JPS63186475A - Conductivity modulation type mosfet - Google Patents
Conductivity modulation type mosfetInfo
- Publication number
- JPS63186475A JPS63186475A JP62017372A JP1737287A JPS63186475A JP S63186475 A JPS63186475 A JP S63186475A JP 62017372 A JP62017372 A JP 62017372A JP 1737287 A JP1737287 A JP 1737287A JP S63186475 A JPS63186475 A JP S63186475A
- Authority
- JP
- Japan
- Prior art keywords
- base region
- conductivity type
- region
- conductivity
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000969 carrier Substances 0.000 claims abstract description 17
- 230000001939 inductive effect Effects 0.000 claims abstract description 4
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 238000002513 implantation Methods 0.000 abstract 1
- 230000015556 catabolic process Effects 0.000 description 9
- 230000003071 parasitic effect Effects 0.000 description 9
- 239000012535 impurity Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1095—Body region, i.e. base region, of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
- H01L29/7395—Vertical transistors, e.g. vertical IGBT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
この発明は、電導度変調形MO8FETに関し、ラッチ
アップ耐伍を改善したものである。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a conductivity modulated MO8FET with improved latch-up resistance.
(従来の技術)
従来の電導度変調形MO8FETとしては、例えば第6
図に示すようなものがある(USP 4゜364.0
73)。(Prior art) As a conventional conductivity modulation type MO8FET, for example,
There is something like the one shown in the figure (USP 4°364.0
73).
第6図中、21はホール注入源となる第1導電形のp+
アノード領域、22は実質的にドレインとして作用する
低不純物濃度の第2導電形のnベース領域であり、nベ
ース領域22は、p+アノード領域21を基板としてエ
ピタキシャル法により形成されている。In FIG. 6, 21 is p+ of the first conductivity type, which serves as a hole injection source.
The anode region 22 is a second conductivity type n base region with a low impurity concentration that essentially functions as a drain, and the n base region 22 is formed by an epitaxial method using the p + anode region 21 as a substrate.
上記のようにp形を第1導電形としたとき、これと反対
導電形のn形は第2導電形となる。When the p-type is the first conductivity type as described above, the n-type, which is the opposite conductivity type, is the second conductivity type.
nベース領域22の表面側には、DSA (Diffu
sion 5elf Alignment)技術に
よってnベース領域23およびn1ソース領域24が形
成されている。またn+ソース領域24とnベース領t
iii22との間におけるnベース領域23上には、そ
のnベース領域23にチャネル25を誘起させるゲート
電極27がゲート酸化膜(絶縁膜〉26を介して設けら
れている。On the surface side of the n base region 22, DSA (Diffu
An n base region 23 and an n1 source region 24 are formed using the ion 5elf alignment technique. Also, the n+ source region 24 and the n base region t
A gate electrode 27 for inducing a channel 25 in the n base region 23 is provided on the n base region 23 between the n base region iii 22 and the gate oxide film (insulating film) 26 .
28はソース電極であり、ソース電極28はn1ンース
fa域24およびnベース領域23に接続されている。28 is a source electrode, and the source electrode 28 is connected to the n1 base fa region 24 and the n base region 23.
29はアノード電極である。29 is an anode electrode.
上述のように電導度変調形MO3FETは、通常の縦形
MO8FETに対して、そのドレイン相当領域にp+ア
ノード領域21を付加した構造とみることができる。As described above, the conductivity modulation type MO3FET can be considered to have a structure in which a p+ anode region 21 is added to the region corresponding to the drain of a normal vertical MO8FET.
