JPS60171210A - Manufacture of vitrified carbonaceous material - Google Patents

Manufacture of vitrified carbonaceous material

Info

Publication number
JPS60171210A
JPS60171210A JP59024006A JP2400684A JPS60171210A JP S60171210 A JPS60171210 A JP S60171210A JP 59024006 A JP59024006 A JP 59024006A JP 2400684 A JP2400684 A JP 2400684A JP S60171210 A JPS60171210 A JP S60171210A
Authority
JP
Japan
Prior art keywords
resin
parts
phenol
carbon material
formalin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59024006A
Other languages
Japanese (ja)
Other versions
JPS6344684B2 (en
Inventor
Michihide Yamauchi
山内 通秀
Nobuyuki Kishine
延幸 岸根
Tetsuya Imamura
哲也 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP59024006A priority Critical patent/JPS60171210A/en
Priority to EP84102495A priority patent/EP0121781B1/en
Priority to DE8484102495T priority patent/DE3477660D1/en
Publication of JPS60171210A publication Critical patent/JPS60171210A/en
Publication of JPS6344684B2 publication Critical patent/JPS6344684B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Thin Magnetic Films (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a practically nonporous vitrified carbonaceous material contg. no closed pores by providing a specified composition to a thermosetting resin as a starting material so that it can retain a specified wt% of water in the state of a precondensation product before curing. CONSTITUTION:A thermosetting resin capable of retaining >=20wt% water in the state of a precondensation product before curing is carbonized and calcined at >=800 deg.C in an inert atmosphere to manufacture a vitrified carbonaceous material. The composition of the thermosetting resin is composed of 70-100pts.wt. of one or more kinds of compounds selected among a monomer mixture consisting of phenol and/or furfuryl alcohol and formalin in 30:55-75:30 molar ratio, phenol resin, furan resin and a condensation product of phenol modified furan, 0-15pts.wt. of one or more kinds of compounds selected among lignin, modified rosin and modified cellulose, and 0-15pts.wt. of one or more kinds of compounds selected among a monomer mixture consisting of urea and/or melamine and formalin in 30:55-70:30 molar ratio, urea resin and melamine resin.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、ガラス状カーボン材料の製造方法に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a glassy carbon material.

特に、鏡面研磨した後の表面が極めて高い平滑性を有す
るガラス状カーボン材料の製造方法に関する。
In particular, the present invention relates to a method for manufacturing a glassy carbon material whose surface after mirror polishing has extremely high smoothness.

〔従来技術の説明〕[Description of prior art]

一般に三次元網目構造で形成され、不溶不融の性質をも
つ熱硬化性樹脂の硬化物を不活性雰囲気の中で炭素化を
行うと、ガス不透過性に優れ、硬度が高く、かつ等方性
組織を有するガラス状カーボン材料が得られる。このガ
ラス状カーボン材料は、一般の炭素材料が有する軽量、
耐熱性、高電気伝導度、耐蝕性、熱伝導度、機械的強度
、潤滑性等の特性に加え、均質でかつ摺動部に用いても
炭素粉末を生じない特性を備えていて、エレクトロニク
ス産業、原子力産業、宇宙産業をはじめ各種分野での広
範囲な利用が期待されている。
Generally, when a cured thermosetting resin that has a three-dimensional network structure and is insoluble and infusible is carbonized in an inert atmosphere, it has excellent gas impermeability, high hardness, and isotropic properties. A glassy carbon material with sexual tissue is obtained. This glassy carbon material has the light weight and
In addition to properties such as heat resistance, high electrical conductivity, corrosion resistance, thermal conductivity, mechanical strength, and lubricity, it is homogeneous and does not generate carbon powder even when used in sliding parts, making it suitable for the electronics industry. It is expected to be widely used in various fields including the nuclear power industry and the space industry.

最近、このガラス状カーボン材料の特性に着目し、ガラ
ス状カーボン材料を磁気ヘッド用基体として利用するこ
とが検討されている。磁気ヘッド用基体として要求され
る性能は潤滑性、耐摩耗性に加えて研磨してきれいな鏡
面が得られることである。さらにまた磁気ヘッドを支え
るヘントスライダとしての用途も検討されている。それ
に要求される特性は、潤滑性、鏡面加工容易性に加えて
軽重量性である。このため、ガラス状カーボン材料を用
いることにより、ヘッドスライダも兼ねた磁気ヘッド用
基体としても用いることができる。
Recently, attention has been paid to the characteristics of this glassy carbon material, and studies have been made to utilize the glassy carbon material as a substrate for a magnetic head. The performance required for a magnetic head substrate is not only lubricity and wear resistance, but also the ability to obtain a clean mirror surface by polishing. Furthermore, use as a Hent slider that supports a magnetic head is also being considered. The properties required for this are light weight in addition to lubricity and ease of mirror finishing. Therefore, by using a glassy carbon material, it can be used as a magnetic head base that also serves as a head slider.

