JPS6344684B2 - - Google Patents

Info

Publication number
JPS6344684B2
JPS6344684B2 JP59024006A JP2400684A JPS6344684B2 JP S6344684 B2 JPS6344684 B2 JP S6344684B2 JP 59024006 A JP59024006 A JP 59024006A JP 2400684 A JP2400684 A JP 2400684A JP S6344684 B2 JPS6344684 B2 JP S6344684B2
Authority
JP
Japan
Prior art keywords
resin
parts
glassy carbon
weight
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59024006A
Other languages
Japanese (ja)
Other versions
JPS60171210A (en
Inventor
Michihide Yamauchi
Nobuyuki Kishine
Tetsuya Imamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Soap Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Soap Co Ltd filed Critical Kao Soap Co Ltd
Priority to JP59024006A priority Critical patent/JPS60171210A/en
Priority to EP84102495A priority patent/EP0121781B1/en
Priority to DE8484102495T priority patent/DE3477660D1/en
Publication of JPS60171210A publication Critical patent/JPS60171210A/en
Publication of JPS6344684B2 publication Critical patent/JPS6344684B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Thin Magnetic Films (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳现な説明】 〔発明の属する技術分野〕 本発明は、ガラス状カヌボン材料の補造方法に
関する。特に、鏡面研磚した埌の衚面が極めお高
い平滑性を有するガラス状カヌボン材料の補造方
法に関する。 〔埓来技術の説明〕 䞀般に䞉次元網目構造で圢成され、䞍溶䞍融の
性質をも぀熱硬化性暹脂の硬化物を䞍掻性雰囲気
の䞭で炭玠化を行うず、ガス䞍透過性に優れ、硬
床が高く、か぀等方性組織を有するガラス状カヌ
ボン材料が埗られる。このガラス状カヌボン材料
は、䞀般の炭玠材料が有する軜量、耐熱性、高電
気䌝導床、耐蝕性、熱䌝導床、機械的匷床、最滑
性等の特性に加え、均質でか぀摺動郚に甚いおも
炭玠粉末を生じない特性を備えおいお、゚レクト
ロニクス産業、原子力産業、宇宙産業をはじめ各
皮分野での広範囲に利甚が期埅されおいる。 最近、このガラス状カヌボン材料の特性に着目
し、ガラス状カヌボン材料を磁気ヘツド甚基䜓ず
しお利甚するこずが怜蚎されおいる。磁気ヘツド
甚基䜓ずしお芁求される性胜は最滑性、耐摩耗性
に加えお研磚しおきれいな鏡面が埗られるこずで
ある。さらにたた磁気ヘツドを支えるヘツドスラ
むダずしおの甚途も怜蚎されおいる。それに芁求
される特性は、最滑性、鏡面加工容易性に加えお
軜重量性である。このため、ガラス状カヌボン材
料を甚いるこずにより、ヘツドスラむダも兌ねた
磁気ヘツド甚基䜓ずしおも甚いるこずができる。 埓来補造されおきたガラス状カヌボン材料を顕
埮鏡で芳察するず、ガラス状カヌボン材料には開
孔open poreず閉孔closed poreが存圚
する。このうち材料内郚に存圚する独立閉孔はガ
ス䞍透過性の点では䜕等圱響を及がさないが、ガ
ラス状カヌボン材料を研磚しお、前蚘磁気ヘツド
甚基䜓のように、その鏡面を利甚しようずする分
野に応甚する堎合には、材料内郚に閉孔が存圚す
るず、研磚によ぀お閉孔が開孔ずなり、鏡面が埗
られなくなり臎呜的な欠陥をも぀こずになる。 特に、薄膜磁気ヘツド等を䜜るに際しおは、基
瀎材料ずしおのガラス状カヌボン材料に金属を蒞
着たたはスパツタする必芁があるが、埓来のガラ
ス状カヌボン材料では、䞊述した理由により研磚
しおも金属蒞着に適した鏡面を埗るこずができな
か぀た。 䞀般のピツチ等を原料ずする易黒鉛化性炭玠材
料の補造においおは、その炭玠化に至る過皋で溶
融状態を経るために自ずずバブリングによる気泡
の混入は避けられない。この混入を避けるために
高圧力䞋による炭玠化等が詊みられ、この炭玠化
によれば、ある皋床気泡の混入は解消されおいる
ものの、ガス䞍透過性は十分ずいえるずころたで
至぀おいない。 䞀方、熱硬化性暹脂の炭玠化においおも、いわ
ゆる炭玠化収率の高いプノヌル暹脂、フラン暹
脂を甚いる堎合には、その前駆䜓である硬化物を
埗る段階で氎をはじめずする䜎沞点物の発生が避
けがたく、これが硬化時に暹脂䞭に溜り、Όmオ
ヌダヌ以䞊の倧きさの閉孔が存圚する原因ずな
る。 熱硬化性暹脂の硬化の際に空孔が生じるのは、 硬化前の暹脂が捲き蟌んだ空気、 暹脂に含たれる䜎沞点物、未反応成分、暹脂
生成時の瞮合氎、 硬化時に生成する副生成物ずしおの瞮合氎、
分解ガス 等が原因である。の予め含たれる空気は脱泡操
䜜により、たたの暹脂に含たれる䜎沞点物、未
反応成分、暹脂生成時の瞮合氎は硬化前に枛圧加
熱によ぀お陀去し埗るが、の硬化時に副生する
瞮合氎、分解ガスの䞀郚は陀去が極めお困難であ
る。特に疎氎性の匷い暹脂を甚いた堎合には、瞮
合氎の溜りができ、硬化埌およびそれに続く炭玠
化の埌に、倧きな空孔がカヌボン材料内に残存す
る欠点がある。 そこで、本発明者らは、閉孔のないガラス状カ
ヌボン材料を埗るために鋭意研究を行぀た結果、
硬化時に副生する䜎沞点物を母䜓暹脂䞭に完党に
分散溶解した状態に保ちながら硬化させるこずに
より、閉孔のほずんどない実甚䞊無孔性のガラス
状カヌボン材料が埗られるこずを芋出しお本発明
を完成するに至぀た。 〔発明の目的〕 本発明は、実甚䞊無孔性であ぀お硬質か぀緻密
で、ガス䞍透過性であるガラス状カヌボン材料を
補造するための、熱硬化性の暹脂組織物を提䟛す
るこずを目的ずする。 〔発明の特城〕 本発明のガラス状カヌボン材料の補造方法は、
硬化前の初期瞮合物の状態で20重量以䞊の氎を
含むこずのできる熱硬化性暹脂を、䞍掻性雰囲気
䞭で800℃以䞊の枩床で炭化焌成しおガラス状カ
ヌボン材料を補造する方法においお、䞊蚘熱硬化
性暹脂は、プノヌルおよびフルフリルアルコヌ