そしてアノード電極29に所要値の正電圧が加えられ、
ゲート電極27に閾値電圧以上のゲート電圧が加えられ
ると、ゲート電極27直下にチャネル25が誘起されて
nベース領域23の表面層が導通し、n+ソース領域2
4からチャネル25を通ってnベース領1ii!22に
電子電流が流入される。一方、p+アノード領域21か
らは、nベース領域22に多量のホール(少数キャリヤ
)が注入される。Then, a required positive voltage is applied to the anode electrode 29,
When a gate voltage equal to or higher than the threshold voltage is applied to the gate electrode 27, a channel 25 is induced directly under the gate electrode 27, the surface layer of the n base region 23 becomes conductive, and the n+ source region 2
From 4 through channel 25 to n base area 1ii! An electron current flows into 22. On the other hand, a large amount of holes (minority carriers) are injected from the p + anode region 21 into the n base region 22 .
nベース領域22に注入されたホールは、チャネル25
から流れ込んだ電子と再結合しながら一部はnベース領
域23へ流れ込み、ソース電極28へ抜ける。しかしn
ベース領域22には、なお多量のキャリヤ蓄積が生じて
主導度変調が起き、動作時のオン抵抗が低減する。The holes injected into the n-base region 22 form the channel 25.
Some of the electrons flow into the n base region 23 while recombining with the electrons that flowed in from the source electrode 28 . But n
A large amount of carrier accumulation still occurs in the base region 22, leading to intensity modulation and reducing the on-resistance during operation.
このように電導度変調形MO8FETは、動作時のオン
抵抗が非常に低くなり、且つ高耐圧であるという特性を
有している。In this way, the conductivity modulation type MO8FET has the characteristics of extremely low on-resistance during operation and high breakdown voltage.
しかるに電導度変調形MO8F E Tは、前述のよう
にp+アノード領域21を有し、このp+アノード領域
21上にnベース領域22が存在し、nベース領域22
にはnベース領域23およびn“ソース領域24が形成
されている。However, the conductivity modulation type MO8FET has the p+ anode region 21 as described above, the n base region 22 exists on the p+ anode region 21, and the n base region 22
An n base region 23 and an n'' source region 24 are formed in.
このような構造から、その内部には、第7図の等何回路
に示すように、pnp形のトランジスタQ1およびnp
n形のトランジスタQ2が寄生的に生じ、この両トラン
ジスタQ1、Q2の結合により、pnpnサイリスタが
形成されている。第7図中、Rbはnpn形のトランジ
スタQ2のベース抵抗で、ρベース領[23の部分に生
じる。Because of this structure, there are a pnp transistor Q1 and an np transistor inside, as shown in the circuit shown in FIG.
An n-type transistor Q2 is generated parasitically, and a pnpn thyristor is formed by the combination of both transistors Q1 and Q2. In FIG. 7, Rb is the base resistance of the npn transistor Q2, which occurs in the ρ base region [23].
このため、トランジスタQ1のエミッタに相当するp+
アノード領域21から注入されたホールのうち、そのコ
レクタに相当するnベース領域23に達する電流をlb
とすると、nベース領域23にIb−Rbなる電圧降下
が生じ、この電圧降下がトランジスタQ2のベース閾値
電圧(−〇。Therefore, p+ corresponding to the emitter of transistor Q1
Of the holes injected from the anode region 21, the current reaching the n base region 23 corresponding to the collector is lb.
Then, a voltage drop of Ib-Rb occurs in the n base region 23, and this voltage drop is the base threshold voltage of the transistor Q2 (-〇.
6V)を超えると、当該トランジスタQ2がオン状態に
転じて、そのコレクタ電流、即ち他のトランジスタQ1
のベース電流の増加を引き起す。この結果、トランジス
タQ1のコレクタ電流であるIbが増加してトランジス
タQ2のベース電流が増加するという正帰還ループがで
きてラッチアップ現象が発生する。ラッチアップ現象が
発生すると、サイリスタ動作が生じるので電源を一旦切
らない限り元の状態に復帰しない。6V), the transistor Q2 turns on and its collector current, that is, the other transistor Q1
causes an increase in the base current of As a result, a positive feedback loop is created in which the collector current Ib of the transistor Q1 increases and the base current of the transistor Q2 increases, resulting in a latch-up phenomenon. When a latch-up phenomenon occurs, thyristor operation occurs and the original state cannot be restored unless the power is turned off.
