JPS6347917A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPS6347917A
JPS6347917A JP19249986A JP19249986A JPS6347917A JP S6347917 A JPS6347917 A JP S6347917A JP 19249986 A JP19249986 A JP 19249986A JP 19249986 A JP19249986 A JP 19249986A JP S6347917 A JPS6347917 A JP S6347917A
Authority
JP
Japan
Prior art keywords
lead
silver
solid electrolytic
electrolytic capacitor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19249986A
Other languages
Japanese (ja)
Inventor
一美 内藤
正二 矢部
荒川 美明
隆 池崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP19249986A priority Critical patent/JPS6347917A/en
Publication of JPS6347917A publication Critical patent/JPS6347917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高周波性能の良好な固体電解コンデンサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid electrolytic capacitor with good high frequency performance.

〔従来の技術〕[Conventional technology]

一般に固体電解コンデンサの素子は、弁作用金属からな
る陽極基体に酸化皮膜層を形成し、この酸化皮膜層の外
面に対向電極として二酸化マンガンなどの半導体層を形
成する。ざらに接触抵抗を減じるためにグラファイト層
を介在させて順次銀ペースト層、はんだ層を設けて導電
体層を形成している。
In general, a solid electrolytic capacitor element has an oxide film layer formed on an anode base made of a valve metal, and a semiconductor layer such as manganese dioxide or the like formed as a counter electrode on the outer surface of this oxide film layer. In order to roughly reduce contact resistance, a graphite layer is interposed, and a silver paste layer and a solder layer are successively provided to form a conductor layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら導電体層に利用される銀ペーストは、極め
て高価であるため廉価なペーストを得る努力がなされて
きた。例えば、銅ペースト、ニッケルペーストが開発さ
れているが、前当は酸化安定性、接台は導電性にそれぞ
れ問題があり銀ペーストの代替には至っていない。
However, since the silver paste used for the conductor layer is extremely expensive, efforts have been made to obtain an inexpensive paste. For example, copper paste and nickel paste have been developed, but they have problems with oxidation stability and conductivity of the contact base, and have not been able to replace silver paste.

本発明者等は、上記の問題点を解決すべく鋭意研究した
結果、銀コートした銅粉および/または銀コートしたニ
ッケル粉からなるペースト層を導電体層にした固体コン
デンサは、銀ペーストを導電体層としたものと同等の酸
化安定性、損失係数を示し、ざらに、粉体の粒をによっ
て高周波性能が数置されることを発見した。
As a result of intensive research to solve the above-mentioned problems, the present inventors have discovered that a solid capacitor in which a paste layer made of silver-coated copper powder and/or silver-coated nickel powder is used as a conductor layer is a solid capacitor that uses silver paste as a conductive layer. It was found that the oxidation stability and loss coefficient are equivalent to that of a powder layer, and that the high frequency performance is improved by the powder particles.

本発明は、上記の発見に基づいてなされたもので、酸化
安定性、損失係数が、銀ペーストを用いたコンデンサと
同等で、しかも高周波性能がよく、かつ廉価な固体電解
コンデンサを提供することを目的とする。
The present invention was made based on the above discovery, and aims to provide an inexpensive solid electrolytic capacitor that has oxidation stability and loss coefficient equivalent to that of a capacitor using silver paste, has good high frequency performance, and is inexpensive. purpose.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の目的を達成すべくなされたもので、そ
の要旨は、弁作用金属からなる陽極基体に順次誘電体酸
化皮膜、半導体層、導電体層を形成してなる固体電解コ
ンデンサにおいて、上記導電体層が、銀コートした粒径
15μm以下の銅粉および/または銀コートした粒径1
5μm以下のニッケル粉からなるペースト層である固体
電解コンデンサにある。
The present invention has been made to achieve the above object, and the gist thereof is to provide a solid electrolytic capacitor in which a dielectric oxide film, a semiconductor layer, and a conductive layer are sequentially formed on an anode substrate made of a valve metal. The conductor layer is made of silver-coated copper powder with a particle size of 15 μm or less and/or silver-coated particle size 1
It is found in solid electrolytic capacitors, which are paste layers made of nickel powder of 5 μm or less.

(発明の具体的構成および作用] 以下、本発明の固体電解コンデンサについて説明する。(Specific structure and operation of the invention) The solid electrolytic capacitor of the present invention will be explained below.

本発明の固体電解コンデンサの陽極として用いられる弁
金属基体としては、例えばアルミニウム、タンタル、ニ
オブ、チタン及びこれらを基質とする合金等、弁作用を
有する金属がいずれも使用できる。
As the valve metal substrate used as the anode of the solid electrolytic capacitor of the present invention, any metal having a valve action can be used, such as aluminum, tantalum, niobium, titanium, and alloys using these as substrates.