従来製造されてきたガラス状カーボン材料を顕微鏡で観
察すると、ガラス状カーボン材料には開孔(open 
pore )と閉孔(closed pore )が存
在する。このうち材料内部に存在する独立閉孔はガス不
透過性の点では何隻影響を及ぼさないが、ガラス状カー
ボン材料を研磨して、前記磁気ヘッド用基体のように、
その鏡面を利用しようとする分野に応用する場合には、
材料内部に閉孔が存在すると、研磨によって閉孔が開孔
となり、鏡面が得られなくなり致命的な欠陥をもつこと
になる。
When conventionally manufactured glassy carbon materials are observed under a microscope, they are found to have open pores.
pore ) and closed pore. Of these, the independent closed pores that exist inside the material do not affect the gas impermeability, but when the glassy carbon material is polished, it is
When applying to a field that uses the mirror surface,
If closed pores exist inside the material, the closed pores become open holes by polishing, making it impossible to obtain a mirror surface, resulting in a fatal defect.

特に、薄膜磁気ヘッド等を作るに際しては、基礎材料と
してのガラス状カーボン材料に金属を蒸着またはスパッ
タする必要があるが、従来のガラス状カーボン材料では
、上述した理由により研磨しても金属蒸着に適した鏡面
を得ることができなかった。
In particular, when making thin-film magnetic heads, etc., it is necessary to evaporate or sputter metal onto a glassy carbon material as a basic material. However, with conventional glassy carbon materials, metal deposition cannot be achieved even after polishing for the reasons mentioned above. It was not possible to obtain a suitable mirror surface.

一般のピッチ等を原料とする易黒鉛化性炭素材料の製造
においては、その炭素化に至る過程で溶融状態を経るた
めに自ずとバブリングによる気泡の混入は避けられない
。この混入を避けるために高圧力下による炭素化等が試
みられ、この炭素化によれば、ある程度気泡の混入は解
消されているものの、ガス不透過性は十分といえるとこ
ろまで至っていない。
In the production of easily graphitizable carbon materials using ordinary pitch or the like as a raw material, the inclusion of air bubbles due to bubbling is unavoidable because the material undergoes a molten state in the process of carbonization. In order to avoid this contamination, carbonization under high pressure has been attempted, and although this carbonization has eliminated the contamination of bubbles to some extent, the gas impermeability has not yet reached a level where it can be said to be sufficient.

一方、熱硬化性樹脂の炭素化においても、いわゆる炭素
化収率の高いフェノール樹脂、フラン樹脂を用いる場合
には、その前駆体である硬化物を得る段階で水をはじめ
とする低沸点物の発生が避けがたく、これが硬化時に樹
脂中に溜り、μmオーダー以上の大きさの閉孔が存在す
る原因となる。
On the other hand, in the carbonization of thermosetting resins, when using phenolic resins and furan resins that have a high carbonization yield, low-boiling point substances such as water are used at the stage of obtaining the cured product, which is the precursor. This is unavoidable and accumulates in the resin during curing, causing closed pores on the order of μm or larger.

熱硬化性樹脂の硬化の際に空孔が生じるのは、■ 硬化
前の樹脂が捲き込んだ空気、 ■ 樹脂に含まれる低沸点物、未反応成分、樹脂生成時
の縮合水、 ■ 硬化時に生成する副生成物としての縮合水、分解ガ
ス 等が原因である。■の予め含まれる空気は脱泡操作によ
り、また■の樹脂に含まれる低沸点物、未反応成分、樹
脂生成時の縮合水は硬化前に減圧加熱によって除去し得
るが、■の硬化時に副生ずる縮合水、分解ガスの一部は
除去が極めて回能である。特に疎水性の強い樹脂を用い
た場合には、縮合水の溜りができ、硬化後およびそれに
続く炭素化の後に、大きな空孔がカーボン材料内に残存
する欠点がある。
When thermosetting resins are cured, pores are created by ■ air trapped by the resin before curing, ■ low-boiling substances contained in the resin, unreacted components, condensed water during resin formation, and ■ during curing. This is caused by condensed water, cracked gas, etc. as by-products. The pre-contained air in (①) can be removed by defoaming, and the low-boiling substances, unreacted components, and condensed water contained in the resin in (①) during resin formation can be removed by heating under reduced pressure before curing. Part of the resulting condensed water and cracked gas can be removed very efficiently. Particularly when a highly hydrophobic resin is used, there is a drawback that condensed water accumulates and large pores remain in the carbon material after curing and subsequent carbonization.

そこで、本発明者らは、閉孔のないガラス状カーボン材
料を得るために鋭意研究を行った結果、硬化時に副生ず
る低沸点物を母体樹脂中に完全に分散溶解した状態に保
ちながら硬化させることにより、閉孔のほとんどない実
用上無孔性のガラス休カーボン材料が得られることを見
出して本発明を完成するに至った。
Therefore, the present inventors conducted extensive research in order to obtain a glassy carbon material without closed pores, and as a result, the present inventors succeeded in curing the material while keeping the low-boiling substances produced as by-products during curing completely dispersed and dissolved in the base resin. The present inventors have discovered that a practically non-porous glass-free carbon material with almost no closed pores can be obtained by doing so, and have completed the present invention.