したがってラッチアップ現象の発生を防止するためには
、nベース領域23部分の抵抗Rbおよびこれに流れる
電流1bをできる限り小さくすることが重要となる。Therefore, in order to prevent the latch-up phenomenon from occurring, it is important to make the resistance Rb of the n-base region 23 portion and the current 1b flowing therein as small as possible.
このため、従来の電導度変調形MO8FETにあっては
、nベース領域22の厚さを厚くして、p+アノード領
域21からそのnベース領域22に注入されるホールの
大部分が再結合されるようにし、またp+アノード領域
21とnベース領域22とで構成される寄生トランジス
タQ1のエミッタ注入効率を落すことが行なわれていた
。For this reason, in the conventional conductivity modulation type MO8FET, the thickness of the n base region 22 is increased so that most of the holes injected from the p+ anode region 21 into the n base region 22 are recombined. In addition, the emitter injection efficiency of the parasitic transistor Q1 composed of the p+ anode region 21 and the n base region 22 has been reduced.
(発明が解決しようとする問題点)
しかしながら、nベース領域22の厚さを厚くしてp+
アノード領域21から注入されるホールの大部分を再結
合させるようにすると、[)ベース領域22は低不純物
濃度領域であるため動作時のオン抵抗を十分に低くする
ことができないという問題点があった。(Problem to be Solved by the Invention) However, by increasing the thickness of the n base region 22, the p+
If most of the holes injected from the anode region 21 are recombined, there is a problem that the on-resistance during operation cannot be made sufficiently low because the base region 22 is a low impurity concentration region. Ta.
この発明は、このような従来の問題点に着目してなされ
たもので、ラッチアップ耐量が高く且つ動作時のオン抵
抗を十分に低くすることのできる電導度変調形MO8F
ETを提供することを目的とする。The present invention was made by focusing on these conventional problems, and is a conductivity modulated MO8F that has high latch-up resistance and can sufficiently reduce on-resistance during operation.
The purpose is to provide ET.
[発明の構成]
(問題点を解決するための手段)
この発明は上記目的を達成するために、第1導電形の高
濃度領域と、該a濃度領域上に形成され当該高濃度領域
からの少数キャリヤ注入により電導度が変調されるとと
もに実質的にドレインとして作用する第2導電形のベー
ス領域と、該第2導電形のベース領域内に埋込まれ当該
第2導電形のベース領域の電導度を変調させた少数キャ
リヤを捕集する第1導電形のグリッドコレクタと、前記
第2導電形のベース領域の表面側に形成された第1導電
形のベース領域と、該第1導電形のベース領域の表面側
に形成された第2導電形のソース領域と、該ソース領域
と前記第2導電形のベース領域との間の前記第1導電形
のベース領域上にゲート絶縁膜を介して設けられ当該第
1導電形のベース領域にチャネルを誘起させるゲート電
極とを有することを要旨とする。[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention includes a high concentration region of the first conductivity type, and a high concentration region formed on the a concentration region and from which the high concentration region is formed. A base region of a second conductivity type whose conductivity is modulated by minority carrier injection and which substantially acts as a drain; and a base region of the second conductivity type embedded in the base region of the second conductivity type. a grid collector of a first conductivity type that collects minority carriers whose concentration is modulated; a base region of a first conductivity type formed on the surface side of the base region of the second conductivity type; A source region of a second conductivity type formed on the surface side of the base region, and a gate insulating film formed on the base region of the first conductivity type between the source region and the base region of the second conductivity type. The gist of the present invention is to include a gate electrode which is provided and which induces a channel in the base region of the first conductivity type.
