JPS6350444B2 - - Google Patents

Info

Publication number
JPS6350444B2
JPS6350444B2 JP56064103A JP6410381A JPS6350444B2 JP S6350444 B2 JPS6350444 B2 JP S6350444B2 JP 56064103 A JP56064103 A JP 56064103A JP 6410381 A JP6410381 A JP 6410381A JP S6350444 B2 JPS6350444 B2 JP S6350444B2
Authority
JP
Japan
Prior art keywords
pulp
polymer
paper
aromatic
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56064103A
Other languages
Japanese (ja)
Other versions
JPS57183417A (en
Inventor
Motoo Kawamata
Masanori Oosawa
Toshihiro Toyoda
Yoshimi Yoneya
Hiromi Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP6410381A priority Critical patent/JPS57183417A/en
Publication of JPS57183417A publication Critical patent/JPS57183417A/en
Publication of JPS6350444B2 publication Critical patent/JPS6350444B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はパルプ状物質の製造法に関する。さら
に詳しくは、芳香族ジカルボン酸と芳香族シイソ
シアネートから得られる、対数粘度ηinhが0.5以
上の芳香族ポリアミド系重合体の溶液から、各種
加工性が良くかつ加工後の物性に優れた、パルプ
状物質を製造する方法に関する。 従来、芳香族系重合体から得られるパルプ状物
質は、耐熱性、電気絶縁性などが優れているた
め、耐熱絶縁紙又はボード、絶縁テープ材料等と
して注目され、その製造法が開発されてきてい
る。 例えば、特公昭35−11851号公報には合成重合
体から成る紙パルプ粒子について記載されてい
る。しかし、該公報記載のパルプ粒子は加工時
に、抄紙性即ち、水切れ、厚みむらの発生度合な
ど欠点を有するばかりでなく、加工後の物性とし
て電気絶縁性など不満足な点が多い。 また、特公昭37−5732号公報にはフイブリツト
と定義される合成重合体粒子の製造法が開示され
ているが、この方法によつて得られる合成重合体
粒子も抄紙性が悪く、地合の良い均一な紙を得る
には不充分で、得られた紙状物の電気絶縁性も不
充分である。 さらに、特開昭51−97110号公報には、芳香族
系重合体から、パルプ粒子を得る方法に関し改良
手法が開示されているが、該公報で示された芳香
族系重合体から得られるパルプ粒子も、平均比瀘
過抵抗が適当でないものが生成し得く、抄紙後の
絶縁破壊強度と引張強度及び含浸性のバランスが
とり難い欠点を有する。 本発明者らは、これら各種の欠点を除く多方面
の検討を行なつた結果、芳香族ジカルボン酸と芳
香族ジイソシアネートから得られる、対数粘度
ηinhが0.5以上の芳香族ポリアミド系重合体を溶
媒中に溶解した重合体溶液と、該重合体を溶解し
ない性質を有する沈澱剤とを、高い剪断力のかか
る状態で混合することにより得られるパルプ状物
質は、沈澱の生成する条件を選択することによ
り、瀘水性が良く、直接又は他の物質例えば、各
種短繊維、雲母、カオリンなどと混合して抄紙す
る際に抄紙性が良好で、地合も良く、厚みむらの
発生度合いが少く、均一性に優れ、かつ、抄紙後
のシート状物の含浸性、電気絶縁性、引張強度等
の物性のバランスの良いものが得られること、及
び各種プラスチツクス類への充填材として使用し
ても良好な結果が得られることを見出し、本発明
に到達した。 即ち、本発明は、芳香族ジカルボン酸と芳香族
ジイソシアネートから得られる、対数粘度ηinhが
0.5以上の芳香族ポリアミド系重合体の溶液と、
沈澱剤とを高い剪断力のかかる状態で混合するこ
とを特徴とするパルプ状物質の製造法である。 本発明の方法において使用する芳香族ポリアミ
ド系重合体は、芳香族多価カルボン酸と芳香族多
価イソシアネートから得られる、対数粘度ηinhが
0.5以上、好ましくは0.8以上のポリアミドである
が、他に該重合体以外のポリアミド化合物、ポリ
イミド化合物、ポリアミド・イミド化合物、ポリ
アミドイミダゾール化合物などを、得られるパル
プの物性を調節するために、本発明の目的を阻害
しない範囲で50重量%以下(即ち該重合体が50重
量%以上)含有させてもよい。 本発明で使用する芳香族ジカルボン酸として
は、テレフタル酸、イソフタル酸、オルソフタル
酸、ジフエニールエーテル−4,4′−ジカルボン
酸、ジフエニルチオエーテル−4,4′−ジカルボ
ン酸、ジフエニルスルホン−4,4′−ジカルボン
酸、ビフエニル−4,4′−ジカルボン酸、チオフ
エン−2,5−ジカルボン、ピリジン−2,6−
ジカルボン酸、ナフタレン2,6−ジカルボン酸
及びこれら異性体等があげられる。 また、本発明で使用する芳香族ジイソシアネー
トとしてはフエニレン−1,3−ジイソシアネー
ト、トルイレン−2,6−ジイソシアネート、ト
ルイレン−2,4−ジイソシアネート、ジフエニ
ルメタン−4,4′−ジイソシアネート、ジフエニ
ルエーテル−4,4′−ジイソシアネート、ナフタ
レン−1,5−ジイソシアネート、ジフエニルス
ルホン−4,4′−ジイソシアネート、ジフエニル
スルフイド−4,4′−ジイソシアネート、アント
ラキノン−2,6−ジイソシアネート、ジフエニ
ルケトン−4,4′−ジイソシアネート及びこれら
の異性体があげられる。 上記芳香族ジカルボン酸と芳香族ジイソシアネ
ートから対数粘度ηinhが0.5以上、好ましくは0.8
以上の芳香族ポリアミドを得る方法としては公知
の方法又は本出願人が先に出願した触媒を使用す
る重合方法(特願昭56−37132号)が用いられる
が、特に後者の有機多価カルボン酸モノアルカリ
金属塩を触媒とする方法が、副反応が少く容易に
対数粘度の高いものが得られるので好適である。
具体的には、上記の芳香族多価カルボン酸と芳香
族多価イソシアネートを無水の有機極性溶媒中
で、不活性ガスの気流下又は減圧下で、副生する
CO2ガスを除去しながら多価カルボン酸のモノア
ルカリ金属塩などの触媒の存在下に、約20〜250
℃の温度で約1〜20時間加熱しながら反応を行な
う方法である。 芳香族ポリアミド系重合体の溶液は、前記のよ
うにして重合させた重合終了液そのまゝでもよい
し、一度、これらの重合体を沈澱分離などの方法
で分離精製した後、再度溶媒に溶解させ調整する
こともできる。本発明で使用できる芳香族ポリア
ミド系重合体の溶媒は一般に極性アプロテツク溶
媒と称されるもので、例えば、N,N−ジメチル
アセトアミド、N,N−ジメチルホルムアミド、
N,N−ジエチルアセトアミド、N−メチル−ピ
ロリドン、ヘキサメチルホスホトリアミド、N,
N,N′,N′−テトラメチル尿素、ジメチルスル
ホキシドスルホラン、ジフエニルスルホキシド、
ベンゾフエノン及び無機溶媒、例えば、硫酸、ク
ロル硫酸、ポリリン酸、クロル硫酸などがあげら
れる。 芳香族ポリアミド溶液は、これらの溶媒中に芳
香族ポリアミド重合体を2〜40重量%含有させる
が、あまり低濃度では細かい粒子のみが生成し、
またあまり高濃度ではパルプとして抄紙などに不
適当なフレーク状物質が生成し易いため、好まし
くは該重合体を5〜30重量%含むものである。 さらに芳香族ポリアミド溶液の性状によつて
は、上記極性アプロテツク溶媒又は無機溶媒だけ
の溶液では、液性の点で取扱い上不都合が発生す
る場合には、水、メタノール、エタノール、アセ
トン、ジオキサン、有機アミン類、例えばエチレ
ンジアミン、ジエチレントリアミン、エタノール
アミン、無機化合物例えば塩化リチウム、塩化セ
リウム、塩化カルシウムなどを添加して液粘度、
溶解度などを調節することが好ましい。 本発明で使用する沈澱剤としては、使用する芳
香族ポリアミドを溶解しない性質を有するもので
あれば広範囲な物質が使用できるが、重合体溶液
と混和性があることが好ましく、例えば水、グリ
セリン、エチレングリコール、水と有機溶媒の混
合物、水と無機物の混合物などがあげられるが、
水系のものが良好なパルプ状物質を得るのに好適
で、特に水5〜90重量%を含む溶液を使用するの
が好ましい。 本発明の方法において、芳香族ポリアミド系重
合体の溶液と沈澱剤とからパルプ状物質を製造す
る際に、両液の界面に高い剪断力を作用させるこ
とが重要で、必要な応力、例えば撹拌力、噴射速
度などは溶液と沈澱剤の性質によつて大幅に異な
るが、少なくとも両液が接触するところでは乱流
状態が好ましく、レイノールズ数で約3000以上で
あることが必要である。この種の高い剪断力は、
高速回転可能な撹拌翼を備えた沈澱装置、高速な
ポンプ撹拌を行う装置、高速噴射可能なスプレー
ノズル、などで得られるが、添加した重合体溶液
から脱溶媒を行なわせると同時に、生成した固形
物に剪断又は叩解力を働かせ、適当な形状と大き
さを沈澱物に与えられるものであればよい。 パルプ状物質を製造する条件として、重合体溶
液、沈澱剤の性状及び両糸に与えられる剪断力は
重要だがさらに、パルプ粉子を析出させるときの
温度も、ポリマーのこれら系への溶解度、溶媒の
抽出速度などの調節に重要で、これらを適切に制
御しないと好ましいパルプ状物質が得られない。
最適な温度は、ポリマーの種類、溶媒の性質、沈
澱剤の性質、加えられる剪断力等により異なる
が、経済的に好ましい性質のパルプ状物質を製造
するには、沈澱剤とポリマー溶液との混合液の温
度が常温よりやゝ高目の温度、即ち35〜95℃の範
囲で実施することが一般に好適である。35℃より
低目の温度では、ポリマー溶液中の溶媒の抽出さ
れる速度が遅く、固体中に残溶媒が多い状態で長
時間浮遊するため、通常は大量の沈澱剤を必要と
し、経済的でない。一方95℃以上では、溶媒、沈
澱剤類の選択にもよるが、一般に蒸発による濃度
変化が起り、液物性の調節が困難になりがちであ
る。これを避けるためには、加圧装置などが必要
となり、さらにこの種工夫を行つて液物性を調節
してもポリマー溶液からの溶媒抽出速度が早すぎ
る為に、析出固体の表面のみが固化し、逆に溶媒
の完全抽出に支障を起し易くなる。 本発明の方法では、芳香族ジカルボン酸と芳香
族ジイソシアネートから得られる芳香族ポリアミ
ドを主に使用することが重要であり、正確な理由
は不明だがこの方法で得られた重合体の末端基を
含んだ極性基の性質による影響が大きいと考えら
れる、各種溶媒への溶解度、原料及び製法に起因
する重合度分布などが本発明の目的であるパルプ
状物質の製造に適していることによるものと考え
られる。 さらに、本発明で使用する芳香族ポリアミドと
して、本発明の効果を最大限に得るのに最も好ま
しいのは前記した様に、多価カルボン酸のモノア
ルカリ金属塩などを触媒として使用して、芳香族
ジカルボン酸と芳香族ジイソシアネートを反応さ
せて得た芳香族ポリアミドであり、その重合度を
対数粘度ηinhで表わして0.5以上のもの、また特
に0.8以上のものが好ましい。 対数粘度ηinhが0.5以下の場合は得られるパル
プ状物質が必要以上に細かくなり、平均比瀘過抵
抗が大きくなり易いばかりでなく、仮にパルプ製
造時の条件を変更し、ηinh0.5以上の重合体から
得られるパルプと同様な物性のパルプを得てもそ
れから製造した紙状物の引張強度は充分でない。 以上に詳述した条件下で製造したパルプ水物質