陽極基体表面の酸化皮膜層は、陽極基体表層部分に設け
られた陽極基体自体の酸化物K・1であってもよく、あ
るいは、陽極基体の表面上に設けられた他のJ 電体酸
化物の層であってもよいが、特に陽極弁金属自体の酸化
物からなる層であることが望ましい。いずれの場合にも
酸化物層を設ける方法としては、従来公知の方法を用い
ることができる。
The oxide film layer on the surface of the anode substrate may be the oxide K.1 of the anode substrate itself provided on the surface layer portion of the anode substrate, or may be the oxide K. However, a layer made of an oxide of the anode valve metal itself is particularly desirable. In either case, a conventionally known method can be used to provide the oxide layer.

また、本発明において使用する半導体層の組成及び作製
方法に特にa111限はないが、コンデンサの性能を高
めるためには二酸化鉛もしくは、二酸化鉛と硫酸鉛を主
成分として、従来公知の化学的析出法、或は電気化学的
析出法で作製するのが好ましい。
Although there are no particular limitations on the composition and manufacturing method of the semiconductor layer used in the present invention, in order to improve the performance of the capacitor, lead dioxide or lead dioxide and lead sulfate may be used as main components, and conventionally known chemical precipitation methods may be used. Preferably, it is produced by an electrochemical deposition method or an electrochemical deposition method.

化学的析出法としては、例えば、鉛含有化合物と酸化剤
を含んだ溶液から化学的に析出させる方法が挙げられる
Examples of the chemical precipitation method include a method of chemically precipitating from a solution containing a lead-containing compound and an oxidizing agent.

鉛含有化合物としては、例えばオキシン、アセチルアセ
トン、ピロメコン酸、サリチル酸、アリザリン、ポリ酢
酸ビニル、ポルフィリン系化合物、クラウン化合物、ク
リブデート化合物等のキレート形成性化合物に鉛の原子
が配位結合もしくはイオン結合している鉛含有化合物、
クエン酸鉛、酢酸鉛、塩基性酢酸鉛、塩化鉛、臭化鉛、
過塩素酸鉛、塩素酸鉛、リードサルファメイト、六弗化
ケイ素鉛、臭素酸鉛、ホウフッ化鉛、酢酸鉛水和物、硝
酸鉛等があげられる。これらの鉛含有化合物IJ 。
Examples of lead-containing compounds include those in which a lead atom has a coordinate bond or an ionic bond with a chelate-forming compound such as oxine, acetylacetone, pyromeconic acid, salicylic acid, alizarin, polyvinyl acetate, porphyrin compounds, crown compounds, and cribdate compounds. lead-containing compounds,
Lead citrate, lead acetate, basic lead acetate, lead chloride, lead bromide,
Examples include lead perchlorate, lead chlorate, lead sulfamate, lead silicon hexafluoride, lead bromate, lead fluoroborate, lead acetate hydrate, and lead nitrate. These lead-containing compounds IJ.

反応母液に使用する溶剤によって適宜選択される。It is appropriately selected depending on the solvent used for the reaction mother liquor.

また、これらの鉛含有化合物は2種以上混合して使用し
ても良い。
Further, two or more of these lead-containing compounds may be used in combination.

反応は液中の鉛含有化合物の濃度は、飽和溶解度を与え
る濃度から0.05モル/Jの範囲であり、好ましくは
飽和溶解度を与える濃度から0.1モル/ノの範囲内で
あり、より好ましくは飽和溶解度を与える濃度から0.
5モル/Jの範囲である。反応母液中の鉛含有化合物の
濃度が0.05モル/J未満では、性能の良好な固体“
電解コンデンサを得ることができない。また反応母液中
の鉛含有化合物の濃度が飽和溶解度を越える場合は、増
量添加によるメリットが認められない。
In the reaction, the concentration of the lead-containing compound in the solution is within the range of 0.05 mol/J from the concentration that gives saturated solubility, preferably within the range of 0.1 mol/J from the concentration that gives saturated solubility, and more Preferably 0.0% from the concentration giving saturation solubility.
It is in the range of 5 mol/J. When the concentration of lead-containing compounds in the reaction mother liquor is less than 0.05 mol/J, a solid with good performance is produced.
Can't get electrolytic capacitors. Further, if the concentration of the lead-containing compound in the reaction mother liquor exceeds the saturation solubility, no merit can be observed by adding an increased amount.