(作用)
第1導電形の高濃度領域から第2導電形のベース領域に
注入されて、この第2導電形のベース領域に電導度変調
を生じさせた少数キャリヤの大部分は、第1導電形のグ
リッドコレクタに捕集されて、このグリッドコレクタ内
で多数キャリヤの一部として吸収潰滅する。したがって
第1導電形のベース領域への少数キャリヤの流入が極め
て少なくなってラッチアップ現象の発生が防止される。(Function) Most of the minority carriers that are injected from the high concentration region of the first conductivity type into the base region of the second conductivity type and cause conductivity modulation in the base region of the second conductivity type are It is collected in a shaped grid collector, where it is absorbed and destroyed as part of the majority carriers. Therefore, the flow of minority carriers into the base region of the first conductivity type is extremely reduced, and the latch-up phenomenon is prevented from occurring.
このように少数キャリヤはグリッドコレクタの作用で吸
収され消滅するので、第2導電形のベース領域はその厚
さを耐圧を所定値に保持し得る範囲で所定の厚さまで薄
くすることができ、オン抵抗の低減が図られる。In this way, the minority carriers are absorbed and disappear by the action of the grid collector, so the thickness of the base region of the second conductivity type can be reduced to a predetermined thickness within a range that can maintain the withstand voltage at a predetermined value. The resistance is reduced.
(実施例) 以下、この発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.
第1図ないし第3図は、この発明の一実施例を示す図で
ある。1 to 3 are diagrams showing one embodiment of the present invention.
まず構成を説明すると、第1図中、1はホール注入源と
なる高濃度領域としてのp+アノード領域であり、p+
アノード領減滅1上は、当該ρ“アノード領域1からの
ホール(少数キャリヤ)注入により電導度変調が起きる
とともに、実質的にドレインとして作用する低不純物a
度のnベース領域2が形成されている。First, to explain the structure, in FIG.
In the anode region depletion 1, conductivity modulation occurs due to the injection of holes (minority carriers) from the anode region 1, and the low impurity a, which essentially acts as a drain,
An n-base region 2 is formed.
そして、このnベース領域2内のやや上側寄りに、当該
nベース領域2に電導度変調を生じさせたホールを捕集
して、これをほぼ消滅させるp+グリッドコレクタ6が
埋込まれている。p“グリッドコレクタ6は、後述する
pベース領域へのホールの流入を阻止することを目的と
するものであるので、この目的を効果的に生じさせるた
めに、そのpベース領域の下方側の所定の部分にそれぞ
れ部分的に形成された高不純物濃度のp+拡散層で構成
されている。A p+ grid collector 6 is embedded slightly above the n-base region 2 to collect holes that cause conductivity modulation in the n-base region 2 and substantially eliminate them. Since the purpose of the p" grid collector 6 is to prevent holes from flowing into the p base region, which will be described later, in order to effectively achieve this purpose, It is composed of a p+ diffusion layer with a high impurity concentration partially formed in each portion.
nベース領域2内へのp+グリッドコレクタ6の埋込み
は、例えば次のようにして形成される。The p+ grid collector 6 is embedded in the n base region 2, for example, in the following manner.
即ち、まずρ“アノード領域1を基板として、エピタキ
シャル法により第1nベース領域3が所要の厚さで、所
要の低不純物濃度となるように形成される。次いで第1
nベース領域3の表面に、所定パターンのp+グリッド
コレクタ6が高不純物濃度となるように拡散により形成
される。このようにしてp+グリッドコレクタ6が形成
された第1nベース領域3を備えたエピタキシャルシリ
コンウェー八と、第2nベース領t44となる低不純物
濃度のシリコンウェーハとが、公知のシリコンウェーへ
の直接接合法(特開昭60−51700号公報)により
張り合わせ界面5の部分で直接接合される。この直接接
合の際、第1nベース領域3の表面に予め拡散形成され
た所定パターンのp+グリッドコレクタ6は、pベース
領域の直下となるように位置付けされる。p+アノード
領域1から注入されてnベース領域2に電導度変調を生
じさせたホールは、p+グリッドコレクタ6で捕集され
てほぼ消滅するので、nベース領域2の厚さは、ホール
を再結合させる目的で格別厚くする必要はなく、第1n
ベース領域3と第2nべ一ス領賊4との張り合わせで形
成されたnベース領域2の全体の厚さは、可能な範囲で
所定の厚さまで薄くされる。That is, first, using the ρ'' anode region 1 as a substrate, a first n base region 3 is formed by an epitaxial method to a required thickness and a required low impurity concentration.