〔発明の目的〕[Purpose of the invention]

本発明は、実用上無孔性であって硬質かつ緻密で、ガス
不透過性であるガラス状カーボン材料を製造するための
、熱硬化性の樹脂組織物を提供することを目的とする。
An object of the present invention is to provide a thermosetting resin structure for producing a glassy carbon material that is practically non-porous, hard, dense, and gas-impermeable.

〔発明の特徴〕[Features of the invention]

本発明のガラス状カーボン材料の製造方法は、硬化前の
初期縮合物の状態で20重量%以上の水を含むことので
きる熱硬化性樹脂を、不活性雰囲気中で800℃以上の
温度で炭化焼成してガラス状カ−ボン材料を製造する方
法において、上記熱硬化性樹脂は、フェノールおよびフ
ルフリルアルコールの一方もしくは双方とホルマリンと
の30対55〜75対30のモル比の単量体混合物と、
フェノール樹脂と、フラン樹脂とフェノール変性フラン
共縮合物とから選ばれる1種または2種以上の化合物を
化合物Aとし、リグニンと、変性ロジンと、変性セルロ
ースとから選ばれる1種または2種以上の化合物を化合
物Bとし、尿素およびメラミンの一方または双方とホル
マリンとの30対55〜75対30のモル比の単量体混
合物と、ユリア樹脂とメラミン樹脂とから選ばれる1種
または2種以上の化合物を化合物Cとする時に、化合物
A70〜100重量部と化合物80〜15重量部と化合
物00〜15重量部とからなり、25℃における粘度が
300〜8000 cpsである樹脂組成物であること
を特徴とする。
The method for producing a glassy carbon material of the present invention involves carbonizing a thermosetting resin that can contain 20% by weight or more of water in the state of an initial condensate before curing at a temperature of 800°C or more in an inert atmosphere. In the method of producing a glassy carbon material by firing, the thermosetting resin is a monomer mixture of one or both of phenol and furfuryl alcohol and formalin in a molar ratio of 30:55 to 75:30. and,
Compound A is one or more compounds selected from a phenol resin, a furan resin, and a phenol-modified furan cocondensate, and one or more compounds selected from lignin, modified rosin, and modified cellulose. The compound is compound B, a monomer mixture of one or both of urea and melamine and formalin at a molar ratio of 30:55 to 75:30, and one or more types selected from urea resin and melamine resin. When the compound is Compound C, it is a resin composition consisting of 70 to 100 parts by weight of Compound A, 80 to 15 parts by weight of Compound, and 00 to 15 parts by weight of Compound, and having a viscosity of 300 to 8000 cps at 25°C. Features.

本発明において、化合物Aとして、フェノールおよびフ
ルフリルアルコールの双方とホルマリンとの所定割合の
単量体混合物を用いる場合、または、フェノール変性フ
ラン共縮合物を用いる場合には、化合物Aは70〜10
0重量部用いられるが、化合物Aとして、フェノールも
しくはフルフリルアルコールとの一方とホルマリンとの
所定割合の単量体混合物またはフェノール樹脂またはフ
ラン樹脂を用いる場合には、化合物Aを70〜90重量
部用・−い、化合物Bと化合物Cとを、合計で10〜3
0重量部用いることが好ましい。
In the present invention, when a monomer mixture of both phenol and furfuryl alcohol and formalin at a predetermined ratio is used as compound A, or when a phenol-modified furan cocondensate is used, compound A is 70 to 10
However, when using a monomer mixture of formalin and one of phenol or furfuryl alcohol in a predetermined ratio as compound A, or a phenol resin or furan resin, 70 to 90 parts by weight of compound A is used. For use, compound B and compound C are added in a total of 10 to 3
It is preferable to use 0 parts by weight.

本発明において、化合物Aとしてフェノールと・ホルマ
リンの混合物が用いられる場合には、フェノールとホル
マリンとの比は、1対3.5〜1対0.5が好ましく、
化合物Aと、してフルフリルアルコールとホルマリンと
の混合物が用いられる場合には、フルフリルアルコール
とホルマリンとの比は、1対1.2〜1対0が好ましい
。また、化合物Cとして尿素とホルマリンとの混合物が
用いられる場合には、尿素とホルマリンの比は、1対2
〜1対0.5が好ましく、化合物Cとしてメラミンとホ
ルマリンとの混合物が用いられる場合には、メラミンと
ポルマリンとの比は、1対6〜1対0.5が好ましい。
In the present invention, when a mixture of phenol and formalin is used as compound A, the ratio of phenol to formalin is preferably 1:3.5 to 1:0.5,
When a mixture of compound A, furfuryl alcohol and formalin is used, the ratio of furfuryl alcohol to formalin is preferably 1:1.2 to 1:0. Further, when a mixture of urea and formalin is used as compound C, the ratio of urea and formalin is 1:2.
The ratio of melamine to formalin is preferably from 1:6 to 1:0.5 when a mixture of melamine and formalin is used as compound C.

本発明において、化合物Aおよび化合物Cとして用いら
れる樹脂は、樹脂組成物を構成する際に、樹脂組成物が
25℃で300〜8000cpsの粘度を示すものであ
ることかられかるように、固体状で番よなく流動性を示
すものであり、実質的には、初期縮合物の状態を呈する
ものである。
In the present invention, the resins used as Compound A and Compound C are in a solid state when forming the resin composition, as can be seen from the fact that the resin composition exhibits a viscosity of 300 to 8000 cps at 25°C. It exhibits fluidity at random, and is essentially in the state of an initial condensate.