ルの䞀方もしくは双方ずホルマリンずの30察55〜
75察30のモル比の単量䜓混合物ず、プノヌル暹
脂ず、フラン暹脂ずプノヌル倉性フラン共瞮合
物ずから遞ばれる皮たたは皮以䞊の化合物を
化合物ずし、リグニンず、倉性ロゞンず、倉性
セルロヌスずから遞ばれる皮たたは皮以䞊の
化合物を化合物ずし、尿玠およびメラミンの䞀
方たたは双方ずホルマリンずの30察55〜75察30の
モル比の単量䜓混合物ず、ナリア暹脂ずメラミン
暹脂ずから遞ばれる皮たたは皮以䞊の化合物
を化合物ずする時に、化合物A70〜100重量郹
ず化合物B0〜15重量郚ず化合物C0〜15重量郚ず
からなり、25℃における粘床が300〜8000cpsであ
る暹脂組成物であるこずを特城ずする。 本発明においお、化合物ずしおプノヌルお
よびフルフリルアルコヌルの双方ずホルマリンず
の所定割合の単量䜓混合物を甚いる堎合、たた
は、プノヌル倉性フラン共瞮合物を甚いる堎合
には、化合物は70〜100重量郚甚いられるが、
化合物ずしお、プノヌルもしくはフルフリル
アルコヌルずの䞀方ずホルマリンずの所定割合の
単量䜓混合物たたはプノヌル暹脂たたはフラン
暹脂を甚いる堎合には、化合物を70〜90重量郹
甚い、化合物ず化合物ずを、合蚈で10〜30重
量郚甚いるこずが奜たしい。 本発明においお、化合物ずプノヌルずホル
マリンの混合物が甚いられる堎合には、プノヌ
ルずホルマリンずの比は、察3.5〜察0.5が奜
たしく、化合物ずしおフルフリルアルコヌルず
ホルマリンずの混合物が甚いられる堎合には、フ
ルフリルアルコヌルずホルマリンずの比は、察
1.2〜察が奜たしい。たた、化合物ずしお
尿玠ずホルマリンずの混合物が甚いられる堎合に
は、尿玠ずホルマリンの比は、察〜察0.5
が奜たしく、化合物ずしおメラミンずホルマリ
ンずの混合物が甚いられる堎合には、メラミンず
ホルマリンずの比は、察〜察0.5が奜たし
い。 本発明においお、化合物および化合物ずし
お甚いられる暹脂は、暹脂組成物を構成する際
に、暹脂組成物が25℃で300〜8000cpsの粘床を瀺
すものであるこずからわかるように、固䜓状では
なく流動性を瀺すものであり、実質的には、初期
瞮合物の状態を呈するものである。 本発明においお、ホルマリンに代えおパラホル
ムアルデヒド等のホルムアルデヒド重合䜓を甚い
るこずもできる。 本発明を補足説明するず、本発明の補造方法は
熱硬化性暹脂が硬化するずきに暹脂内に䜎沞点物
の溜りをなくすこずが芁点である。぀たり熱硬化
性暹脂が硬化する前の粘床の高くな぀た初期瞮合
物の状態で、暹脂が20重量以䞊の氎を溶解でき
る皋床の芪氎性を有するこずにより、䜎沞点物が
暹脂内に閉じ蟌められるのを防止し埗るものであ
る。 本発明においお、「䞍掻性雰囲気」ずは、酞玠
を含たず、通垞ヘリりム、アルゎン、窒玠、氎
玠、ハロゲンからなる矀より遞ばれた少なくずも
䞀皮の気䜓よりなる雰囲気あるいは枛圧たたは真
空䞋の雰囲気のこずをいう。 暹脂組成物がどの皋床の粘床のずきに、暹脂組
成物の氎可溶胜力が20重量を越えおいれば硬化
埌にほずんど空孔を生じないかは、原料暹脂の皮
類、重合床、ブレンド比率等によ぀お異なるが、
本発明者の研究の結果、300〜8000cps25℃の粘
床状態においお䞊蚘氎可溶胜力があれば良いこず
が刀明した。 たた、本発明を実斜するにあた぀お、実斜䞭に
フむラヌ骚材を入れるこずができる。フむラ
ヌずしおは、プノヌル暹脂、゚ポキシ暹脂、䞍
飜和ポリ゚ステル暹脂、フラン暹脂、ナリア暹
脂、メラミン暹脂、アルキツド暹脂、キシレン暹
脂等の、熱硬化性暹脂を含む各皮カヌボン材料、
䟋えばポリアクリロニトリル系カヌボン材、セル
ロヌス系カヌボン材、レヌペン系カヌボン材、ピ
ツチ系カヌボン材、リグニン系カヌボン材、プ
ノヌル系カヌボン材、フラン系カヌボン材、゚ポ
キシ暹脂系カヌボン材、アルキツド暹脂系カヌボ
ン材、䞍飜和ポリ゚ステル系カヌボン材、キシレ
ン暹脂系カヌボン材の他に、各皮黒鉛、カヌボン
ブラツク等があり、繊維状、粒子状、粉末状、塊
状等のあるゆる圢態のカヌボン材を䜿甚するこず
ができる。 本発明に甚いられる暹脂組成物は、硬化前に目
的ずするガラス状カヌボン材料の甚途に応じお各
皮の成型法により所定の圢状の型に入れられ、所
定の成型䜓にな぀た埌に、䞍掻性雰囲気䞭800℃
以䞊、奜たしくは1000℃以䞊、より奜たしくは
1200℃以䞊の枩床で炭化焌成しお目的ずするガラ
ス状カヌボン材料ずなるのである。この堎合、炭
化焌成時間は焌成する枩床により適宜遞択すれば
よい。加熱枩床が800℃より䜎ければ、十分炭化
せず、気孔率が倧きいものであり、目的ずするガ
ラス状カヌボン材料ずしおの性質を賊䞎するこず
が困難である。 〔発明の効果〕 以䞊述べたように、本発明の方法によれば、出
発原料である暹脂組成物が、硬化前の段階で20重
量以䞊の氎を含むこずができるこずにより、暹
脂組成物が硬化するずきに副生する䜎沞点物を母
䜓暹脂䞭に完党に分散溶解した状態に保ちながら
硬化するこずから、閉孔のほずんどない実甚䞊無
孔性のガラス状カヌボン材料を埗るこずができる
優れた効果がある。 特に内郚構造に閉孔を含たないガラス状カヌボ
ン材料が埗られるため、本発明の補造方法は、鏡
面性を掻かした薄膜蒞着ないしスパツタによる極
薄膜補造基䜓の補造方法ぞの利甚、䟋えば磁気ヘ
ツド基䜓や磁気ヘツドスラむダヌの補造方法ぞの
利甚、薄膜支持䜓の補造方法ぞの利甚の他、䞀般
の粟密電子郚品に甚いられる耐摩耗性のある摺動
郚ぞの利甚や高集積化高密床化に䌎う電子材料の
補造方法ぞの利甚に倧いに貢献するこずができ
る。たたガラス状カヌボン材料に孔を実質䞊無く
したこずから、本発明で埗られたガラス状カヌボ
ン材料を燃料電池甚セパレヌタずしおも利甚でき
る。 〔実斜䟋による説明〕 以䞋本発明を実斜䟋によりさらに詳现に説明す
るが、以䞋に瀺す䟋はあくたでも䞀䟋であ぀お、
これにより本発明の技術的範囲を限定するもので
はない。なお、実斜䟋䞭、「郚」ずあるのは、す
べお「重量郚」を意味する。 実斜䟋  プノヌル100郚に37ホルムアルデヒド氎溶
液157郚ずリグニン15郚ずを撹拌䞋で添加し、さ
らに、10氎酞化ナトリりム氎溶液郚を、撹拌
䞋で添加する。この混合物を80℃たで昇枩し、こ
の枩床にお時間反応させる。この埌に、反応液
の液枩を70℃に䞋げ、メラミン郚ず37ホルム
アルデヒド氎溶液25郚ずを添加し、70℃のたたで
時間反応させる。この反応液を宀枩たで冷华し
た埌に、85乳酞で䞭和たたは匱酞性にし、枛圧
䞋で脱氎しお、120郚の氎を陀去する。これによ
぀お埗られた暹脂組成物は、25℃で4800cpsの粘
床を有し、含氎率は30以䞊であ぀た。 以䞊によ぀お埗られた暹脂組成物に、パラトル
゚ンスルホン酞、氎およびグリコヌル重量比
の硬化剀溶液4.5郚を添加し、充分
に撹拌した埌に、厚さmmの短冊状の型に泚入
し、枛圧脱泡した。この埌に、50〜60℃で時間
加熱し、さらに90℃で10日間加熱した。埗られた
短冊状の硬化暹脂を管状炉に入れ、窒玠気流䞭に
お、10℃hrの昇枩速床で1200℃たで昇枩し、