は、主として芳香族ジカルボン酸と芳香族ジイソ
シアネートから得られた芳香族ポリアミドから成
り、個々のパルプ状物質の均一性も良く、不用な
微細粒子及び極大粒子が殆んど無く、条件の選定
により好みの性状のパルプ状物質が得られ、パル
プ状物質を得た後の溶媒、沈澱剤等との分離、洗
浄も効率的に行うことが可能で、パルプ状物質中
の残留溶媒の除去等も簡単である。 本発明の方法で得られるパルプ状物質は、直接
又は各種有機若しくは無機の短繊維類、雲母、カ
オリンなどの無機フイラー等を混合抄紙し、絶縁
紙の用途に使用することができる。また本発明の
方法によるパルプ状物質を用いると、加工時例え
ば抄紙時に水切れ等の抄紙性が良く、地合いの良
い、均一な紙が得られるばかりでなく、抄紙後の
絶縁破壊強度、油含侵性、引張強度などの機械物
性に優れた紙状物が得られる。 また本発明によるパルプは、各種短繊維、フイ
ラー類との混合時に均一化し易く、これら物質と
混合して使用するのにも都合が良い。 さらに本発明の方法によるパルプ状物質は、各
種プラスケツクスの充填材、補強材として単独又
は他の物質と混合して使用することもできる。 以下実施例で本発明の詳細を説明するが、実施
例中の主要な測定法、略称は次の通りである。 対数粘度:ηinh=ln(t/to)/C C:溶液中のポリマー濃度(g/100ml) t:溶液の流下時間(秒) to:溶媒の流下時間 N−メチル2−ピロリドン又は95%硫酸中で、
濃度0.5g/100mlにおいて30℃で測定した。 平均比瀘過抵抗 底部に栓及び200メツシユ金網のある内径38mm、
長さ1400mmのガラス管に、濃度0.5重量%のパル
プサスペンジヨンを金網から1200mmまで入れ、底
部の栓を抜き排水を行う。水面の低下を時間を追
つて測定し、次式により平均比瀘過抵抗を求め
た。 平均比濾過抵抗=ρgb/ηCHo :水の密度 (g/cm3) g:重力加速度 980(cm/sec2) b:排水抵抗 (sec) η:水の粘度 (g/cm・sec) c:パルプ濃度 (g/ml) Ho:初期水位 120(cm) 絶縁破壊強度 JISC 2111の方法により交流で測定した。 含浸性 直径2cmの試料片とJIS1号絶縁油上に浮かべ、
紙の表面に油が浸透してくるまでの時間を測定し
た。 略 称 IPA:イソフタル酸 TPA:テレフタル酸 IPA−cl:イソフタル酸クロライド TPA−cl:テレフタル酸クロライド IPA−Na:イソフタル酸モノナトリウム塩 TPA−Na:テレフタル酸モノナトリウム塩 TDI:トルイレンジイソシアネート (特記なき場合は2,4−12,6−体=80/20重
量比) MDI:ジフエニルメタン−4,4′−ジイソシアネ
ート NMP:N−メチル−2−ピロリドン DMA:ジメチルアセトアミド mA:メタフエニレンジアミン PA:パラフエニレンジアミン なお以下における部、%、比率は、特記せぬ限
り重量基準による。 実施例 1 (A) 重合体の製造 IPA42部、IPA−Na2.8部をNMP520部に溶
解した液を撹拌機、温度計、原料供給口、イナ
ートガス入口を備えた反応器に装入し、オイル
バスで80℃に加温した状態でTDI49部を添加す
る。この状態で充分撹拌混合した後、オイルバ
スの温度を昇温し、内温を140℃に5時間保つ。
炭酸ガスの発生が殆んど無くなつた状態でさら
に内温を170℃に上げ1時間保つ。反応終了後
約180部のNMPを添加し、室温迄冷却する。 得られた重合液のサンプリングにより対数粘
度及び濃度を測定した結果、重合体の
ηinh1.93、重合体濃度11%であつた。 (B) パルプ状物質製造 塩化カルシウムを40%含有する水溶液3を
80℃に加温し、高速撹拌ミキサー(日本精機
NH−3型)を使用し、5000rpmの回転速度で
撹拌している状態で、(A)で製造したポリマー溶
液を50ml/minの速度で二流体噴霧ノズル
(SSCO製No.1665、No.73335)から上記凝固液と
共に合計650ml/minの速度で吹き込んだ。 生成したパルプ状物質は、減圧瀘過で分離し
た後、大量の水で充分に洗浄した。 得られたパルプ状物質の150メツシユ金網通
過分と平均比瀘過抵抗を測定した結果は次の通
りであつた。 150メツシユ金網通過分 53.5% 平均化瀘過抵抗 89×107cm/g (C) シート状物質の製造 (B)で得られたパルプ状物質と単糸繊度2デニ
ールで長さ3mmに切断したmAとIPA−clから
得た芳香族ポリアミド繊維を1:1の比で合計
10g/の割合で含む水分散液から、タツピー
スタンダードシートマシーンを用いて抄紙し
た。抄紙性は極めて良く、また水切れも充分
で、むらのない均一なシート状物が得られた。 このシートを270℃、100Kg/cm2の条件で熱プ
レスして、厚さ約120μの紙状物を製造した。
この紙状物の各種物性測定結果は次の通りであ
つた。 電気絶縁破壊強度 53KV/mm 含浸性 2200seo/mm 引張強度 2.5Kg/mm2 伸 度 2.0% 実施例 2〜6 実施例1、(A)で得られた重合体溶液を同、(B)の
方法で高速撹拌ミキサーの回転数を種々変化させ
ながら、パルプ状物質を製造し、同例の方法で分
離、洗浄し、その物性測定を行つた。 結果は表1に示した。
The present invention relates to a method for producing pulp-like materials. More specifically, from a solution of an aromatic polyamide polymer obtained from an aromatic dicarboxylic acid and an aromatic cyisocyanate and having a logarithmic viscosity ηinh of 0.5 or more, a pulp-like material with good processability and excellent physical properties after processing is produced. Relating to a method of manufacturing a substance. Conventionally, pulp-like substances obtained from aromatic polymers have excellent heat resistance and electrical insulation properties, so they have attracted attention as materials for heat-resistant insulating paper or boards, insulating tape materials, etc., and methods for producing them have been developed. There is. For example, Japanese Patent Publication No. 35-11851 describes paper pulp particles made of synthetic polymers. However, the pulp particles described in this publication not only have drawbacks during processing, such as paper-making properties, water drainage, and the degree of occurrence of thickness unevenness, but also have many unsatisfactory physical properties after processing, such as electrical insulation properties. In addition, Japanese Patent Publication No. 37-5732 discloses a method for producing synthetic polymer particles defined as fibrids, but the synthetic polymer particles obtained by this method also have poor paper-forming properties and poor formation. It is insufficient to obtain a good uniform paper, and the electrical insulation properties of the obtained paper-like material are also insufficient. Furthermore, JP-A-51-97110 discloses an improved method for obtaining pulp particles from aromatic polymers; Particles may also be produced that have an inappropriate average specific filtration resistance, and have the disadvantage that it is difficult to balance dielectric breakdown strength, tensile strength, and impregnability after paper making. As a result of various studies to eliminate these various drawbacks, the present inventors have developed an aromatic polyamide-based polymer obtained from an aromatic dicarboxylic acid and an aromatic diisocyanate and having a logarithmic viscosity ηinh of 0.5 or more in a solvent. A pulp-like material obtained by mixing a polymer solution dissolved in a polymer with a precipitant having the property of not dissolving the polymer under high shear force can be obtained by selecting conditions for forming a precipitate. , good water repellency, good paper-making properties when making paper directly or by mixing with other substances such as various short fibers, mica, kaolin, etc., good formation, little thickness unevenness, and uniformity. It is possible to obtain sheets with good balance of impregnation properties, electrical insulation properties, tensile strength, etc. after paper making, and it is also suitable for use as a filler in various plastics. It has been found that results can be obtained, and the present invention has been achieved. That is, the present invention provides an aromatic dicarboxylic acid and an aromatic diisocyanate whose logarithmic viscosity ηinh is