本発明において、ホルマリンに代えて)<ラントルレム
アルデヒド等のホルムアルデヒド重合体を用G)ること
もできる。
In the present invention, formaldehyde polymers such as lantolelemaldehyde can also be used in place of formalin.

本発明を補足説明すると、本発明の製造方法Gよ熱硬化
性樹脂が硬化するときに樹脂内に低沸点物の溜りをなく
すことが要点である。つまり熱硬化性樹脂が硬化する前
の粘度の高くなった初期縮合物の状態で、樹脂が20重
量%以上の水を溶解できる程度の親水性を有することに
より、低沸点物が樹脂内に閉し込められるのを防止し得
るものである。
To provide a supplementary explanation of the present invention, the key point of the production method G of the present invention is to eliminate the accumulation of low-boiling substances within the thermosetting resin when the thermosetting resin is cured. In other words, in the initial condensate state with a high viscosity before the thermosetting resin hardens, the resin has hydrophilicity to the extent that it can dissolve 20% by weight or more of water, so that low boiling point substances are trapped in the resin. This can prevent it from being squeezed.

本発明において、「不活性雰囲気」とは、酸素を含まず
、通常ヘリウム、アルゴン、窒素、水素、ハロゲンから
なる群より選ばれた少なくとも−fffiの気体よりな
る雰囲気あるいは減圧または真空下の雰囲気のことをい
う。
In the present invention, "inert atmosphere" refers to an atmosphere that does not contain oxygen and usually consists of at least -fffi gas selected from the group consisting of helium, argon, nitrogen, hydrogen, and halogen, or an atmosphere under reduced pressure or vacuum. Say something.

樹脂組成物がどの程度の粘度のときに、樹脂組成物の水
可溶能力が20重量%を越えていれば硬化後にほとんど
空孔を生じないかは、原料樹脂の種類、重合度、ブレン
ド比率等によって異なるが、本発明者の研究の結果、3
00〜8000 cps/ 25°Cの粘度状態におい
て上記水可溶能力があれば良いことが判明した。
The type of raw material resin, degree of polymerization, and blending ratio determine the viscosity of the resin composition and whether or not almost no pores will be generated after curing if the water-soluble ability of the resin composition exceeds 20% by weight. As a result of the inventor's research, 3
It has been found that it is sufficient to have the above-mentioned water-soluble ability at a viscosity of 00 to 8000 cps/25°C.

また、本発明を実施するにあたって、実施中にフィラー
(骨材)を入れることができる。フィラーとしては、フ
ェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂
、フラン樹脂、ユリア樹脂、メラミン樹脂、アルキッド
樹脂、キシレン樹脂等の、熱硬化性樹脂を含む各種カー
ボン材、例えばポリアクリロニトリル系カーボン材、セ
ルロース系カーボン材、レーヨン系カーボン材、ピ・ノ
チ系カーボン材、リグニン系カーボン材、フェノール系
カーボン材、フラン系カーボン材、エポキシ樹脂系カー
ボン材、アルキッド樹脂系カーボン材、不飽和ポリエス
テル系カーボン材、キシレン樹脂系カーボン材の他に、
各種黒鉛、カーボンブラック等があり、繊維状、粒子状
、粉末状、塊状等のあらゆる形態のカーボン材を使用す
ることができる。
Also, in practicing the present invention, filler (aggregate) can be added during the practice. Fillers include various carbon materials including thermosetting resins such as phenol resins, epoxy resins, unsaturated polyester resins, furan resins, urea resins, melamine resins, alkyd resins, and xylene resins, such as polyacrylonitrile carbon materials, and cellulose. carbon materials, rayon-based carbon materials, pi-nochi-based carbon materials, lignin-based carbon materials, phenolic-based carbon materials, furan-based carbon materials, epoxy resin-based carbon materials, alkyd resin-based carbon materials, unsaturated polyester-based carbon materials, In addition to xylene resin-based carbon materials,
There are various types of graphite, carbon black, etc., and carbon materials in all forms such as fibrous, particulate, powder, and lump can be used.

本発明に用いられる樹脂組成物は、硬化前に目的とする
ガラス状カーボン材料の用途に応じて各種の成型法によ
り所定の形状の型に入れられ、所定の成型体になった後
に、不活性雰囲気中800℃以上、好ましくは1000
℃以上、より好ましくは1200℃以上の温度で炭化焼
成して目的とするガラス状カーボン材料となるのである
。この場合、炭化焼成時間は焼成する温度により適宜選
択すればよい。
Before curing, the resin composition used in the present invention is put into a mold with a predetermined shape by various molding methods depending on the intended use of the glassy carbon material, and after becoming a predetermined molded product, it is inert. 800℃ or higher in the atmosphere, preferably 1000℃
The desired glassy carbon material is obtained by carbonization and firing at a temperature of 1200°C or higher, preferably 1200°C or higher. In this case, the carbonization firing time may be appropriately selected depending on the firing temperature.