時間保持した埌に冷华しお、ガラス状カヌボン材
料を埗た。 このガラス状カヌボン材料を500〜8000の
研磚シヌトにお研磚し、内郚研磚面の衚面孔構造
および孔埄を走査型電子顕埮鏡で芳察した。研磚
面は、盎埄が0.1ÎŒm〜0.5ÎŒmの空孔がmm2あたり
に数個みられる皋床であり、それ以䞊の埄の空孔
は芳察されなか぀た。 実斜䟋 フルフリルアルコヌル花王ク゚ヌカヌ補
500郚ず80パラホルムアルデヒド和光玔薬補
483郚ずリグニンボレガヌド瀟補、商品名りル
トラゞンNA305郚ずの混合物を、撹拌しなが
ら80℃たで昇枩する。぀ぎに、石炭酞䞉井東圧
(æ ª)補524郚ず16氎酞化ナトリりム氎溶液54郚
ずの混合物を、80℃で撹拌しながら滎䞋する。滎
䞋終了埌は、80℃にお時間熟成させ、さらに、
石炭酞81郚ず16氎酞化ナトリりム54郚ずの混合
液を滎䞋し、この枩床で、時間熟成させる。こ
の液を宀枩たで冷华した埌に、70パラトル゚ン
スルホン酞氎溶液で䞭和から匱酞PH〜に
調敎し、液枩を再び80℃に昇枩し、37ホルマリ
ン氎溶液120郚ず尿玠の50氎溶液90郚ずを滎䞋
する。これを、時間熟成した埌に、枛圧䞋で
290郚の氎を脱氎し、500郚のフルフリルアルコヌ
ルを添加する。 これによ぀お埗られた暹脂組成物は、25℃で、
2900cpsの粘床を有し、含氎率は35以䞊であ぀
た。 この暹脂を、実斜䟋ず同様に硬化、炭玠化し
おガラス状カヌボン材料を埗た。このガラス状カ
ヌボン材料の内郚研磚面の衚面孔構造を、実斜䟋
ず同様の方法で芳察した。この結果、研磚面は
ガラス状であり、盎埄が0.1ÎŒm〜0.5ÎŒmの空孔が
mm2あたり10個以䞋芋られる皋床であり、それ以
䞊の埄の空孔は芳察されなか぀た。 実斜䟋 フルフリルアルコヌル500郚ず80パラホルム
アルデヒド483郚ずリグニン200郚の混合物を、撹
拌しながら80℃たで昇枩する。぀ぎに、石炭酞
524郚ず16氎酞化ナトリりム氎溶液54郚ずの混
合物を、80℃で撹拌しながら滎䞋する。滎䞋終了
埌は、80℃にお時間熟成させ、さらに、石炭酞
81郚ず16氎酞化ナトリりム54郚ずの混合液を滎
䞋し、この枩床で、時間熟成させる。この埌
に、液枩を70℃に䞋げ、メラミン63郚ず37ホル
ムアルデヒド氎溶液160郚ずを添加し、70℃で
時間反応させる。぀ぎに、この液を宀枩たで冷华
した埌に、70パラトル゚ンスルホン酞氎溶液で
䞭和し、枛圧䞋で250郚の氎を脱氎し、500郚のフ
ルフリルアルコヌルを添加する。 これによ぀お埗られた暹脂組成物は、25℃で、
3800cpsの粘床を有し、含氎率は35以䞊であ぀
た。 この暹脂組成物を、実斜䟋ず同様に硬化、炭
玠化しおガラス状カヌボン材料を埗た。このガラ
ス状カヌボン材料の内郚研磚面の衚面孔構造を、
実斜䟋ず同様の方法で芳察した。この結果、研
磚面はガラス状であり、盎埄が0.1ÎŒm〜0.5ÎŒmの
空孔がmm2あたり10個以䞋芋られる皋床であり、
それ以䞊の埄の空孔は芳察されなか぀た。 詊隓䟋  実斜䟋で埗られたガラス状カヌボン材料を図
に瀺される圢状および寞法に切り出し、蚘録媒䜓
ずの摺動面および薄膜を圢成させる面を粗研
磚から陀々に埮现研磚しお行き、最終的に研磚シ
ヌト15000で鏡面仕䞊げを行぀おモデル基䜓
を䜜補した。鏡面仕䞊げされた面を走査型電子
顕埮鏡で芳察したずころ、この衚面には盎埄
0.5ÎŒm以䞊の空孔は芋られず、盎埄0.01ÎŒm以䞋の
空孔が芋られるのみであ぀た。 このモデル基䜓を図の䞀点鎖線―C′に沿぀
お切断し、䞀方の切断片の面に厚さ1ÎŒmのCo
―Zr―Nbの合金薄膜をスパツタリングにより圢
成させ、もう䞀方の切断片の面に厚さ0.3ÎŒmの
Co―Zr―Nbの合金薄膜を同じくスパツタリング
により圢成させた。回転磁界でこれらの薄膜を熱
凊理を行぀た埌、軟磁性薄膜甚の振動型磁気枬定
装眮を甚いお各薄膜の保磁力Hcを枬定した。そ
の結果を衚に瀺す。 詊隓䟋 実斜䟋で埗られたガラス状カヌボン材料をも
ちいお、詊隓䟋ず同様の詊隓を行぀た。その結
果、良奜なスパツタ膜が埗られた。 詊隓䟋 実斜䟋で埗られたガラス状カヌボン材料をも
ちいお、詊隓䟋ず同様の詊隓を行぀た。その結
果、良奜なスパツタ膜が埗られた。 詊隓結果 衚で明らかなように、本発明実斜䟋により埗ら
れたガラス状カヌボン材料の磁気ヘツド甚基䜓ず
しおの特性詊隓䟋ないしは、保磁力が小
さく磁気特性に優れおいるこずがわかる。 【衚】
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for producing a glassy carbon material. In particular, the present invention relates to a method for manufacturing a glassy carbon material whose surface after mirror polishing has extremely high smoothness. [Description of the Prior Art] When a cured thermosetting resin, which is generally formed in a three-dimensional network structure and has insoluble and infusible properties, is carbonized in an inert atmosphere, it has excellent gas impermeability and hardness. A glassy carbon material having a high isotropic structure and a high isotropic structure can be obtained. In addition to the properties of general carbon materials such as light weight, heat resistance, high electrical conductivity, corrosion resistance, thermal conductivity, mechanical strength, and lubricity, this glassy carbon material is homogeneous and can be used for sliding parts. It has the property of not producing carbon powder even when exposed to water, and is expected to be used in a wide range of fields, including the electronics industry, nuclear power industry, and space industry. Recently, attention