Kyocera Corporation Takao Kawamura
Claims (1)
0.1乃至10,000ppmの周期律表第IIIa族元
素を含有した光導電性アモルファスシリコンカーバイド
層を形成したことを特徴とする正極性に帯電可能な電子
写真感光体。A photoconductive amorphous silicon carbide layer containing 1×10^-^5 to 5 atomic % helium and 0.1 to 10,000 ppm of Group IIIa elements of the periodic table is formed on the substrate. An electrophotographic photoreceptor that can be positively charged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25126786A JPS63104063A (en) | 1986-10-22 | 1986-10-22 | Electrophotographic sensitive body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25126786A JPS63104063A (en) | 1986-10-22 | 1986-10-22 | Electrophotographic sensitive body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63104063A true JPS63104063A (en) | 1988-05-09 |
Family
ID=17220243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25126786A Pending JPS63104063A (en) | 1986-10-22 | 1986-10-22 | Electrophotographic sensitive body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63104063A (en) |
-
1986
- 1986-10-22 JP JP25126786A patent/JPS63104063A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63104063A (en) | Electrophotographic sensitive body | |
JP2657491B2 (en) | Electrophotographic photoreceptor | |
JPS6382419A (en) | Production of electrophotographic sensitive body | |
JPS6382417A (en) | Production of electrophotographic sensitive body | |
JPS63104062A (en) | Electrophotographic sensitive body | |
JP2657490B2 (en) | Electrophotographic photoreceptor | |
JPS6381439A (en) | Electrophotographic sensitive body | |
JPS6381440A (en) | Electrophotographic sensitive body | |
JPS6382416A (en) | Electrophotographic sensitive body | |
JP2562583B2 (en) | Electrophotographic photoreceptor | |
JPS6382420A (en) | Production of electrophotographic sensitive body | |
JPS63108345A (en) | Electrophotographic sensitive body | |
JP2565314B2 (en) | Electrophotographic photoreceptor | |
JPH01271761A (en) | Electrophotographic sensitive body | |
JPS6382424A (en) | Production of electrophotographic sensitive body | |
JPS6381442A (en) | Electrophotographic sensitive body | |
JPS63108348A (en) | Manufacture of electrophotographic sensitive body | |
JPS6381438A (en) | Electrophotographic sensitive body | |
JPS6381441A (en) | Electrophotographic sensitive body | |
JPH0789234B2 (en) | Electrophotographic photoreceptor | |
JPS6382423A (en) | Production of electrophotographic sensitive body | |
JPS6382422A (en) | Production of electrophotographic sensitive body | |
JPS6382421A (en) | Production of electrophotographic sensitive body | |
JPH01274155A (en) | Electrophotographic sensitive body | |
JPS6382418A (en) | Production of electrophotographic sensitive body |