加熱温度が800℃より低ければ、十分炭化せず、気孔
率が大きいものであり、目的とするガラス状−カーボン
材料としての性質を賦与することが困難である。
If the heating temperature is lower than 800° C., carbonization will not be sufficient and the porosity will be large, making it difficult to impart the desired properties as a glass-like carbon material.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の方法によれば、出発原料で
ある樹脂組成物が、硬化前の段階で20重量%以上の水
を含むことができることにより、樹脂組成物が硬化する
ときに副生ずる低沸点物を母体樹脂中に完全に分散溶解
した状態に保ちながら硬化することから、閉孔のほとん
どない実用上無孔性のガラス状カーボン材料を得ること
ができる優れた効果がある。
As described above, according to the method of the present invention, the resin composition as a starting material can contain 20% by weight or more of water at a stage before curing, so that when the resin composition is cured, it becomes an additive. Since the resulting low-boiling substances are cured while being completely dispersed and dissolved in the base resin, it is possible to obtain a practically non-porous glassy carbon material with almost no closed pores.

特に内部構造に閉孔を含まないガラス状カーボン材料が
得られるため、本発明の製造方法は、鏡面性を活かした
薄膜蒸着ないしスパッタによる極薄膜製造基体の製造方
法への利用、例えば磁気ヘッド基体や磁気ヘッドスライ
ダ−の製造方法への利用、薄膜支持体の製造方法への利
用の他、一般の精密電子部品に用いられる耐摩耗性のあ
る摺動部への利用や高集積化高密度化に伴う電子材料の
製造方法への利用に大いに貢献することができる。
In particular, since a glass-like carbon material containing no closed pores in the internal structure can be obtained, the manufacturing method of the present invention can be used for manufacturing ultra-thin film substrates by thin film deposition or sputtering that takes advantage of specularity, such as magnetic head substrates. In addition to use in manufacturing methods for magnetic head sliders and thin film supports, it can also be used in wear-resistant sliding parts used in general precision electronic components, and for high integration and high density. It can greatly contribute to the use in manufacturing methods of electronic materials.

またガラス状カーボン材料に孔を実質上無くしたことか
ら、本発明で得られたガラス状カーボン材料を燃料電池
用セパレータとしても利用できる。
Further, since the glassy carbon material is substantially free of pores, the glassy carbon material obtained by the present invention can also be used as a separator for fuel cells.

(実施例による説明〕 以下本発明を実施例によりさらに詳細に説明するが、以
下に示す例はあくまでも一例であって、これにより本発
明の技術的範囲を限定するものではない。なお、実施例
中、「部」とある−のは、すべて「重量部」を意味する
(Explanation based on Examples) The present invention will be explained in more detail below using Examples, but the examples shown below are merely examples and do not limit the technical scope of the present invention. All "parts" and "-" herein mean "parts by weight."

(実施例I) フェノール100部に37%ホルムアルデヒド水溶液1
57部とリグニン15部とを攪拌下で添加し、さらに、
10%水酸化ナトリウム水溶液5部を、攪拌下で添加す
る。この混合物を80t’まで昇温し、この温度にて2
時間反応させる。この後に、反応液の液温を70℃に下
げ、メラミン9部と37%ホルムアルデヒド水溶液25
部とを添加し、70”Cのままで5時間反応させる。こ
の反応液を室温まで冷却した後に、85%乳酸で中和ま
たは弱酸性にし、減圧下で脱水して120部の水を除去
する。これによって得られた樹脂組成物は、25℃で4
800cpsの粘度を有し、含水率は30%以上であっ
た。
(Example I) 100 parts of phenol to 1 part of 37% formaldehyde aqueous solution
57 parts and 15 parts of lignin are added under stirring, and
5 parts of 10% aqueous sodium hydroxide solution are added under stirring. This mixture was heated to 80 t', and at this temperature 2
Allow time to react. After this, the temperature of the reaction solution was lowered to 70°C, and 9 parts of melamine and 25 parts of a 37% formaldehyde aqueous solution were added.
After cooling the reaction solution to room temperature, it was neutralized or made weakly acidic with 85% lactic acid, and dehydrated under reduced pressure to remove 120 parts of water. The resin composition thus obtained was heated at 4°C at 25°C.
It had a viscosity of 800 cps and a water content of 30% or more.

以上によって得られた樹脂組成物に、パラトルエンスル
ホン酸、水およびグリコール(重量比7: 2 : 1
)の硬化剤溶液4.5部を添加し、充分に攪拌した後に
、厚さ3−の短冊状の型に注入し、減圧Jjli!泡し
た。この後に、50〜60”cで3時間加熱し、さらに
90℃で1部日間加熱した。得られた短冊状の硬化樹脂
を管状炉に入れ、窒素気流中にて、10℃/hrの昇温
速度で1200”Cまで昇温し、2時間保持した後に冷
却して、ガラス状カーボン材料を得た。
Para-toluenesulfonic acid, water and glycol (weight ratio 7:2:1) were added to the resin composition obtained above.
4.5 parts of curing agent solution was added, stirred thoroughly, poured into a rectangular mold with a thickness of 3 mm, and reduced pressure. It bubbled. This was followed by heating at 50 to 60"C for 3 hours, and further heating at 90C for 1 day.The resulting cured resin strips were placed in a tube furnace and heated at 10C/hr in a nitrogen stream. The temperature was raised to 1200''C at a temperature rate, maintained for 2 hours, and then cooled to obtain a glassy carbon material.