has been paid to the characteristics of this glassy carbon material, and the use of glassy carbon material as a substrate for magnetic heads has been studied. The properties required for a magnetic head substrate include lubricity and abrasion resistance, as well as the ability to polish to a clean mirror surface. Furthermore, use as a head slider to support a magnetic head is also being considered. The properties required for this are light weight in addition to lubricity and ease of mirror finishing. Therefore, by using a glassy carbon material, it can be used as a base for a magnetic head that also serves as a head slider. When conventionally manufactured glassy carbon materials are observed under a microscope, they are found to have open pores and closed pores. Among these, the independent closed pores that exist inside the material do not have any effect on gas impermeability, but it is possible to polish the glassy carbon material and utilize its mirror surface as in the substrate for the magnetic head described above. When applied in the field, if there are closed pores inside the material, polishing will open the closed pores, making it impossible to obtain a mirror surface, resulting in a fatal defect. In particular, when making thin-film magnetic heads, etc., it is necessary to evaporate or sputter metal onto a glassy carbon material as a basic material, but conventional glassy carbon materials cannot be used for metal deposition even after polishing for the reasons mentioned above. It was not possible to obtain a suitable mirror surface. In the production of easily graphitizable carbon materials using general pitch as a raw material, the inclusion of air bubbles due to bubbling is unavoidable because the materials undergo a molten state in the process of carbonization. In order to avoid this contamination, carbonization under high pressure has been attempted, and although this carbonization has eliminated the contamination of bubbles to some extent, gas impermeability has not yet reached a level where it can be said to be sufficient. On the other hand, in the carbonization of thermosetting resins, when using phenolic resins or furan resins that have a high carbonization yield, low boiling point substances such as water are used at the stage of obtaining the cured product, which is the precursor. This is unavoidable and accumulates in the resin during curing, causing closed pores on the order of ÎŒm or larger. Pores are created when thermosetting resins are cured due to air entrained in the resin before curing, low-boiling substances contained in the resin, unreacted components, condensed water during resin production, and by-products produced during curing. water of condensation as a product,