酸化剤としては、例えばキノン、クロラニル、ピリジン
−N−オキサイド、ジメチルスルフォキサイド、クロム
酸、過マンガン酸カリ、セレンオキサイド、酢酸水銀、
酸化バナジウム、塩素酸ナトリウム、塩化第二鉄、過酸
化水素、過酸化ベンゾイル、次亜塩素酸カルシウム、亜
塩素酸カルシウム、塩素酸カルシウム、過塩素酸カルシ
ウム等があげられる。これらの酸化剤は、使用する溶剤
によって適宜に選択すればよい。また酸化剤は、2種以
上混合して使用してもよい。
Examples of the oxidizing agent include quinone, chloranil, pyridine-N-oxide, dimethyl sulfoxide, chromic acid, potassium permanganate, selenium oxide, mercury acetate,
Examples include vanadium oxide, sodium chlorate, ferric chloride, hydrogen peroxide, benzoyl peroxide, calcium hypochlorite, calcium chlorite, calcium chlorate, and calcium perchlorate. These oxidizing agents may be appropriately selected depending on the solvent used. Further, two or more oxidizing agents may be used in combination.

酸化剤の使用割合は、鉛含有化合物の使用上ル吊の5〜
0.1倍モルの範囲内であることが好ましい。酸化剤の
使用割合が鉛化合物の使用モル最の5倍モルより多い場
合は、コスト的にメリットはなく、また0、1倍モルよ
り少ない場合は、性能の良好な固体Ti解コンデンナが
得られない。
The ratio of the oxidizing agent used is 5 to
It is preferably within the range of 0.1 times the mole. If the proportion of the oxidizing agent used is more than 5 times the mole of the lead compound used, there is no cost advantage, and if it is less than 0 or 1 times the mole of the lead compound used, a solid Ti decomposition condenser with good performance cannot be obtained. do not have.

二酸化鉛を主成分とする半導体層を形成する方法として
は、例えば鉛含有化合物を溶かした溶液と酸化剤を溶か
した溶液を混合して反応母液を調製した後、反応母液に
前記した酸化皮膜を設けた陽極基体を浸漬して化学的に
析出させる方法があげられる。
As a method for forming a semiconductor layer containing lead dioxide as a main component, for example, a reaction mother liquor is prepared by mixing a solution containing a lead-containing compound and a solution containing an oxidizing agent, and then the above-mentioned oxide film is added to the reaction mother liquor. A method of chemically depositing the anode by immersing the provided anode substrate can be mentioned.

一方、電気化学的析出法としては、例えば本発明者等が
先に提案した高濃度の鉛イオンを含んだ電解液中で電解
酸化により二酸化鉛を析出させる方法等が挙げられる(
特願昭6l−26952)。
On the other hand, examples of electrochemical deposition methods include a method previously proposed by the present inventors in which lead dioxide is deposited by electrolytic oxidation in an electrolytic solution containing a high concentration of lead ions (
Patent application Sho 6l-26952).

また、半導体層を本来、半導体の役割を果たす二酸化鉛
と絶縁物質である硫酸鉛を主成分とする層で構成すると
硫酸鉛の配合により、コンデンサの漏れ電流値を低減せ
しめることができる。一方、硫酸鉛の配合により半導体
層の電気伝導度が低くなるため損失係数値が大きくなる
が、従来の固体電解コンデンサと比較しても高水準の性
能を維持発現することが本発明により見出された。従っ
て、半導体層を、二酸化鉛と硫酸鉛の混合物で構成する
場合、二酸化鉛を10m節部以上100重量部未満に対
して硫酸鉛を90重Q部以下という広範囲の組成で良好
なコンデンサ性能を維持発現することができるが、好ま
しくは二酸化鉛20〜50重吊部に缶部て硫酸鉛80〜
50重徂部、より好ましくは二酸化鉛25〜35重吊部
に缶部て硫酸鉛75〜65重量部の範囲で漏れ電流値と
損失係数値のバランスが良好となる。二酸化鉛が10重
缶部未満であると導電性が悪くなるために損失係数が大
きくなり、また容ωが充分出現しない。
Further, if the semiconductor layer is composed of a layer whose main components are lead dioxide, which plays the role of a semiconductor, and lead sulfate, which is an insulating material, the leakage current value of the capacitor can be reduced by adding lead sulfate. On the other hand, the present invention has found that although the addition of lead sulfate lowers the electrical conductivity of the semiconductor layer and increases the loss factor, it maintains and exhibits a high level of performance compared to conventional solid electrolytic capacitors. It was done. Therefore, when the semiconductor layer is composed of a mixture of lead dioxide and lead sulfate, good capacitor performance can be obtained over a wide range of compositions in which lead dioxide is contained in 10 m nodes or more and less than 100 parts by weight, and lead sulfate is contained in 90 parts by weight or less. Although it is possible to maintain the expression, it is preferable to use 20 to 50 lead dioxide in the suspended part and 80 to 80 to lead sulfate in the can part.
A good balance between the leakage current value and the loss factor value can be achieved in a range of 50 parts by weight, more preferably 25 to 35 parts by weight of lead dioxide and 75 to 65 parts by weight of lead sulfate. If the amount of lead dioxide is less than 10 parts, the conductivity will be poor, the loss factor will be large, and the capacity ω will not be sufficiently expressed.