A solution of an aromatic polyamide polymer having a molecular weight of 0.5 or more;
This is a method for producing a pulp-like material, which is characterized by mixing with a precipitant under high shearing force. The aromatic polyamide polymer used in the method of the present invention is obtained from an aromatic polycarboxylic acid and an aromatic polyisocyanate, and has a logarithmic viscosity ηinh.
0.5 or more, preferably 0.8 or more, but in addition to this polymer, polyamide compounds, polyimide compounds, polyamide imide compounds, polyamide imidazole compounds, etc. are added to the present invention in order to adjust the physical properties of the resulting pulp. The content may be 50% by weight or less (that is, 50% by weight or more of the polymer) as long as the purpose of the polymer is not impaired. Aromatic dicarboxylic acids used in the present invention include terephthalic acid, isophthalic acid, orthophthalic acid, diphenyl ether-4,4'-dicarboxylic acid, diphenylthioether-4,4'-dicarboxylic acid, diphenylsulfone-4 , 4'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, thiophene-2,5-dicarboxylic acid, pyridine-2,6-
Examples include dicarboxylic acid, naphthalene 2,6-dicarboxylic acid, and isomers thereof. Further, the aromatic diisocyanates used in the present invention include phenylene-1,3-diisocyanate, toluylene-2,6-diisocyanate, tolylene-2,4-diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenyl ether-4 , 4'-diisocyanate, naphthalene-1,5-diisocyanate, diphenylsulfone-4,4'-diisocyanate, diphenylsulfide-4,4'-diisocyanate, anthraquinone-2,6-diisocyanate, diphenylketone-4, Mention may be made of 4'-diisocyanates and their isomers. The logarithmic viscosity ηinh of the above aromatic dicarboxylic acid and aromatic diisocyanate is 0.5 or more, preferably 0.8
As a method for obtaining the above aromatic polyamide, a known method or a polymerization method using a catalyst previously applied by the present applicant (Japanese Patent Application No. 56-37132) can be used, but in particular, the latter organic polycarboxylic acid A method using a monoalkali metal salt as a catalyst is preferred because it causes fewer side reactions and can easily yield a product with a high logarithmic viscosity.
Specifically, the above aromatic polyvalent carboxylic acid and aromatic polyvalent isocyanate are produced as by-products in an anhydrous organic polar solvent under a stream of inert gas or under reduced pressure.
in the presence of a catalyst such as a monoalkali metal salt of a polyhydric carboxylic acid while removing CO 2 gas, approximately 20 to 250
This is a method in which the reaction is carried out while heating at a temperature of 1 to 20 hours. The solution of the aromatic polyamide-based polymer may be the polymerized liquid as it is after polymerization as described above, or it may be prepared by separating and purifying these polymers by a method such as precipitation separation and then redissolving them in a solvent. It can also be adjusted. The solvent for the aromatic polyamide polymer that can be used in the present invention is generally referred to as a polar protection solvent, such as N,N-dimethylacetamide, N,N-dimethylformamide,
N,N-diethylacetamide, N-methyl-pyrrolidone, hexamethylphosphotriamide, N,
N,N',N'-tetramethylurea, dimethylsulfoxide sulfolane, diphenylsulfoxide,
Examples include benzophenone and inorganic solvents such as sulfuric acid, chlorosulfuric acid, polyphosphoric acid, and chlorosulfuric acid. Aromatic polyamide solutions contain 2 to 40% by weight of aromatic polyamide polymer in these solvents, but if the concentration is too low, only fine particles will be produced.
Furthermore, if the concentration is too high, flaky substances unsuitable for pulping, such as paper making, are likely to be produced, so it is preferable to contain the polymer in an amount of 5 to 30% by weight. Furthermore, depending on the properties of the aromatic polyamide solution, if a solution containing only the above-mentioned polar aprotective solvent or inorganic solvent is inconvenient in handling, water, methanol, ethanol, acetone, dioxane, organic By adding amines such as ethylenediamine, diethylenetriamine, ethanolamine, and inorganic compounds such as lithium chloride, cerium chloride, calcium chloride, etc., the liquid viscosity can be adjusted.
It is preferable to adjust solubility and the like. As the precipitant used in the present invention, a wide range of substances can be used as long as it does not dissolve the aromatic polyamide used, but it is preferable that it is miscible with the polymer solution, such as water, glycerin, Examples include ethylene glycol, mixtures of water and organic solvents, and mixtures of water and inorganic substances.