The cause is decomposition gas, etc. The air pre-contained in the resin can be removed by defoaming, and the low-boiling substances, unreacted components, and condensed water contained in the resin can be removed by heating under reduced pressure before curing, but by-products during curing can be removed. It is extremely difficult to remove some of the condensed water and cracked gas. Particularly when a highly hydrophobic resin is used, there is a disadvantage that condensed water accumulates and large pores remain in the carbon material after curing and subsequent carbonization. Therefore, the present inventors conducted intensive research to obtain a glassy carbon material without closed pores, and as a result,
This book was developed based on the discovery that a virtually non-porous glassy carbon material with almost no closed pores can be obtained by curing while keeping the low-boiling substances produced as by-products completely dispersed and dissolved in the base resin. The invention was completed. [Object of the invention] The present invention aims to provide a thermosetting resin structure for producing a glassy carbon material that is practically non-porous, hard, dense, and gas-impermeable. purpose. [Features of the invention] The method for producing a glassy carbon material of the present invention includes the following steps:
In a method for producing a glassy carbon material by carbonizing and firing a thermosetting resin that can contain 20% by weight or more of water in an initial condensate state before curing at a temperature of 800°C or more in an inert atmosphere. , the above thermosetting resin is a mixture of formalin and one or both of phenol and furfuryl alcohol in a ratio of 30 to 55.
Compound A is a monomer mixture with a molar ratio of 75:30, a phenolic resin, and one or more compounds selected from a furan resin and a phenol-modified furan cocondensate, lignin, a modified rosin, Compound B is one or more compounds selected from modified cellulose, a monomer mixture of one or both of urea and melamine and formalin at a molar ratio of 30:55 to 75:30, and urea resin. When Compound C is one or more compounds selected from melamine resin, it consists of 70 to 100 parts by weight of Compound A, 0 to 15 parts by weight of Compound B, and 0 to 15 parts by weight of Compound C, and the viscosity at 25°C is It is characterized by being a resin composition of 300 to 8000 cps. In the present invention, when using a monomer mixture of both phenol and furfuryl alcohol and formalin at a predetermined ratio as compound A, or when using a phenol-modified furan cocondensate, compound A has a weight of 70 to 100%. Although some parts are used,
When using a monomer mixture of phenol or furfuryl alcohol and formalin in a predetermined ratio as compound A, or a phenol resin or furan resin, use 70 to 90 parts by weight of compound A, and compound B and C. It is preferable to use 10 to 30 parts by weight in total. In the present invention, when a mixture of compound A, phenol, and formalin is used, the ratio of phenol to formalin is preferably 1:3.5 to 1:0.5, and as compound A, a mixture of furfuryl alcohol and formalin is used. If the ratio of furfuryl alcohol to formalin is 1:1,
1.2 to 1:0 is preferred. Further, when a mixture of urea and formalin is used as compound C, the ratio of urea to formalin is 1:2 to 1:0.5.