二酸化鉛と硫酸鉛を主成分とする半導体層は、例えば鉛
イオン及び過硫酸イオンを含んだ水溶液を反応母液とし
て化学的析出によって形成することができる。又、″A
硫酸イオンを含まない適当な酸化剤を加えてもよい。
A semiconductor layer containing lead dioxide and lead sulfate as main components can be formed by chemical precipitation using, for example, an aqueous solution containing lead ions and persulfate ions as a reaction mother liquid. Also, ``A
A suitable oxidizing agent that does not contain sulfate ions may also be added.

母液中の鉛イオンQBは、飽和溶解度を与える濃度から
0.05モル/J1好ましくは飽和溶解度を与える濃度
から0.1モル/J1より好ましくは飽和溶解度を与え
る濃度から0.5モル/Jの範囲内である。鉛イオンの
濃度が飽和溶解度より高い場合には、増r添加によるメ
リットがない。
The lead ion QB in the mother liquor is preferably 0.05 mol/J1 from the concentration that gives saturated solubility, preferably 0.1 mol/J1 from the concentration that gives saturated solubility, more preferably 0.5 mol/J from the concentration that gives saturated solubility. Within range. When the concentration of lead ions is higher than the saturation solubility, there is no benefit from adding r.

また、鉛イオンの濃度が0.05モル/Jより低い場合
には、母液中の鉛イオンが博すきるため塗布回数を多く
しなければならないという難点がある。
Furthermore, when the concentration of lead ions is lower than 0.05 mol/J, there is a problem that the number of applications must be increased because the lead ions in the mother liquor become concentrated.

一方、母液中の過硫酸イオン濃度は鉛イオンに対してモ
ル比で5から0.05の範囲内である。
On the other hand, the concentration of persulfate ions in the mother liquor is within the range of 5 to 0.05 in molar ratio to lead ions.

過硫酸イオンの濃度が鉛イオンに対してモル比で5より
多いと、未反応の過硫酸イオンが残るためコスト高とな
り、また過硫酸イオンの濃度が鉛イオンに対してモル比
で0.05より少ないと、未反応の鉛イオンが残り導電
性が悪くなるので好ましくない。
If the concentration of persulfate ions is more than 5 in molar ratio to lead ions, unreacted persulfate ions remain, resulting in high costs, and the concentration of persulfate ions is 0.05 in molar ratio to lead ions. If the amount is less, unreacted lead ions remain and conductivity deteriorates, which is not preferable.

鉛イオン種を与える化合物としては、例えばクエン酸鉛
、過塩素酸鉛、硝酸鉛、酢酸鉛、塩基性酢酸鉛、塩素酸
鉛、リードサルファメイト、六弗化ケイ素泊、臭素酸鉛
、塩化鉛、臭化鉛等が挙げられる。これらの鉛イオン種
を与える化合物は2種以上混合して使用してもよい。一
方、過硫酸イオン種を与える化合物としては、例えば過
硫酸力す、過硫酸ナトリウム、過硫酸アンモニウム等が
挙げられる。これらの過硫酸イオン種を与える化合物は
、2種以上混合して使用してもよい。
Examples of compounds that provide lead ion species include lead citrate, lead perchlorate, lead nitrate, lead acetate, basic lead acetate, lead chlorate, lead sulfamate, silicon hexafluoride, lead bromate, and lead chloride. , lead bromide, etc. Two or more of these compounds providing lead ion species may be used in combination. On the other hand, examples of compounds that provide persulfate ion species include persulfate, sodium persulfate, and ammonium persulfate. Two or more of these compounds that provide persulfate ion species may be used in combination.

一方、酸化剤としては、例えば過酸化水素、次亜塩素酸
カルシウム、亜塩素酸カルシウム、塩素酸カルシウム、
過塩素酸カルシウム等が挙げられる。
On the other hand, examples of oxidizing agents include hydrogen peroxide, calcium hypochlorite, calcium chlorite, calcium chlorate,
Examples include calcium perchlorate.