このガラス状カーボン材料を# 500〜# 8000
の研磨シートにて研磨し、内部研磨面の表面孔構造およ
び孔径を走査型電子顕微鏡で観察した。研磨面は、直径
が0.1μm=0.5μmの空孔がl龍2あたりに数個
みられる程度であり、それ以上の径の空孔は観察されな
かった。
This glassy carbon material #500~#8000
The surface pore structure and pore diameter of the inner polished surface were observed using a scanning electron microscope. On the polished surface, only a few pores with a diameter of 0.1 μm = 0.5 μm were observed per lion 2, and no pores with a larger diameter were observed.

(実施例■) フルフリルアルコール(右下りエーカー製) 500部
と80%パラホルムアルデヒド(和光純薬製)483部
とリグニン(ボレガード社製、商品名ウルトラジンNA
) 305部との混合物を、攪拌しなから80”Cまで
昇温する。つぎに、石炭酸(三井東圧■製)524部と
16%水酸化ナトリウム水溶液54部との混合物を、8
0℃で攪拌しながら滴下する。滴下終了後は、80℃に
て3時間熟成させ、さらに、石炭酸81部と16%水酸
化ナトリウム54部との混合液を滴下し、この温度で、
2時間熟成させる。この液を室温まで冷却した後に、7
0%パラトルエンスルホン酸水溶液で中和から弱酸(p
H7〜5)に關整し、液温を再び80℃に昇温し、37
%ホルマリン水溶液120部と尿素の50%水溶液90
部とを滴下する。これを、1時間熟成した後に、減圧下
で290部の水を脱水し、500部のフルフリルアルコ
ールを添加する。
(Example ■) 500 parts of furfuryl alcohol (manufactured by Acre), 483 parts of 80% paraformaldehyde (manufactured by Wako Pure Chemical Industries, Ltd.), and lignin (manufactured by Borregard, trade name: Ultrazine NA)
) and 305 parts of the mixture was heated to 80"C without stirring.Next, a mixture of 524 parts of carbolic acid (manufactured by Mitsui Toatsu) and 54 parts of a 16% sodium hydroxide aqueous solution was heated to 80"C without stirring.
Add dropwise while stirring at 0°C. After the addition was completed, it was aged at 80°C for 3 hours, and then a mixed solution of 81 parts of carbolic acid and 54 parts of 16% sodium hydroxide was added dropwise, and at this temperature,
Let rise for 2 hours. After cooling this liquid to room temperature,
Neutralize with 0% p-toluenesulfonic acid aqueous solution to weak acid (p
Adjust the temperature to H7~5), raise the liquid temperature to 80℃ again, and
120 parts of a 50% aqueous solution of urea and 90 parts of a 50% aqueous solution of urea
Drip the solution. After aging this for 1 hour, 290 parts of water is removed under reduced pressure, and 500 parts of furfuryl alcohol is added.

これによって得られた樹脂組成物は、25℃で、290
0cpsの粘度を有し、含水率は35%以上であった。
The resin composition thus obtained was heated to 290°C at 25°C.
It had a viscosity of 0 cps and a water content of 35% or more.

この樹脂を、実施例■と同様に硬化、炭素化してガラス
状カーボン材料を得た。このガラス状カーボン材料の内
部研磨面の表面孔構造を、実施例■と同様の方法で観察
した。この結果、研磨面はガラス状であり、直径が0.
1μm〜0.5μmの空孔が1鶴2あたり10個以下見
られる程度であり、それ以上の径の空孔は観察されなか
った。
This resin was cured and carbonized in the same manner as in Example 2 to obtain a glassy carbon material. The surface pore structure of the internally polished surface of this glassy carbon material was observed in the same manner as in Example (2). As a result, the polished surface is glass-like and has a diameter of 0.
Only 10 or less pores with a diameter of 1 μm to 0.5 μm were observed per 2 cranes, and no pores with a larger diameter were observed.