is preferred, and when a mixture of melamine and formalin is used as compound C, the ratio of melamine to formalin is preferably 1:6 to 1:0.5. In the present invention, the resins used as Compound A and Compound C are not in solid form when forming the resin composition, as can be seen from the fact that the resin composition exhibits a viscosity of 300 to 8000 cps at 25°C. It exhibits fluidity and is essentially in the state of an initial condensate. In the present invention, formaldehyde polymers such as paraformaldehyde can also be used in place of formalin. To provide a supplementary explanation of the present invention, the key point of the production method of the present invention is to eliminate the accumulation of low-boiling substances within the thermosetting resin when the thermosetting resin is cured. In other words, in the initial condensate state with a high viscosity before the thermosetting resin hardens, low boiling point substances are trapped within the resin because the resin has hydrophilicity to the extent that it can dissolve 20% by weight or more of water. It is possible to prevent this from occurring. In the present invention, the term "inert atmosphere" refers to an atmosphere that does not contain oxygen and usually consists of at least one gas selected from the group consisting of helium, argon, nitrogen, hydrogen, and halogen, or an atmosphere under reduced pressure or vacuum. means. The type of raw material resin, degree of polymerization, and blending ratio determine the viscosity of the resin composition and whether or not almost no pores will be generated after curing if the water-soluble ability of the resin composition exceeds 20% by weight. It varies depending on the
As a result of research by the present inventors, it was found that it is sufficient to have the above-mentioned water-soluble ability at a viscosity of 300 to 8000 cps/25°C. Also, in practicing the present invention, filler (aggregate) can be added during the practice. Fillers include various carbon materials including thermosetting resins such as phenolic resins, epoxy resins, unsaturated polyester resins, furan resins, urea resins, melamine resins, alkyd resins, and xylene resins;
For example, polyacrylonitrile-based carbon materials, cellulose-based carbon materials, rayon-based carbon materials, pitch-based carbon materials, lignin-based carbon materials, phenol-based carbon materials, furan-based carbon materials, epoxy resin-based carbon materials, alkyd resin-based carbon materials, non-carbon materials. In addition to saturated polyester-based carbon materials and xylene resin-based carbon materials, there are various types of graphite, carbon black, etc., and carbon materials in any form such as fibrous, particulate, powdered, or lumpy forms can be used. Before curing, the resin composition used in the present invention is put into a mold with a predetermined shape by various molding methods depending on the intended use of the glassy carbon material, and after becoming a predetermined molded product, it is inert. 800℃ in atmosphere
or higher, preferably 1000°C or higher, more preferably
It is carbonized and fired at a temperature of 1,200°C or higher to become the desired glassy carbon material. In this case, the carbonization firing time may be appropriately selected depending on the firing temperature. If the heating temperature is lower than 800°C, carbonization will not be sufficient and the porosity will be large, making it difficult to impart the desired properties as a glassy carbon material. [Effects of the Invention] As described above, according to the method of the present invention, the resin composition as a starting material can contain 20% by weight or more of water before curing, so that the resin composition can be Because it cures while keeping the low-boiling substances that are produced as by-products completely dispersed and dissolved in the base resin, it is possible to obtain a practically non-porous glassy carbon material with almost no closed pores. It has a positive effect. In particular, since a glass-like carbon material containing no closed pores in the internal structure can be obtained, the manufacturing method of the present invention can be used for manufacturing ultra-thin film substrates by thin film deposition or sputtering that takes advantage of specularity, such as magnetic head substrates. In addition to being used in manufacturing methods for magnetic head sliders and thin film supports, it can also be used in wear-resistant sliding parts used in general precision electronic parts, and for high integration and density. It can greatly contribute to the use in the manufacturing method of associated electronic materials. Further, since the glassy carbon material is substantially free of pores, the glassy carbon material obtained by the present invention can also be used as a separator for fuel cells. [Explanation based on Examples] The present invention will be explained in more detail using Examples below, but the examples shown below are merely examples.
This does not limit the technical scope of the present invention. In addition, all "parts" in the examples mean "parts by weight." Example I 157 parts of a 37% aqueous formaldehyde solution and 15 parts of lignin are added to 100 parts of phenol under stirring, and further 5 parts of a 10% aqueous sodium hydroxide solution are added under stirring. This mixture is heated to 80°C and reacted at this temperature for 2 hours. Thereafter, the temperature of the reaction solution was lowered to 70°C, 9 parts of melamine and 25 parts of a 37% formaldehyde aqueous solution were added, and the mixture was allowed to react at 70°C for 5 hours. After cooling the reaction solution to room temperature, it is neutralized or made slightly acidic with 85% lactic acid and dehydrated under reduced pressure to remove 120 parts of water. The resin composition thus obtained had a viscosity of 4800 cps at 25°C and a water content of 30% or more. To the resin composition obtained above, 4.5 parts of a curing agent solution of para-toluenesulfonic acid, water and glycol (weight ratio 7:2:1) was added, and after thorough stirring, a strip of 3 mm thick was added. The mixture was poured into a shaped mold and defoamed under reduced pressure. This was followed by heating at 50-60°C for 3 hours and further heating at 90°C for 10 days. The obtained strip-shaped cured resin was placed in a tube furnace and heated to 1200°C at a rate of 10°C/hr in a nitrogen stream.