A p+ grid collector 6 having a predetermined pattern is formed on the surface of the n base region 3 by diffusion so as to have a high impurity concentration. The epitaxial silicon wafer having the first n-base region 3 in which the p+ grid collector 6 is formed in this way and the silicon wafer with a low impurity concentration that will become the second n-base region t44 are connected directly to the known silicon wafer. They are directly joined at the lamination interface 5 according to the method (Japanese Patent Laid-Open No. 60-51700). During this direct bonding, the p+ grid collector 6 having a predetermined pattern, which has been diffused and formed in advance on the surface of the first n-base region 3, is positioned directly below the p-base region. Holes that are injected from the p+ anode region 1 and cause conductivity modulation in the n base region 2 are collected by the p+ grid collector 6 and almost disappear, so the thickness of the n base region 2 is large enough to recombine the holes. There is no need to make it particularly thick for the purpose of
The overall thickness of the n base region 2 formed by pasting the base region 3 and the second n base region 4 together is reduced to a predetermined thickness within the possible range.
上記のようにして形成されたp十グリッドコレクタ埋込
みのnベース領域2の表面側に、nベース領域7および
n+ソース領iii!8が形成され、ざらにn“ソース
領域8とnベース領域2との間におけるnベース領域7
上には、そのnベース領域7にチャネル9を誘起させる
ためのゲート電極12がゲート酸化!I(絶縁膜)11
を介して設けられている。、13はソース電極であり、
ンース電、極13は、n+ソース領域8およびnベース
領域7に接続されている。14はアノード電極である。An n base region 7 and an n+ source region iii! 8 is formed, and an n base region 7 is formed roughly between the n'' source region 8 and the n base region 2.
Above, a gate electrode 12 for inducing a channel 9 in the n base region 7 is gate oxidized! I (insulating film) 11
It is provided through. , 13 is a source electrode,
The source electrode 13 is connected to the n+ source region 8 and the n base region 7. 14 is an anode electrode.
次に第2図および第3図を用いて作用を説明する。Next, the operation will be explained using FIGS. 2 and 3.
nベース領域2中にp+グリッドコレクタ6が埋込まれ
たことにより、電S度変調形MO3FET中には、第2
図に示すように、前記第7図に示した奇生トランジスタ
Q+ 、Q2の他に、p+アノード領域1、第1nベー
ス領域3およびp+グリッドコレクタ6の各領域によっ
て、p+アノード領域1をエミッタとしたpnp形の寄
生バイポーラトランジスタQ3が形成されている。この
奇生バイポーラトランジスタQ3のコレクタ耐圧は、低
不純物111度の第1nベース領域3の厚さでほぼ決め
られる。By embedding the p+ grid collector 6 in the n base region 2, the second
As shown in the figure, in addition to the parasitic transistors Q+ and Q2 shown in FIG. A pnp type parasitic bipolar transistor Q3 is formed. The collector breakdown voltage of this strange bipolar transistor Q3 is approximately determined by the thickness of the first n base region 3 with a low impurity concentration of 111 degrees.
そして、アノード電極14に所要値の正電圧が加えられ
、ゲート電極12に閾値電圧以上のゲート電圧が加えら
れると、ゲート電極12直下のnベース領域7の表面層
が反転してチャネル9が誘起され、n+ソース領域8と
ドレインとして作用するnベース領域2とが導通する。When a required positive voltage is applied to the anode electrode 14 and a gate voltage equal to or higher than the threshold voltage is applied to the gate electrode 12, the surface layer of the n-base region 7 directly under the gate electrode 12 is inverted and the channel 9 is induced. As a result, the n+ source region 8 and the n base region 2 acting as a drain are electrically connected.