また、半導体層上に設けられる導電体層は、銀コートし
た銅粉および/または銀コートしたニッケル粉からなる
ペースト層が使用される。銀コートした銅粉および/ま
たは銀コートしたニッケル粉の作製方法としては、例え
ば銅粉もしくはニッケル粉に銀を無電解メツキすること
によって得る方法が挙げられる。粉体中の銀量は50重
量%未満、好ましくは20重ら1%未満である。銀ji
ltが50重量%を越えても増量によるメリットはない
Further, as the conductor layer provided on the semiconductor layer, a paste layer made of silver-coated copper powder and/or silver-coated nickel powder is used. Examples of the method for producing silver-coated copper powder and/or silver-coated nickel powder include a method in which copper powder or nickel powder is electrolessly plated with silver. The amount of silver in the powder is less than 50% by weight, preferably less than 20% by weight and less than 1% by weight. silver ji
Even if lt exceeds 50% by weight, there is no benefit from increasing the amount.

このように、銅あるいはニッケルに銀をコートすると、
・高価な銀の使用量が大幅に減少し、導電体層を形成す
るためのペーストの製作費が安価となり、しかも、その
電気的特性は、仝聞銀粉を用いた場合と同等となる。
In this way, when copper or nickel is coated with silver,
・The amount of expensive silver used is significantly reduced, the manufacturing cost of the paste for forming the conductor layer is low, and its electrical properties are equivalent to those using pure silver powder.

上記銅粉またはニッケル粉は、作製した固体゛iu解コ
ンデンサの高周波性能を良好にするために、粒径が15
μm以下であることが肝要である。また、銅粉およびニ
ッケル粉は導電性ペーストとした場合の尊・重性を良好
ならしめるため、すなわち、ペースト中での粉体と粉体
との接触をよくするため薄片状であることが望ましい。
The above copper powder or nickel powder has a particle size of 15
It is important that the thickness be less than μm. In addition, copper powder and nickel powder are desirably flaky in order to have good respectability when used as a conductive paste, that is, to improve contact between the powders in the paste. .

銀コートした銅粉からなるペースト、或は銀コートした
ニッケル粉からなるペーストの作製方法は、銀コートし
た銅粉或はニッケル粉と、適当な重合体もしくはオリゴ
マーと、溶媒とを混合して得られる。
A method for producing a paste made of silver-coated copper powder or a paste made of silver-coated nickel powder is to mix silver-coated copper powder or nickel powder, an appropriate polymer or oligomer, and a solvent. It will be done.

上記重合体もしくはオリゴマーとしては、公知の導電ペ
ーストに使用される重合体もしくはオリゴマーが使用さ
れ、例えばアクリル樹脂、アルキッド樹脂、フッ素樹脂
、セルロース樹脂、ビニル樹脂、シリコン樹脂、エポキ
シ樹脂、ウレタン樹脂、ノボラック、レゾール等が挙げ
られるが、これらに限定されるものではないことはいう
までもない。
As the above-mentioned polymer or oligomer, polymers or oligomers used in known conductive pastes are used, such as acrylic resin, alkyd resin, fluororesin, cellulose resin, vinyl resin, silicone resin, epoxy resin, urethane resin, novolac resin, etc. , resol, etc., but it goes without saying that the material is not limited to these.

また、使用される溶媒は、これらの重合体もしくはオリ
ゴマーを溶解するものであればよく公知の溶媒が適用さ
れる。この溶媒は導電体層を乾燥中に飛散し、固体コン
デンサのペースト層中には残らない。また、重合体もし
くはオリゴマーが液体の時は溶媒を使用しなくてもよい
。ざらに熱硬化性の重合体もしくはオリゴマーの場合、
公知の硬化剤を加えてもよく、あるいは、硬化剤の入っ
た液を別に作製して使用時に調合して使用してもよい。
Further, the solvent used may be any known solvent as long as it dissolves these polymers or oligomers. This solvent scatters during drying of the conductor layer and does not remain in the paste layer of the solid capacitor. Further, when the polymer or oligomer is liquid, it is not necessary to use a solvent. In the case of roughly thermosetting polymers or oligomers,
A known curing agent may be added, or a liquid containing a curing agent may be prepared separately and mixed at the time of use.

ペースト中に占める粉体の割合は、35〜95重量%で
あり、好ましくは65〜95 r、u ;11%である
。粉体の割合が35重湯%未満では、ペーストの導電性
が不十分であり、また95重量%より多い場合は、ペー
ストの接着性が不十分であり、共に固体電解コンデンサ
の性能が悪くなる。
The proportion of powder in the paste is 35 to 95% by weight, preferably 65 to 95 r,u; 11%. When the proportion of powder is less than 35% by weight, the conductivity of the paste is insufficient, and when it is greater than 95% by weight, the adhesiveness of the paste is insufficient, and the performance of the solid electrolytic capacitor deteriorates in both cases.