An aqueous solution is suitable for obtaining a good pulp-like material, and it is particularly preferable to use a solution containing 5 to 90% by weight of water. In the method of the present invention, when producing a pulp-like material from a solution of an aromatic polyamide polymer and a precipitant, it is important to apply a high shearing force to the interface between the two solutions. The force, injection speed, etc. vary greatly depending on the properties of the solution and precipitant, but at least where the two solutions come into contact, a turbulent state is preferable, and the Reynolds number needs to be about 3000 or more. This kind of high shear force is
It can be obtained using a precipitation device equipped with stirring blades that can rotate at high speed, a device that performs high-speed pump stirring, and a spray nozzle that can spray at high speed. Any material may be used as long as it can apply shearing or beating force to the material and give the precipitate an appropriate shape and size. The properties of the polymer solution, the precipitant, and the shearing force applied to both yarns are important as conditions for producing pulp-like materials, but the temperature at which the pulp powder is precipitated also affects the solubility of the polymer in these systems, the solvent It is important to adjust the extraction rate, etc., and unless these are properly controlled, a desirable pulp-like material cannot be obtained.
The optimum temperature varies depending on the type of polymer, the nature of the solvent, the nature of the precipitant, the applied shear force, etc., but in order to produce a pulp-like material with economically favorable properties, mixing the precipitant with the polymer solution is necessary. It is generally preferred that the temperature of the liquid be slightly higher than room temperature, that is, in the range of 35 to 95°C. At temperatures lower than 35°C, the rate at which the solvent in the polymer solution is extracted is slow and the solid remains suspended for a long time with a large amount of residual solvent, which usually requires a large amount of precipitant, which is not economical. . On the other hand, at temperatures above 95°C, depending on the selection of solvent and precipitant, concentration changes generally occur due to evaporation, making it difficult to control liquid properties. In order to avoid this, a pressurizing device is required, and even if this type of device is used to adjust the liquid properties, the solvent extraction rate from the polymer solution is too fast, so only the surface of the precipitated solid solidifies. On the contrary, complete extraction of the solvent is likely to be hindered. In the method of the present invention, it is important to mainly use aromatic polyamides obtained from aromatic dicarboxylic acids and aromatic diisocyanates, and although the exact reason is unknown, the polymer obtained by this method does not contain end groups. It is thought that this is due to the solubility in various solvents, which is thought to be largely influenced by the properties of the polar group, and the degree of polymerization distribution caused by raw materials and manufacturing methods, which are suitable for producing pulp-like substances, which is the objective of the present invention. It will be done. Furthermore, as the aromatic polyamide used in the present invention, in order to obtain the maximum effect of the present invention, as mentioned above, it is most preferable to use a monoalkali metal salt of a polyhydric carboxylic acid as a catalyst. It is an aromatic polyamide obtained by reacting a group dicarboxylic acid with an aromatic diisocyanate, and its degree of polymerization expressed in terms of logarithmic viscosity ηinh is preferably 0.5 or more, and particularly preferably 0.8 or more. If the logarithmic viscosity ηinh is less than 0.5, the resulting pulp-like material will be finer than necessary, and the average specific filtration resistance will tend to increase. Even if a pulp with physical properties similar to those of the pulp obtained by coalescence is obtained, the tensile strength of paper-like products made from it is not sufficient. The pulp water material produced under the conditions detailed above mainly consists of aromatic polyamide obtained from aromatic dicarboxylic acid and aromatic diisocyanate, has good uniformity of individual pulp materials, and contains unnecessary fine particles and There are almost no large particles, and pulp-like materials with desired properties can be obtained by selecting conditions, and after obtaining the pulp-like materials, separation from solvents, precipitants, etc., and washing can be performed efficiently. , removal of residual solvent in the pulp-like material is also easy. The pulp-like material obtained by the method of the present invention can be used for insulating paper by directly or by mixing various organic or inorganic short fibers, inorganic fillers such as mica, kaolin, etc. into paper. In addition, when the pulp-like material produced by the method of the present invention is used, it is possible not only to obtain paper with good paper-making properties such as drainage during processing, for example, during paper-making, and with good texture and uniformity, but also to improve dielectric breakdown strength and