一方、p1アノード領域1からnベース領域2に多量の
ホール(少数キセリャ)が注入され、nベース領域2に
電導度変調が起き、このnベース領域2の部分の抵抗が
十分に低くなる。そして電゛S度変調を生じさせたホー
ルはnベース領IiI!2内を拡散してp+グリッドコ
レクタ6の埋込領域に達し、このp′″グリッドコレク
タ6に捕集されて当該p+グリッドコレクタ6内で多数
キャリヤの一部として吸収される。したがってp+グリ
ッドコレクタ6の部分でホールの殆んどが捕集されて消
滅し、またp+グリッドコレクタ6を形成しているp+
拡散層は、特にnベース領域7の下方に配置されている
ので、pベース領vA7へのホールの流入が顕著に少な
くなる。On the other hand, a large amount of holes (minority number of holes) are injected from the p1 anode region 1 into the n base region 2, conductivity modulation occurs in the n base region 2, and the resistance of this portion of the n base region 2 becomes sufficiently low. And the hole that caused the S degree modulation is in the n-base region IiI! 2, reaches the embedded region of the p+ grid collector 6, is collected by this p''' grid collector 6, and is absorbed as part of the majority carriers within the p+ grid collector 6. Therefore, the p+ grid collector Most of the holes are collected and disappear in the part 6, and the p+ which forms the p+ grid collector 6
Since the diffusion layer is particularly arranged below the n-base region 7, the inflow of holes into the p-base region vA7 is significantly reduced.
この結果、当該電導度変調形MO8FETは、出力電流
(ドレイン電流)があるレベル以上となっても、寄生ト
ランジスタQ2のベース電位の上昇が抑制され、その奇
生トランジスタQ2のオン動作、ひいてはサイリスタ動
作が防止されてラッチアップに対する耐量が向上される
。As a result, in the conductivity modulated MO8FET, even if the output current (drain current) exceeds a certain level, the rise in the base potential of the parasitic transistor Q2 is suppressed, and the on-operation of the parasitic transistor Q2 and the thyristor operation are suppressed. This prevents latch-up and improves resistance to latch-up.
このように、この実施例の電導度変調形MO8FETは
、奇生トランジスタQ1、Q2側のオン動作、云い換え
れば、サイリスタ動作が抑制されるので、その耐圧は、
前述した他の寄生トランジスタQ3のコレクタ耐圧で規
定される。そしてこのコレクタ耐圧は、第1nベース領
域3の厚さでほぼ決まり、且つこの厚さはオン抵抗にも
関係するので、この第1nベース領域3の厚さを所定の
耐圧が得られる範囲で薄く設定することにより、所定の
耐圧で且つ低オン抵抗を有する優れた特性のfflIJ
度変調形MO3FETが実現される。In this way, in the conductivity modulated MO8FET of this embodiment, the on operation of the parasitic transistors Q1 and Q2, in other words, the thyristor operation is suppressed, so its breakdown voltage is
It is defined by the collector breakdown voltage of the other parasitic transistor Q3 mentioned above. This collector breakdown voltage is almost determined by the thickness of the first n-base region 3, and this thickness is also related to the on-resistance, so the thickness of the first n-base region 3 is made as thin as possible within a range where a predetermined breakdown voltage can be obtained. By setting, fflIJ with excellent characteristics that has a predetermined withstand voltage and low on-resistance.
A modulated MO3FET is realized.