このように構成された本発明の固体電解コンデンサは例
えば樹脂モールド、樹脂ケース、金属製の外装ケース、
樹脂のディッピング、ラミネートフィルムによる外装に
より各種用途の汎用コンデンサ製品とすることができる
The solid electrolytic capacitor of the present invention configured as described above can be made of, for example, a resin mold, a resin case, a metal exterior case,
It can be made into a general-purpose capacitor product for various uses by resin dipping and laminate film exterior.

〔実施例〕〔Example〕

以下、実施例、比較例を示して、本発明を説明する。 Hereinafter, the present invention will be explained by showing Examples and Comparative Examples.

実施例1 長さ2 cm 、幅1 cmのアルミニウム箔を陽極と
し、交流により箔の表面を電気化学的にエツチング処理
した後、エツチングアルミニウム箔に陽極端子をかしめ
付けし、陽極リード線を接続した。次いで、ホウ酸とホ
ウ酸アンモニウムの水溶液中で電気化学的に処理してア
ルミ犬の酸化皮膜を形成し、低圧用エツチングアルミニ
ウム化成箔(約0.5μF / ci )を青た。ざら
に、この化成箔の陽極端子リード線以外の部分を酢酸鉛
三水和物1.0モル/J水溶液に浸iet L/、酢酸
鉛三水和物に対して0.5倍モルの過酸化水素の希釈水
溶液を加え、1時間放置して誘電体皮膜層上に二酸化鉛
層からなる半導体層を形成し、二酸化鉛層を水洗いし未
反応物を除去した後減圧乾燥した。
Example 1 An aluminum foil with a length of 2 cm and a width of 1 cm was used as an anode, and after the surface of the foil was electrochemically etched using alternating current, the anode terminal was caulked to the etched aluminum foil and an anode lead wire was connected. . Then, it was electrochemically treated in an aqueous solution of boric acid and ammonium borate to form an oxide film on the aluminum, turning the low-pressure etched aluminum chemical foil (approximately 0.5 μF/ci) blue. Roughly, the parts of this chemically formed foil other than the anode terminal lead wire were immersed in a 1.0 mol/J aqueous solution of lead acetate trihydrate, and 0.5 times the molar excess of lead acetate trihydrate. A dilute aqueous solution of hydrogen oxide was added, and the mixture was left to stand for 1 hour to form a semiconductor layer consisting of a lead dioxide layer on the dielectric film layer.The lead dioxide layer was washed with water to remove unreacted materials, and then dried under reduced pressure.

また、粒径が4μmから7μ汎の間にある銅粉に無電解
銀メツキをほどこした銀m10重量%の銀コート銅粉に
ポリメチルメタクリレートを溶解したt−ブタノール溶
液を加え、ポリメチルメタクリレートが20重電1%、
銀コート粉が80重R)%になるように調合し、銀コー
ト銅粉からなるペーストを作製し、これを上記誘電体皮
膜層上に二酸化鉛層が形成された化成箔に塗布して乾燥
した。
In addition, a t-butanol solution in which polymethyl methacrylate was dissolved was added to a silver-coated copper powder containing 10% by weight of silver plated with electroless silver plating on copper powder with a particle size between 4 μm and 7 μm. 20 heavy electric 1%,
A paste consisting of silver coated copper powder is prepared by mixing the silver coat powder to 80% by weight (R)%, and this is applied to the chemically formed foil on which the lead dioxide layer is formed on the dielectric film layer and dried. did.

さらにこのベース1〜で陰極端子を接続し、樹脂肩口し
て固体電解コンデンサを作製した。
Furthermore, a cathode terminal was connected to this base 1~, and a solid electrolytic capacitor was fabricated using resin.

実施例2 実施例1と同様な化成箔の陽極端子リード線以外の部分
を、酢酸鉛三本和物2.4’ニル/lの水溶液と過硫酸
アンモニウム4′Fニル/Jの水溶液の混合液(反応母
液)に)Ω;ζ■し、80°Cで40分反応させ、誘雷
体駁化皮膜層上に生じた二酸化鉛とlll!I酸鉛から
なるA′右休体を水で充分洗浄した1セ、120℃で減
圧乾燥した。生成した半導体層は二酸化鉛、と硫酸鉛か
ら成り、二酸化鉛が約25千M%含まれることを質量分
析、X線分析、赤外分光分析より確認した。
Example 2 The same chemically formed foil as in Example 1 except for the anode terminal lead wire was treated with a mixed solution of an aqueous solution of lead acetate trihydrate 2.4'Nyl/L and an aqueous solution of ammonium persulfate 4'FNyl/J. (reaction mother liquor)) and reacted at 80°C for 40 minutes to form lead dioxide and lll! The A' right suspension consisting of lead I acid was thoroughly washed with water and dried under reduced pressure at 120°C. The generated semiconductor layer was composed of lead dioxide and lead sulfate, and it was confirmed by mass spectrometry, X-ray analysis, and infrared spectroscopy that it contained about 25,000 M% of lead dioxide.