oil impregnation after paper-making. A paper-like material with excellent mechanical properties such as hardness and tensile strength can be obtained. Further, the pulp according to the present invention is easily homogenized when mixed with various short fibers and fillers, and is convenient for use in combination with these substances. Further, the pulp-like material produced by the method of the present invention can be used alone or in combination with other materials as a filler or reinforcing material for various plastic bags. The details of the present invention will be explained below in Examples, and the main measuring methods and abbreviations used in the Examples are as follows. Logarithmic viscosity: ηinh=ln(t/to)/C C: Polymer concentration in solution (g/100ml) t: Solution flow time (seconds) to: Solvent flow time N-methyl 2-pyrrolidone or 95% sulfuric acid Inside,
Measurements were made at 30°C at a concentration of 0.5g/100ml. Average specific filtration resistance 38mm inner diameter with plug and 200 mesh wire mesh at the bottom;
Put pulp suspension with a concentration of 0.5% by weight into a 1400 mm long glass tube up to 1200 mm from the wire mesh, and remove the stopper at the bottom to drain the water. The decrease in water level was measured over time, and the average specific filtration resistance was determined using the following formula. Average specific filtration resistance = ρgb/ηCHo: Water density (g/cm 3 ) g: Gravitational acceleration 980 (cm/sec 2 ) b: Drainage resistance (sec) η: Water viscosity (g/cm・sec) c: Pulp concentration (g/ml) Ho: Initial water level 120 (cm) Dielectric breakdown strength Measured with alternating current according to the method of JISC 2111. Impregnation property Floating a sample piece with a diameter of 2 cm on JIS No. 1 insulating oil,
The time required for oil to penetrate the surface of the paper was measured. Abbreviation IPA: Isophthalic acid TPA: Terephthalic acid IPA-cl: Isophthalic acid chloride TPA-cl: Terephthalic acid chloride IPA-Na: Isophthalic acid monosodium salt TPA-Na: Terephthalic acid monosodium salt TDI: Toluylene diisocyanate (not specified) (2,4-12,6-isomer = 80/20 weight ratio) MDI: diphenylmethane-4,4'-diisocyanate NMP: N-methyl-2-pyrrolidone DMA: dimethylacetamide mA: metaphenylenediamine PA: paraffin Enylenediamine Parts, percentages, and ratios below are based on weight unless otherwise specified. Example 1 (A) Production of polymer A solution in which 42 parts of IPA and 2.8 parts of IPA-Na were dissolved in 520 parts of NMP was charged into a reactor equipped with a stirrer, a thermometer, a raw material supply port, and an inert gas inlet. Add 49 parts of TDI while heating to 80°C in a bath. After stirring and mixing thoroughly in this state, the temperature of the oil bath is raised and the internal temperature is maintained at 140°C for 5 hours.
After almost no carbon dioxide gas is generated, the internal temperature is further raised to 170°C and kept for 1 hour. After the reaction is complete, about 180 parts of NMP is added and the mixture is cooled to room temperature. The logarithmic viscosity and concentration of the obtained polymer solution were measured by sampling, and the results showed that the polymer ηinh was 1.93 and the polymer concentration was 11%. (B) Pulp-like material production Aqueous solution 3 containing 40% calcium chloride
Heat to 80℃ and use a high-speed stirring mixer (Nippon Seiki).
Using a two-fluid spray nozzle (SSCO No. 1665, No. 73335), the polymer solution produced in (A) was sprayed at a speed of 50 ml/min while stirring at a rotational speed of 5000 rpm. ) and the above coagulating liquid at a total rate of 650 ml/min. The produced pulp-like material was separated by vacuum filtration and then thoroughly washed with a large amount of water. The results of measuring the amount of the obtained pulp-like material that passed through a 150-mesh wire mesh and the average specific filtration resistance were as follows. Passage through 150 mesh wire mesh 53.5% Average filtration resistance 89×10 7 cm/g (C) Production of sheet-like material The pulp-like material obtained in (B) was cut into a length of 3 mm with a single fiber fineness of 2 denier. Aromatic polyamide fibers obtained from mA and IPA-cl were summed in a 1:1 ratio.
Paper was made from an aqueous dispersion containing 10 g/g of paper using a Tatsupi standard sheet machine. Paper-making properties were extremely good, water drainage was sufficient, and a uniform sheet with no unevenness was obtained. This sheet was hot pressed at 270° C. and 100 kg/cm 2 to produce a paper-like product with a thickness of about 120 μm.
The results of various physical property measurements of this paper-like material were as follows. Electrical breakdown strength 53KV/mm Impregnability 2200seo/mm Tensile strength 2.5Kg/mm 2 Elongation 2.0% Examples 2 to 6 The polymer solution obtained in Example 1 (A) was prepared using the same method as (B). A pulp-like material was produced while varying the rotation speed of the high-speed stirring mixer, separated and washed in the same manner, and its physical properties were measured. The results are shown in Table 1.