第3図のa特性線は、上述のようなこの実施例に係る電
導度変調形MO8FETの耐圧特性を示したもので、前
記第6図の従来例におけるラッチアップ領域線すと比べ
ると、電導度変調形MO8FETの通常の使用範囲であ
る成るレベル以上のドレイン電流値において、この実施
例のものは降伏耐量が優れ、素子の安全動作領域が広げ
られている。The characteristic line a in FIG. 3 shows the withstand voltage characteristics of the conductivity modulated MO8FET according to this embodiment as described above. At a drain current value exceeding the level in which the degree modulation type MO8FET is normally used, this example has excellent breakdown strength and the safe operation area of the device is expanded.
次いで第4図および第5図には、この発明の伯の実施例
を示す。Next, FIGS. 4 and 5 show an embodiment of the present invention.
この実施例は、p+グリッドコレクタ16のパターンを
、多数の円孔を有するようなメツシュ状のパターンとし
て、第1nベース領域3と第2nベース領域4との直接
接合法による張り合わせの際に、nベース領域7に対す
るグリッドコレクタ16の位置合わせの手間が省けるよ
うにしたものである。In this embodiment, the pattern of the p+ grid collector 16 is a mesh pattern having a large number of circular holes, and when the first n base region 3 and the second n base region 4 are bonded together by the direct bonding method, the n This saves the effort of aligning the grid collector 16 with respect to the base area 7.
第5図は、p+グリッドコレクタ16の埋込み部分の平
面図を示したもので、多数の円孔の部分に第1nベース
領域3が臨んでおり、この円孔の部分で、n+ソース領
tii!8からの電子電流がアノード電極14側に抜け
る。FIG. 5 shows a plan view of the buried portion of the p+ grid collector 16, in which the first n base region 3 faces the portions of many circular holes, and the n+ source regions tii! The electron current from 8 passes to the anode electrode 14 side.
ラッチアップ耐量の向上およびオン抵抗の低減作用等に
ついては、前記一実施例のものとほぼ同様である。The effects of improving latch-up resistance and reducing on-resistance are substantially the same as those of the first embodiment.
なお、上述の各実施例ではnチャネルの電導度変調形M
O8FETについて述べてきたが、nチャネルの電導度
変調形MO3FETにも同様に適用できる。このとき高
濃度領域はカソードとなる。Note that in each of the above embodiments, the n-channel conductivity modulation type M
Although the description has been made regarding the O8FET, it can be similarly applied to an n-channel conductivity modulation type MO3FET. At this time, the high concentration region becomes a cathode.
[発明の効果コ
以上説明したように、この発明によれば第1導電形の高
濃度領域上に、この高濃度領域からの少数キャリヤ注入
によって電導度が変調されるとともに実質的にドレイン
として作用する第2導電形のベース領域を形成し、この
第2導電形のベース領域内に当該第2導電形のベース領
域に電導度変調を生じさせた少数キャリヤを捕集する第
1導電形のグリッドコレクタを埋込み、第2導電形のベ
ース領域の表面側には第1導電形のベース領域を形成し
、さらにこの第1導電形のベース領域の表面側に第2導
電形のソース領域を形成したので、第2導電形のベース
領域に電導度変調を生じさせた少数キャリヤの大部分は
、第1導電形のグリッドコレクタに捕集されて、そのグ
リッドコレクタ内で多数キャリヤの一部として吸収され
消滅する。[Effects of the Invention] As explained above, according to the present invention, minority carriers are injected into the high concentration region of the first conductivity type from the high concentration region, thereby modulating the conductivity and substantially acting as a drain. a grid of a first conductivity type that forms a base region of a second conductivity type, and collects minority carriers causing conductivity modulation in the base region of the second conductivity type; A collector is embedded, a base region of a first conductivity type is formed on the surface side of the base region of the second conductivity type, and a source region of a second conductivity type is further formed on the surface side of the base region of the first conductivity type. Therefore, most of the minority carriers that caused conductivity modulation in the base region of the second conductivity type are collected by the grid collector of the first conductivity type and absorbed as part of the majority carriers within the grid collector. Disappear.