次いで半導体層上に実施例1で作製したのと同様な銀コ
ート銅粉からなるペーストを塗布し乾燥し、実施例1と
同様な方法で陰極を取り出し、樹脂封口して固体電解コ
ンデンサを作製した。
Next, a paste made of silver-coated copper powder similar to that produced in Example 1 was applied onto the semiconductor layer and dried, and the cathode was taken out in the same manner as in Example 1 and sealed with resin to produce a solid electrolytic capacitor. .

実施例3 実施例2で半導体形成の際の反応母液に、さらに過酸化
水素水を0.05モル/J加えた以外は、実施例1と同
様にして半導体層・を作製した。このときの半導体層は
、二酸化鉛と硫M鉛からなる組成物であって、二酸化鉛
が約50重量%含まれることを確認した。
Example 3 A semiconductor layer was produced in the same manner as in Example 1, except that 0.05 mol/J of hydrogen peroxide solution was further added to the reaction mother liquor during semiconductor formation in Example 2. It was confirmed that the semiconductor layer at this time was composed of lead dioxide and lead sulfate, and contained about 50% by weight of lead dioxide.

また、粒径が8μmから14μmの間にあるニッケル粉
に無電解銀メツキをほどこしたlff115重量%の銀
コートニッケル粉70重量%にレゾール30重;」1%
を加えて、銀コートニッケル粉からなるペーストを作製
し、これを上記訓電体皮膜層上に二酸化鉛と硫酸鉛から
なる半導体層が形成された化成箔に塗布し140℃で乾
燥した。さらにこのペーストで陰極端子を接続し140
℃で乾燥した後、樹脂封口して固体電解コンデンサを作
製した。
In addition, 70% by weight of silver-coated nickel powder of 115% by weight of LFF, which is made by applying electroless silver plating to nickel powder with a particle size between 8 μm and 14 μm, and 30% by weight of resol; 1%
was added to prepare a paste consisting of silver-coated nickel powder, which was applied to a chemically formed foil on which a semiconductor layer consisting of lead dioxide and lead sulfate was formed on the electrical conductor film layer, and dried at 140°C. Furthermore, connect the cathode terminal with this paste and
After drying at ℃, the capacitor was sealed with resin to produce a solid electrolytic capacitor.

比較例1 粒径が18μmから30μmの間にある銅粉で銀コート
銅粉を作製した伯は、実施例1と同様にして固体電解コ
ンデンサを作製した。
Comparative Example 1 A solid electrolytic capacitor was produced in the same manner as in Example 1, using silver-coated copper powder using copper powder having a particle size between 18 μm and 30 μm.

比較例2 銀の無電解メツキを施さない銅粉を用いた他はし実施例
2と同様にして固体電解コンデンサを作成した。
Comparative Example 2 A solid electrolytic capacitor was produced in the same manner as in Example 2 using copper powder that was not electrolessly plated with silver.

実施例1〜3、比較例1.2において作製した固体電解
コンデンサの特性値を一括して第1表に示す。
Table 1 shows the characteristic values of the solid electrolytic capacitors manufactured in Examples 1 to 3 and Comparative Examples 1 and 2.

第    1    表 但し、* 120H7での値 一10Vでの値 寧**100KHzでの(直 本ネ本*125℃で500時間放74後の容filを示
す。
Table 1: *Value at 120H7 - Value at 10V - *Value at 100KHz (Direct *Represents volume after being exposed to 125° C. for 500 hours 74).

第1表から明らかなように、銀コート銅粉および/また
は銀コートニッケル粉を尋′虐体として使用した固体電
解コンデンサは、良好な性質を示すことがわかる。しか
も15μm以下の粒径の粉体を用いたものは、高周波性
能がとりわけ良好である。
As is clear from Table 1, the solid electrolytic capacitors using silver-coated copper powder and/or silver-coated nickel powder as the material exhibit good properties. Furthermore, those using powder having a particle size of 15 μm or less have particularly good high frequency performance.