【表】 実施例 7〜12 実施例1、(A)の方法において、原料のイソシア
ネート及びカルボン酸を各種変更させて得たポリ
マーにつき、同例(B)の方法でパルプ状物質の製造
し、それらの物性を測定した。 結果は表2に示した。
[Table] Examples 7 to 12 Using the method of Example 1 (A), a pulp-like material was produced by the method of Example (B) using a polymer obtained by variously changing the raw material isocyanate and carboxylic acid, Their physical properties were measured. The results are shown in Table 2.

【表】 実施例 13〜18 実施例12の方法で製造したポリマーにつき、ポ
リマー溶液を多量のメタノール中に徐々に添加
し、ポリマーを固体で析出させ、メタノールで充
分洗浄し乾燥後、各種濃度でNMPに再溶解し、
濃度の異なるポリマー溶液を調整した。このポリ
マー溶液を実施例1−(B)の方法によりパルプ状物
質を得、さらに実施例1−(C)の方法にて紙状物を
製造した。得られたパルプ状物及び紙状物の物性
測定結果は表3に示した。
[Table] Examples 13 to 18 Regarding the polymer produced by the method of Example 12, the polymer solution was gradually added to a large amount of methanol to precipitate the polymer as a solid, and after thorough washing with methanol and drying, it was mixed at various concentrations. Redissolve in NMP,
Polymer solutions with different concentrations were prepared. A pulp-like material was obtained from this polymer solution by the method of Example 1-(B), and a paper-like material was further produced by the method of Example 1-(C). Table 3 shows the results of measuring the physical properties of the obtained pulp-like material and paper-like material.