After holding for a period of time, the mixture was cooled to obtain a glassy carbon material. This glassy carbon material was polished with a #500 to #8000 polishing sheet, and the surface pore structure and pore diameter of the internally polished surface were observed using a scanning electron microscope. On the polished surface, only a few pores with a diameter of 0.1 ÎŒm to 0.5 ÎŒm were observed per 1 mm 2 , and no pores with a larger diameter were observed. Example Furfuryl Alcohol (manufactured by Kao Quaker)
500 parts and 80% paraformaldehyde (manufactured by Wako Pure Chemical Industries)
A mixture of 483 parts of lignin and 305 parts of lignin (manufactured by Borregard, trade name Ultrazine NA) is heated to 80°C while stirring. Next, carbolic acid (Mitsui Toatsu
Co., Ltd. and 54 parts of a 16% aqueous sodium hydroxide solution was added dropwise at 80°C while stirring. After dropping, mature at 80℃ for 3 hours, and
A mixed solution of 81 parts of carbolic acid and 54 parts of 16% sodium hydroxide is added dropwise, and the mixture is aged at this temperature for 2 hours. After cooling this liquid to room temperature, it was neutralized with a 70% aqueous solution of para-toluenesulfonic acid and adjusted to a weak acid (PH7-5), the temperature of the liquid was raised to 80°C again, and 120 parts of a 37% aqueous formalin solution and urea were added. Add 90 parts of a 50% aqueous solution dropwise. After aging this for 1 hour, under reduced pressure
Dehydrate 290 parts of water and add 500 parts of furfuryl alcohol. The resin composition obtained by this is heated at 25°C.
It had a viscosity of 2900 cps and a water content of 35% or more. This resin was cured and carbonized in the same manner as in the examples to obtain a glassy carbon material. The surface pore structure of the internally polished surface of this glassy carbon material was observed in the same manner as in Example I. As a result, the polished surface was glass-like, and less than 10 pores with a diameter of 0.1 Όm to 0.5 Όm were observed per mm 2 , and no pores with a larger diameter were observed. Example A mixture of 500 parts of furfuryl alcohol, 483 parts of 80% paraformaldehyde, and 200 parts of lignin is heated to 80°C while stirring. Next, carbolic acid
A mixture of 524 parts and 54 parts of a 16% aqueous sodium hydroxide solution is added dropwise at 80°C with stirring. After dropping, it was aged at 80℃ for 3 hours, and then added with carbolic acid.
A mixed solution of 81 parts and 54 parts of 16% sodium hydroxide is added dropwise, and the mixture is aged at this temperature for 2 hours. After this, the liquid temperature was lowered to 70°C, 63 parts of melamine and 160 parts of a 37% formaldehyde aqueous solution were added, and the temperature was lowered to 70°C.
Allow time to react. Next, after cooling this liquid to room temperature, it is neutralized with a 70% aqueous para-toluenesulfonic acid solution, 250 parts of water is dehydrated under reduced pressure, and 500 parts of furfuryl alcohol is added. The resin composition obtained by this is heated at 25°C.
It had a viscosity of 3800 cps and a water content of 35% or more. This resin composition was cured and carbonized in the same manner as in Example I to obtain a glassy carbon material. The surface pore structure of the internally polished surface of this glassy carbon material is
Observations were made in the same manner as in Example I. As a result, the polished surface is glass-like, and less than 10 pores with a diameter of 0.1 ÎŒm to 0.5 ÎŒm can be seen per 1 mm2.
No pores with larger diameters were observed. Test Example I The glassy carbon material obtained in Example I was cut into the shape and dimensions shown in the figure, and the sliding surface A with the recording medium and the surface B on which the thin film is formed were roughly polished and then gradually finely polished. Finally, a mirror finish was applied using polishing sheet #15000, and model base 1 was created.
was created. When mirror-finished surface B was observed with a scanning electron microscope, it was found that this surface had a diameter
No pores larger than 0.5 ÎŒm were observed, and only pores smaller than 0.01 ÎŒm in diameter were observed. This model substrate 1 was cut along the dashed-dotted line C-C' in the figure, and a 1-ÎŒm-thick Co
-A Zr-Nb alloy thin film was formed by sputtering, and a 0.3 ÎŒm thick film was formed on the B side of the other cut piece.
A Co-Zr-Nb alloy thin film was also formed by sputtering. After heat-treating these thin films in a rotating magnetic field, the coercive force Hc of each thin film was measured using a vibrating magnetometer for soft magnetic thin films. The results are shown in the table. Test Example A test similar to Test Example I was conducted using the glassy carbon material obtained in Example. As a result, a good sputtered film was obtained. Test Example A test similar to Test Example I was conducted using the glassy carbon material obtained in Example. As a result, a good sputtered film was obtained. (Test Results) As is clear from the table, the characteristics of the glassy carbon materials obtained in the Examples of the present invention as substrates for magnetic heads (Test Examples I and above) are that the coercive force is small and the magnetic properties are excellent. I understand. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明実斜䟋磁気ヘツドに甚いられる材料
により圢成されたモデル基䜓の倖芳斜芖図。  モデル基䜓。
The figure is an external perspective view of a model base made of a material used in a magnetic head according to an embodiment of the present invention. 1...Model base.