(実施例■) フルフリルアルコール500部と80%パラホルムアル
デヒド483部とリグニン200部の混合物を、攪拌し
ながら80℃まで昇温する。つぎに、石炭酸524部と
16%水酸化ナトリウム水溶液54部との混合物を、8
0℃で攪拌しながら滴下する。滴下終了後は、80℃に
て3時間熟成させ、さらに、石炭酸81部と16%水酸
化ナトリウム54部との混合液を滴下し、この温度で、
2時間熟成させる。この後に、液温を70℃に下げ、メ
ラミン63部と37%ホルムアルデヒド水溶液160部
とを添加し、70℃で5時間反応させる。つぎに、この
液を室温まで冷却した後に、70%パラトルエンスルホ
ン酸水溶液で中和し、減圧下で250部の水を脱水し、
 500部のフルフリルアルコールを添加する。
(Example ■) A mixture of 500 parts of furfuryl alcohol, 483 parts of 80% paraformaldehyde, and 200 parts of lignin is heated to 80°C while stirring. Next, 8 parts of a mixture of 524 parts of carbolic acid and 54 parts of a 16% aqueous sodium hydroxide solution was added.
Add dropwise while stirring at 0°C. After the addition was completed, it was aged at 80°C for 3 hours, and then a mixed solution of 81 parts of carbolic acid and 54 parts of 16% sodium hydroxide was added dropwise, and at this temperature,
Let rise for 2 hours. After this, the liquid temperature is lowered to 70°C, 63 parts of melamine and 160 parts of a 37% formaldehyde aqueous solution are added, and the mixture is reacted at 70°C for 5 hours. Next, after cooling this liquid to room temperature, it was neutralized with a 70% aqueous para-toluenesulfonic acid solution, and 250 parts of water was dehydrated under reduced pressure.
Add 500 parts of furfuryl alcohol.

これによって得られた樹脂組成物は、25℃で、380
0cpsの粘度を有し、含水率は35%以上であった。
The resin composition thus obtained was heated to 380°C at 25°C.
It had a viscosity of 0 cps and a water content of 35% or more.

この樹脂組成物を、実施例■と同様に硬化、炭素化して
ガラス状カーボン材料を得た。このガラス状カーボン材
料の内部研磨面の表面孔構造を、実施例Iと同様の方法
で観察した。この結果、研磨面はガラス状であり、直径
が0.1μm=0.5μmの空孔が1m12あたり10
個以下見られる程度であり、それ以上の径の空孔は観察
されなかった。
This resin composition was cured and carbonized in the same manner as in Example 2 to obtain a glassy carbon material. The surface pore structure of the internally polished surface of this glassy carbon material was observed in the same manner as in Example I. As a result, the polished surface is glass-like, and there are 10 pores with a diameter of 0.1 μm = 0.5 μm per 1 m2.
No pores with a larger diameter were observed.

(試験例■) 実施例■で得られたガラス状カーボン材料を図に示され
る形状および寸法に切り出し、記録媒体との摺動面Aお
よび薄膜を形成させる面Bを粗研磨から除々に微細研磨
して行き、最終的に研磨シー ) # 15000で鏡
面仕上げを行ってモデル基体1を作製した。鏡面仕上げ
された面Bを走査型電子顕微鏡で観察したところ、この
表面には直径0.5μm以上の空孔は見られず、直径0
.01μm以下の空孔が見られるのみであった。
(Test Example ■) The glassy carbon material obtained in Example ■ was cut into the shape and dimensions shown in the figure, and the sliding surface A with the recording medium and the surface B on which the thin film is formed were polished from coarse to gradually fine polishing. Finally, a mirror finish was performed using a polishing sheet #15000 to prepare a model base 1. When mirror-finished surface B was observed with a scanning electron microscope, no pores with a diameter of 0.5 μm or more were found on this surface, and no holes with a diameter of 0.
.. Only pores of 0.01 μm or less were observed.

このモデル基体1を図の一点鎖線c−c’に沿って切断
し、一方の切断片のB面に厚さ1μmのCo −Zr 
−Nbの合金薄膜をスパッタリングにより形成させ、も
う一方の切断片のB面に厚さ0.3μmのCo −Zr
 −Nbの合金薄膜を同じくスパッタリングにより形成
させた。回転磁界でこれらの薄膜を熱処理を行った後、
軟磁性薄膜用の振動型磁気測定装置を用いて各薄膜の保
磁力HCを測定した。その結果を表に示す。
This model substrate 1 was cut along the dashed line c-c' in the figure, and a Co-Zr layer with a thickness of 1 μm was placed on the B side of one of the cut pieces.
A -Nb alloy thin film was formed by sputtering, and a 0.3 μm thick Co -Zr film was formed on the B side of the other cut piece.
A -Nb alloy thin film was also formed by sputtering. After heat-treating these thin films in a rotating magnetic field,
The coercive force HC of each thin film was measured using a vibrating magnetic measuring device for soft magnetic thin films. The results are shown in the table.

(試験例1) 実施例■で得られたガラス状カーボン材料をもちいて、
試験例Iと同様の試験を行った。その結果、良好なスパ
ッタ膜が得られた。
(Test Example 1) Using the glassy carbon material obtained in Example ■,
A test similar to Test Example I was conducted. As a result, a good sputtered film was obtained.

(試験例■) 実施例■で得られたガラス状カーボン材料をもちいて、
試験例Iと同様の試験を行った。その結果、良好なスパ
ッタ膜が得られた。
(Test Example ■) Using the glassy carbon material obtained in Example ■,
A test similar to Test Example I was conducted. As a result, a good sputtered film was obtained.