【表】 実施例 19〜25 実施例16の方法において、沈澱剤の種類、濃
度、混合温度等、パルプ状物質を製造する条件を
各種変更して試験を行い、得られたパルプの性状
を測定、観測した。結果は表4に示した。
[Table] Examples 19 to 25 Tests were conducted using the method of Example 16 with various changes in the conditions for producing pulp-like substances, such as the type of precipitant, concentration, and mixing temperature, and the properties of the resulting pulp were measured. , observed. The results are shown in Table 4.

【表】 実施例 26 (A) 重合体の製造 TPA19.5部をNMP200部に溶解した液と、
撹拌機、温度計、原料供給口、イナートガス入
口を備えた反応器に装入し、TDI21.2部を添加
し充分撹拌混合する。その後内温を140℃に昇
温し、4時間反応させ、ガスの発生が殆んど無
くなつた後に、さらに内温を170℃に上げ1時
間保つ。反応後、約100部のNMPを添加希釈
し、室温迄冷却する。 得られた重合液のサンプリングにより粘度及
び濃度測定を行つた結果、重合体の対数粘度
ηinhは0.59、重合体濃度は11%であつた。 (B) パルプ状物質及び紙状物の製造 (A)で得られた重合体溶液を実施例1(B)及び(C)
の方法を用いて、パルプ状物質及び紙状物を製
造した。 得られたパルプ状物質の物性値及び紙状物の
物性値は次の通りであつた。 パルプ状物質 150メツシユ金網通過分 67.2% 平均比瀘過抵抗 98×107cm/g 紙状物の物性 電気絶縁破壊強度 51KV/mm 含浸性 3600sec/mm 引張強度 1.7Kg/mm2 伸 度 1.3% 比較例 1 (A) 重合体の製造 mA1.7gをNMP400gに溶解した液に炭酸
リチウム11gを添加し、水浴で冷却後、IPA−
clの粉末31.9gを添加し、冷却しながら約30分
間充分に撹拌する。 得られた重合液の1部サンプリングによる粘
度及び濃度測定結果は、重合体の対数粘度ηinh
で2.10、重合体濃度8.5%であつた。 (B) パルプ状物質及び紙状物の製造 (A)で得られた重合物溶液を実施例1(B)及び(C)
の方法で、パルプ状物質及び紙状物を製造し
た。 得られたパルプ状物質の物性値及び紙状物の
物性値は次の通りであつた。 パルプ状物質 150メツシユ金網通過分 47.1% 平均比瀘過抵抗 59×107cm/g 紙状物 電気絶縁破壊強度 37KV/mm 含浸性 2700sec/mm 引張強度 0.9Kg/mm2 伸 度 3.2% なお、この方法で製造したシート状物は厚み
むらが多く、工業的に使用するのは困難な様子
であつた。 また、得られたシート状物を熱プレスする条
件を270℃、100Kg/cm2から310℃、200Kg/cm2
変換した場合得られた紙状物の物性は次の通り
で含浸性が著るしく低下した。 電気絶縁破壊強度 57KV/mm 含浸性 7400sec/mm 引張強度 2.6Kg/mm2 伸 度 2.3% 比較例 2 (A) 重合体の製造 重合時の触媒IPA−Naの量を0.28部にした
以外は実施例1と同様な方法で、IPA42部と
TDI49部をNMP520部中で重合した。 重合液を稀釈、冷却後サンプリング分析した
結果、重合体の対数粘度ηinhは0.44で重合体濃
度は11%であつた。 (B) パルプ状物質及び紙状物の製造 (A)で得られた重合物溶液を実施例1(B)及び(C)
の方法を用いてパルプ状物質及び紙状物を製造
した。 得られたパルプ状物質及び紙状物の物性値は
次の通りであつた。 パルプ状物質 150メツシユ金網通過分 71.6% 平均比瀘過抵抗 115×107cm/g 紙状物 電気絶縁破壊強度 48KV/mm 含浸性 6900sec/mm 引張強度 0.3Kg/mm2 伸 度 2.2% 比較例 3 (A) 重合体の製造 mAの代わりにトルエンジアミン(2,4
体/2,6体の異性体比=80/20)19.2gを用
いた以外は比較例1と同様にしてポリアミドを
得た。 ポリマーの対数粘度ηinhは1.90で重合体濃度
は11.0重量%であつた。 (B) パルプ状物質および紙状物の製造 (A)で得られた重合体溶液を実施例1(B)および
(C)の方法で、パルプ状物質および紙状物を製造
した。得られたパルプ状物質および紙状物の物
性値は次の通りであつた。 パルプ状物質 150メツシユ 42% 平均比瀘過抵抗 40×107cm/g 紙状物 電気絶縁破壊強度 25KV/mm 含浸性 2100sec/mm 引張強度 0.8Kg/mm2 伸 度 2.7% 実施例1の紙状物に比べ、本比較例の紙状物
の物性(電気絶縁破壊強度、含浸性、引張強
度、伸度)は何れも劣り、かつ紙の地合いが悪
くムラの多い紙となつた。
[Table] Example 26 (A) Production of polymer A solution in which 19.5 parts of TPA was dissolved in 200 parts of NMP,
The mixture is placed in a reactor equipped with a stirrer, a thermometer, a raw material supply port, and an inert gas inlet, and 21.2 parts of TDI is added thereto and thoroughly stirred and mixed. Thereafter, the internal temperature was raised to 140°C and reacted for 4 hours, and after almost no gas was generated, the internal temperature was further raised to 170°C and maintained for 1 hour. After the reaction, dilute by adding about 100 parts of NMP, and cool to room temperature. The viscosity and concentration were measured by sampling the obtained polymer solution. As a result, the logarithmic viscosity ηinh of the polymer was 0.59, and the polymer concentration was 11%. (B) Production of pulp-like substances and paper-like substances The polymer solution obtained in (A) was used in Example 1 (B) and (C).
A pulp-like material and a paper-like material were produced using the method of . The physical properties of the pulp-like material and the paper-like material obtained were as follows. Pulp-like substance Passed through 150-mesh wire mesh 67.2% Average specific filtration resistance 98×10 7 cm/g Physical properties of paper-like material Electrical breakdown strength 51 KV/mm Impregnation 3600 sec/mm Tensile strength 1.7 Kg/mm 2 Elongation 1.3% Comparative Example 1 (A) Production of polymer 11 g of lithium carbonate was added to a solution of 1.7 g of mA dissolved in 400 g of NMP, and after cooling in a water bath, IPA-
Add 31.9 g of Cl powder and stir thoroughly for about 30 minutes while cooling. The viscosity and concentration measurement results obtained by sampling a portion of the obtained polymer solution indicate the logarithmic viscosity ηinh of the polymer.
The polymer concentration was 2.10 and the polymer concentration was 8.5%. (B) Production of pulp-like substances and paper-like substances The polymer solution obtained in (A) was used in Example 1 (B) and (C).
A pulp-like material and a paper-like material were produced by the method described in the following. The physical properties of the pulp-like material and the paper-like material obtained were as follows. Pulp material Passing through 150 mesh wire mesh 47.1% Average specific filtration resistance 59×10 7 cm/g Paper material Electrical breakdown strength 37 KV/mm Impregnation 2700 sec/mm Tensile strength 0.9 Kg/mm 2 Elongation 3.2% The sheet-like material produced by this method had a lot of uneven thickness, and it seemed difficult to use it industrially. In addition, when the conditions for hot pressing the obtained sheet-like material were changed from 270℃ and 100Kg/cm 2 to 310℃ and 200Kg/cm 2 , the physical properties of the obtained paper-like material were as follows, and the impregnation property was remarkable. It decreased significantly. Electrical breakdown strength 57KV/mm Impregnation 7400sec/mm Tensile strength 2.6Kg/mm 2 Elongation 2.3% Comparative example 2 (A) Production of polymer Same procedure except that the amount of catalyst IPA-Na during polymerization was 0.28 parts In the same way as Example 1, add 42 parts of IPA and
49 parts of TDI was polymerized in 520 parts of NMP. After diluting and cooling the polymerization solution, sampling analysis revealed that the logarithmic viscosity ηinh of the polymer was 0.44 and the polymer concentration was 11%. (B) Production of pulp-like substances and paper-like substances The polymer solution obtained in (A) was used in Example 1 (B) and (C).
A pulp-like material and a paper-like material were produced using the method of . The physical properties of the pulp-like material and paper-like material obtained were as follows. Pulp material Passing through 150 mesh wire mesh 71.6% Average specific filtration resistance 115×10 7 cm/g Paper material Electrical breakdown strength 48 KV/mm Impregnation 6900 sec/mm Tensile strength 0.3 Kg/mm 2 Elongation 2.2% Comparative example 3 (A) Production of polymer Toluenediamine (2,4
A polyamide was obtained in the same manner as in Comparative Example 1 except that 19.2 g of isomer ratio of isomer/2,6 isomer = 80/20) was used. The logarithmic viscosity ηinh of the polymer was 1.90, and the polymer concentration was 11.0% by weight. (B) Production of pulp-like material and paper-like material The polymer solution obtained in (A) was prepared in Example 1 (B) and
A pulp-like substance and a paper-like substance were produced by the method (C). The physical properties of the pulp-like material and paper-like material obtained were as follows. Pulp-like material 150 mesh 42% Average specific filtration resistance 40×10 7 cm/g Paper-like material Electrical breakdown strength 25 KV/mm Impregnation 2100 sec/mm Tensile strength 0.8 Kg/mm 2 Elongation 2.7% Paper of Example 1 The physical properties (electrical breakdown strength, impregnability, tensile strength, and elongation) of the paper-like material of this comparative example were all inferior to those of the paper-like material, and the paper texture was poor and uneven.