Claims (1)

【特蚱請求の範囲】  硬化前の初期瞮合物の状態で20重量以䞊の
氎を含むこずのできる熱硬化性暹脂を䞍掻性雰囲
気䞭で800℃以䞊の枩床で炭化焌成しおガラス状
カヌボン材料を補造する方法においお、 䞊蚘熱硬化性暹脂は、 プノヌルおよびフルフリルアルコヌルの䞀方
もしくは双方ずホルマリンずの30察55〜75察30の
モル比の単量䜓混合物ず、プノヌル暹脂ず、フ
ラン暹脂ず、プノヌル倉性フラン共瞮合物ずか
ら遞ばれる皮たたは皮以䞊の化合物70〜100
重量郚ず、 リグニンず、倉性ロゞンず、倉性セルロヌスず
から遞ばれる皮たたは皮以䞊の化合物〜15
重量郚ず、 尿玠およびメラミンの䞀方たたは双方ずホルマ
リンずの30察55〜75察30のモル比の単量䜓混合物
ず、ナリア暹脂ず、メラミン暹脂ずから遞ばれる
皮たたは皮以䞊の化合物〜15重量郚ず によ぀お組成され、 25℃における粘床が300〜8000cpsである暹脂組
成物であるこずを特城ずするガラス状カヌボン材
料の補造方法。
[Claims] 1. A thermosetting resin that can contain 20% by weight or more of water in the state of an initial condensate before curing is carbonized and fired at a temperature of 800°C or more in an inert atmosphere to produce glassy carbon. In the method for producing the material, the thermosetting resin comprises a monomer mixture of one or both of phenol and furfuryl alcohol and formalin in a molar ratio of 30:55 to 75:30, a phenol resin, and a furan resin. and one or more compounds selected from phenol-modified furan cocondensates 70 to 100
0 to 15 parts by weight, one or more compounds selected from lignin, modified rosin, and modified cellulose
parts by weight, a monomer mixture of one or both of urea and melamine and formalin in a molar ratio of 30:55 to 75:30, urea resin, and one or more compounds selected from melamine resin. 0 to 15 parts by weight, and a resin composition having a viscosity of 300 to 8000 cps at 25°C.
JP59024006A 1983-03-09 1984-02-10 Manufacture of vitrified carbonaceous material Granted JPS60171210A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59024006A JPS60171210A (en) 1984-02-10 1984-02-10 Manufacture of vitrified carbonaceous material
EP84102495A EP0121781B1 (en) 1983-03-09 1984-03-08 Process for manufacturing glasslike carbon material
DE8484102495T DE3477660D1 (en) 1983-03-09 1984-03-08 Process for manufacturing glasslike carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024006A JPS60171210A (en) 1984-02-10 1984-02-10 Manufacture of vitrified carbonaceous material

Publications (2)

Publication Number Publication Date
JPS60171210A JPS60171210A (en) 1985-09-04
JPS6344684B2 true JPS6344684B2 (en) 1988-09-06

Family

ID=12126469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024006A Granted JPS60171210A (en) 1983-03-09 1984-02-10 Manufacture of vitrified carbonaceous material

Country Status (1)

Country Link
JP (1) JPS60171210A (en)

Also Published As

Publication number Publication date
JPS60171210A (en) 1985-09-04

Similar Documents

Publication Publication Date Title
US4550015A (en) Vitreous carbon and process for preparation thereof
US5665464A (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
US4668496A (en) Vitreous carbon
US20080057303A1 (en) Method for Manufacturing Carbon Fiber Reinforced Carbon Composite Material Suitable for Semiconductor Heat Sink
US4626569A (en) Process for producing a molded product and the molded product produced thereby
USRE32319E (en) Vitreous carbon and process for preparation thereof
US4526924A (en) Thermosettable compositions convertible to vitreous carbon and process for preparation thereof
US6261692B1 (en) Carbon-carbon composites containing ceramic power and method for preparing the same
JPS6344684B2 (en)
JPS6362472B2 (en)
JPS64321B2 (en)
EP0121781B1 (en) Process for manufacturing glasslike carbon material
US4624984A (en) Moldable composition suitable for the preparation of vitreous carbon
JPS6346004B2 (en)
JPS60171211A (en) Manufacture of vitrified carbonaceous material
JPH09208316A (en) Glassy carbon material and its production
US4624811A (en) Process for preparing a vitreous carbon
JPS60171206A (en) Molded article of vitrified carbonaceous material
US4503215A (en) Furfural or furfural alchol impregnants for carbonacious bodies
JP3031626B2 (en) Binder, impregnating agent, and method for producing them
JPS62138361A (en) Manufacture of high density formed body from carbon material
JPS60131816A (en) Manufacture of glassy carbonaceous material
US4425316A (en) Densified carbonaceous bodies with improved surface finishes
JPH03205383A (en) Production of porous carbon material
JP3118733B2 (en) Electrode plate and jig for plasma etching