(試験結果) 表で明らかなように、本発明実施例により得られたガラ
ス状カーボン材料の磁気ヘッド用基体としての特性(試
験例■ないし■)は、保磁力が小さく磁気特性に優れて
いることがわかる。
(Test Results) As is clear from the table, the characteristics of the glassy carbon materials obtained in the Examples of the present invention as substrates for magnetic heads (Test Examples ■ to ■) are that the coercive force is small and the magnetic properties are excellent. I understand that.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明実施例磁気ヘッドに用いられる材料により形
成されたモデル基体の外観斜視図。 l・・・モデル基体。
The figure is an external perspective view of a model base made of a material used in a magnetic head according to an embodiment of the present invention. l...Model base.

Claims (1)

【特許請求の範囲】 (11硬化前の初期縮合物の状態で20重量%以上の水
を含むことのできる熱硬化性樹脂を不活性雰囲気中で8
00℃以上の温度で炭化焼成してガラス状カーボン材料
を製造する方法において、上記熱硬化性樹脂は、 フェノールおよびフルフリルアルコールの一方もしくは
双方とホルマリンとの30対55〜75対30のモル比
の単量体混合物と、フェノール樹脂と、フラン樹脂と、
フェノール変性フラン共縮合物とから選ばれる1種また
は2種以上の化合物70〜100M量部と、 リグニンと、変性ロジンと、変性セルロースとから選ば
れる1種または2種以上の化合物0〜15重量部と、 尿素およびメラミンの一方または双方とホルマリンとの
30対55〜75対30のモル比の単量体混合物と、ユ
リア樹脂と、メラミン樹脂とから選ばれる1種または2
種以上の化合物0〜15重量部とによって組成され、 25℃における粘度が300〜8000 cpsである
樹脂組成物であることを特徴とするガラス状カーボン材
料の製造方法。
[Scope of Claims]
In the method of producing a glassy carbon material by carbonizing and firing at a temperature of 00°C or higher, the thermosetting resin comprises one or both of phenol and furfuryl alcohol and formalin in a molar ratio of 30:55 to 75:30. a monomer mixture of, a phenolic resin, a furan resin,
70 to 100 M parts of one or more compounds selected from phenol-modified furan cocondensates, and 0 to 15 parts by weight of one or more compounds selected from lignin, modified rosin, and modified cellulose. a monomer mixture of one or both of urea and melamine and formalin at a molar ratio of 30:55 to 75:30, urea resin, and melamine resin.
1. A method for producing a glassy carbon material, characterized in that the resin composition is composed of 0 to 15 parts by weight of at least one compound, and has a viscosity of 300 to 8,000 cps at 25°C.
JP59024006A 1983-03-09 1984-02-10 Manufacture of vitrified carbonaceous material Granted JPS60171210A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59024006A JPS60171210A (en) 1984-02-10 1984-02-10 Manufacture of vitrified carbonaceous material
EP84102495A EP0121781B1 (en) 1983-03-09 1984-03-08 Process for manufacturing glasslike carbon material
DE8484102495T DE3477660D1 (en) 1983-03-09 1984-03-08 Process for manufacturing glasslike carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024006A JPS60171210A (en) 1984-02-10 1984-02-10 Manufacture of vitrified carbonaceous material

Publications (2)

Publication Number Publication Date
JPS60171210A true JPS60171210A (en) 1985-09-04
JPS6344684B2 JPS6344684B2 (en) 1988-09-06

Family

ID=12126469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024006A Granted JPS60171210A (en) 1983-03-09 1984-02-10 Manufacture of vitrified carbonaceous material

Country Status (1)

Country Link
JP (1) JPS60171210A (en)

Also Published As

Publication number Publication date
JPS6344684B2 (en) 1988-09-06

Similar Documents

Publication Publication Date Title
US4550015A (en) Vitreous carbon and process for preparation thereof
US4958998A (en) Glasslike carbon composite material and method of preparing the same
US4668496A (en) Vitreous carbon
USRE32319E (en) Vitreous carbon and process for preparation thereof
US4526924A (en) Thermosettable compositions convertible to vitreous carbon and process for preparation thereof
US4626569A (en) Process for producing a molded product and the molded product produced thereby
EP0133684A1 (en) Substrate for a magnetic disc and method manufacturing same
KR101210882B1 (en) Graphite crucible with glassy carbon coatings and method for manufacturing the same
JPS60171210A (en) Manufacture of vitrified carbonaceous material
EP0121781B1 (en) Process for manufacturing glasslike carbon material
JPS60171208A (en) Manufacture of vitrified carbonaceous material
JPS64321B2 (en)
JPH09208316A (en) Glassy carbon material and its production
JPS60171211A (en) Manufacture of vitrified carbonaceous material
JPS60171209A (en) Manufacture of vitrified carbonaceous material
US4624811A (en) Process for preparing a vitreous carbon
JPS60171206A (en) Molded article of vitrified carbonaceous material
JPS60131816A (en) Manufacture of glassy carbonaceous material
JP2543159B2 (en) Carbon material and its manufacturing method
US4503215A (en) Furfural or furfural alchol impregnants for carbonacious bodies
JPH076349A (en) Substrate for magnetic recording medium and its production and magnetic recording medium
JP3108821B2 (en) Glassy carbon composite
JPH061604A (en) Vitreous carbon and production of same
JPH06100365A (en) Production of thick glassy carbon material
JP3118733B2 (en) Electrode plate and jig for plasma etching