Claims (1)

【特許請求の範囲】 1 芳香族ジカルボン酸と芳香族ジイソシアネー
トとから得られる、対数粘度ηinhが0.5以上の芳
香族ポリアミド系重合体の溶液と、沈澱剤とを高
い剪断力のかかる状態で混合することを特徴とす
るパルプ状物質の製造法。 2 前記溶液が、芳香族ポリアミド系重合体を5
〜30重量%含有する特許請求の範囲第1項記載の
製造法。 3 前記沈澱剤が、水を50〜90重量%含有する液
体である特許請求の範囲第1項記載の製造法。 4 沈澱剤と重合体の溶液との混合液の温度が、
35〜95℃の範囲である特許請求の範囲第1項記載
の製造法。
[Claims] 1. A solution of an aromatic polyamide polymer obtained from an aromatic dicarboxylic acid and an aromatic diisocyanate and having a logarithmic viscosity ηinh of 0.5 or more is mixed with a precipitant under high shearing force. A method for producing a pulp-like substance characterized by: 2 The solution contains 5 aromatic polyamide polymers.
30% by weight of the manufacturing method according to claim 1. 3. The manufacturing method according to claim 1, wherein the precipitant is a liquid containing 50 to 90% by weight of water. 4 The temperature of the mixture of precipitant and polymer solution is
The manufacturing method according to claim 1, wherein the temperature is in the range of 35 to 95°C.
JP6410381A 1981-04-30 1981-04-30 Production of pulp-like substance Granted JPS57183417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6410381A JPS57183417A (en) 1981-04-30 1981-04-30 Production of pulp-like substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6410381A JPS57183417A (en) 1981-04-30 1981-04-30 Production of pulp-like substance

Publications (2)

Publication Number Publication Date
JPS57183417A JPS57183417A (en) 1982-11-11
JPS6350444B2 true JPS6350444B2 (en) 1988-10-07

Family

ID=13248401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6410381A Granted JPS57183417A (en) 1981-04-30 1981-04-30 Production of pulp-like substance

Country Status (1)

Country Link
JP (1) JPS57183417A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119808A (en) * 1984-06-30 1986-01-28 Mitsui Toatsu Chem Inc Preparation of pulpy substance
JPS6285018A (en) * 1985-10-09 1987-04-18 Mitsui Toatsu Chem Inc Production of synthetic resin pulp
JPS6285016A (en) * 1985-10-09 1987-04-18 Mitsui Toatsu Chem Inc Production of synthetic resin pulp
JPS6285017A (en) * 1985-10-09 1987-04-18 Mitsui Toatsu Chem Inc Production of synthetic resin pulp
JPS6285014A (en) * 1985-10-09 1987-04-18 Mitsui Toatsu Chem Inc Production of synthetic resin pulp
JPS6285015A (en) * 1985-10-09 1987-04-18 Mitsui Toatsu Chem Inc Production of synthetic resin pulp
JPS6285011A (en) * 1985-10-09 1987-04-18 Mitsui Toatsu Chem Inc Production of synthetic resin pulp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215621A (en) * 1975-07-25 1977-02-05 Teijin Ltd Apparatus for producing pulp particles
JPS5310718A (en) * 1976-07-15 1978-01-31 Teijin Ltd Particle pulp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215621A (en) * 1975-07-25 1977-02-05 Teijin Ltd Apparatus for producing pulp particles
JPS5310718A (en) * 1976-07-15 1978-01-31 Teijin Ltd Particle pulp

Also Published As

Publication number Publication date
JPS57183417A (en) 1982-11-11

Similar Documents

Publication Publication Date Title
US4370290A (en) Process for producing aromatic polyimide filaments
JPH0333812B2 (en)
JP3856833B2 (en) Aromatic polyamide, optically anisotropic dope and molded product, and method for producing the same
EP2152781A1 (en) Polybenzazoles and polybenzazole precursors
JPS6350444B2 (en)
GB2032926A (en) Aromatic polyimide resin composition
US4178431A (en) Aromatic copolyamide fiber from benzidine sulfone or diamino phenanthridone
JPS6254725A (en) Aromatic polyamide and its production
JPS62162013A (en) Production of pulp-like short fiber of poly(p-phenylene terephthalamide)
JP6917027B2 (en) Polyimide fiber and its manufacturing method
CA1051594A (en) Aromatic polyamides and their production
EP0240302A2 (en) Aromatic polybenzimidazole and aromatic polyimide compositions and processes of manufacture
US3932365A (en) Preparation of high molecular weight polymer from oxalic acid and para-phenylene diisocyanate
JPH03104920A (en) Production of fiber of polybenzothiazoles, polybenzoxazoles or polybenzimidazoles
JPH0159400B2 (en)
JP2007154356A (en) Method for producing meta-aromatic polyamide polymer suitable for wet spinning
CA2140629C (en) Polyimide solution and process for preparing the same
JPH0226648B2 (en)
JP2718212B2 (en) Heat resistant film
JPH01204930A (en) Aromatic copolyamide for forming yarn, fiber and film, and its production and utilization
JPH0416490B2 (en)
CN118653224A (en) Polyimide fiber and preparation method thereof
CN118653305A (en) Composite polyimide fiber and preparation method thereof
JPS63315699A (en) Heat resistant sheet like article
JP2001114889A (en) Method for producing meta aromatic polyamide solution