なお、本発明において、粒径15μm以下の銀コート銅
粉および/または粒径15μm以下の銀コートニッケル
粉にさらに銀粉を適吊加えたペーストを調合した後、該
ペーストを導電体層として利用した固体電解コンデンサ
を作製した場合、銀粉の加入によるコストアップという
点を除けば、高周波性能を含んで固体電解コンデンサの
性能は良好であり、本発明の一応用例であることは明ら
かである。
In addition, in the present invention, after preparing a paste in which a suitable amount of silver powder was further added to silver-coated copper powder with a particle size of 15 μm or less and/or silver-coated nickel powder with a particle size of 15 μm or less, the paste was used as a conductor layer. When a solid electrolytic capacitor is manufactured, except for the cost increase due to the addition of silver powder, the performance of the solid electrolytic capacitor including high frequency performance is good, and it is clear that this is an example of application of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明に係るの固体電解コンアンは
、従来の固体電解コンデンサに比してコンデンサ性能が
よく、特に高周波特性に優れ、かつ、廉価である等、の
長所を右する。
As described above, the solid electrolytic capacitor according to the present invention has advantages such as superior capacitor performance, particularly excellent high frequency characteristics, and low cost compared to conventional solid electrolytic capacitors.

Claims (3)

【特許請求の範囲】[Claims] (1)弁作用金属からなる陽極基体に順次誘電体酸化皮
膜、半導体層、導電体層を形成してなる固体電解コンデ
ンサにおいて、上記導電体層が、銀コートした粒径15
μm以下の銅粉および/または銀コートした粒径15μ
m以下のニッケル粉からなるペースト層であることを特
徴とする固体電解コンデンサ。
(1) In a solid electrolytic capacitor in which a dielectric oxide film, a semiconductor layer, and a conductive layer are sequentially formed on an anode substrate made of a valve metal, the conductive layer has a silver-coated particle size of 15
Particle size 15μ coated with copper powder and/or silver less than μm
A solid electrolytic capacitor characterized in that it is a paste layer made of nickel powder with a size of less than m.
(2)半導体層が二酸化鉛を主成分とする層である特許
請求の範囲第1項記載の固体電解コンデンサ。
(2) The solid electrolytic capacitor according to claim 1, wherein the semiconductor layer is a layer containing lead dioxide as a main component.
(3)半導体層が二酸化鉛と硫酸鉛を主成分とする層で
ある特許請求の範囲第1項記載の固体電解コンデンサ。
(3) The solid electrolytic capacitor according to claim 1, wherein the semiconductor layer is a layer containing lead dioxide and lead sulfate as main components.
JP19249986A 1986-08-18 1986-08-18 Solid electrolytic capacitor Pending JPS6347917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19249986A JPS6347917A (en) 1986-08-18 1986-08-18 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19249986A JPS6347917A (en) 1986-08-18 1986-08-18 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS6347917A true JPS6347917A (en) 1988-02-29

Family

ID=16292323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19249986A Pending JPS6347917A (en) 1986-08-18 1986-08-18 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6347917A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294303A (en) * 1988-05-20 1989-11-28 Showa Denko Kk Conductive paste and solid-state electrolytic capacitor
JPH0457316A (en) * 1990-06-27 1992-02-25 Hitachi Aic Inc Chip type tantalum capacitor
JPH0547610A (en) * 1991-08-08 1993-02-26 Hitachi Aic Inc Tantalum solid electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294303A (en) * 1988-05-20 1989-11-28 Showa Denko Kk Conductive paste and solid-state electrolytic capacitor
JPH0457316A (en) * 1990-06-27 1992-02-25 Hitachi Aic Inc Chip type tantalum capacitor
JPH0547610A (en) * 1991-08-08 1993-02-26 Hitachi Aic Inc Tantalum solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
EP0267762B1 (en) Solid electrolyte capacitor and process for preparation thereof
JPS6351621A (en) Solid electrolytic capacitor and manufacture of the same
JPS6347917A (en) Solid electrolytic capacitor
JPH0727851B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6328028A (en) Solid electrolytic capacitor
JP2533911B2 (en) Solid electrolytic capacitor
JPH0577283B2 (en)
JPH0770438B2 (en) Method for manufacturing solid electrolytic capacitor
JPS62268122A (en) Solid electrolytic capacitor
JPS6323307A (en) Solid electrolytic capacitor
JPS63207117A (en) Manufacture of solid electrolytic capacitor
JPS63152113A (en) Manufacture of solid electrolytic capacitor
JPS63144510A (en) Manufacture of solid electrolytic capacitor
JPH0695492B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0821523B2 (en) Solid electrolytic capacitor
JPH0770445B2 (en) Solid electrolytic capacitor
JPH0821522B2 (en) Solid electrolytic capacitor
JPH0198212A (en) Solid electrolytic capacitor
JPS63111608A (en) Manufacture of solid electrolytic capacitor
JPH0727846B2 (en) Manufacturing method of wound type solid electrolytic capacitor
JPS63283116A (en) Manufacture of solid electrolytic capacitor
JPH0777185B2 (en) Method for manufacturing solid electrolytic capacitor
JPS63207116A (en) Solid electrolytic capacitor
JPS62277714A (en) Solid electrolytic capacitor
JPS63111609A (en) Manufacture of solid electrolytic capacitor