したがって第1導電形のベース領域への少数キャリヤの
流入が顕著に減少しラッチアップ現象の発生が防止され
る。またこれとともに、第2導電形のベース領域は、耐
圧を所定値に保持し得る範囲でその厚さを薄くすること
ができるので、動作時のオン抵抗を低くすることができ
るという利点がある。Therefore, the inflow of minority carriers into the base region of the first conductivity type is significantly reduced, and the latch-up phenomenon is prevented from occurring. In addition, since the thickness of the base region of the second conductivity type can be reduced within a range that allows the breakdown voltage to be maintained at a predetermined value, there is an advantage that the on-resistance during operation can be reduced.
第1図ないし第3図はこの発明に係る電導度変調形MO
8FETの一実施例を示すもので、第1図は縦断面図、
第2図は寄生トランジスタを含む等価回路を示す回路図
、第3図は耐圧特性を従来例と比較して示す特性図、第
4図はこの発明の他の実施例を示ず縦断面図、第5図は
第4図のV−V線断面図、第6図は従来の電導度変調形
MO8FETを示す縦断面図、第7図は同上従来例にお
ける寄生トランジスタを含む等価回路を示す回路図であ
る。
1:p+アノード領域(高濃度領域)、2:nベース領
域、
6.16 : l)″ グリッドコレクタ、7:nベー
ス領域、
8:n+ソース領域、
9:チャネル、
11:ゲート酸化膜(絶縁膜)、
12:ゲート電極、
13:ソース電極、
14ニアノード電極。
代理人 弁理士 三 好 保 男アノード・ソー
ス間電圧
第3図
第4図1 to 3 show conductivity modulation type MO according to the present invention.
This shows an example of an 8FET, and FIG. 1 is a longitudinal cross-sectional view;
FIG. 2 is a circuit diagram showing an equivalent circuit including a parasitic transistor, FIG. 3 is a characteristic diagram showing breakdown voltage characteristics in comparison with a conventional example, and FIG. 4 is a longitudinal cross-sectional view showing another embodiment of the present invention. Fig. 5 is a cross-sectional view taken along the line V-V in Fig. 4, Fig. 6 is a vertical cross-sectional view showing a conventional conductivity modulated MO8FET, and Fig. 7 is a circuit diagram showing an equivalent circuit including a parasitic transistor in the conventional example. It is. 1: p+ anode region (high concentration region), 2: n base region, 6.16: l)'' grid collector, 7: n base region, 8: n+ source region, 9: channel, 11: gate oxide film (insulating 12: Gate electrode, 13: Source electrode, 14 Near anode electrode. Agent: Yasu Miyoshi, Patent Attorney Anode-source voltage Figure 3 Figure 4
Claims (1)
ャリヤ注入により電導度が変調されるとともに実質的に
ドレインとして作用する第2導電形のベース領域と、 該第2導電形のベース領域内に埋込まれ当該第2導電形
のベース領域の電導度を変調させた少数キャリヤを捕集
する第1導電形のグリッドコレクタと、 前記第2導電形のベース領域の表面側に形成された第1
導電形のベース領域と、 該第1導電形のベース領域の表面側に形成された第2導
電形のソース領域と、 該ソース領域と前記第2導電形のベース領域との間の前
記第1導電形のベース領域上にゲート絶縁膜を介して設
けられ当該第1導電形のベース領域にチャネルを誘起さ
せるゲート電極と を有することを特徴とする電導度変調形MOSFET。[Claims] A high concentration region of a first conductivity type, and a second conductivity region formed on the high concentration region and whose conductivity is modulated by minority carrier injection from the high concentration region and substantially acting as a drain. a base region of a conductivity type; a grid collector of a first conductivity type that is embedded in the base region of the second conductivity type and collects minority carriers that modulate the conductivity of the base region of the second conductivity type; a first conductivity type formed on the surface side of the base region of the second conductivity type;
a base region of a conductivity type; a source region of a second conductivity type formed on the surface side of the base region of the first conductivity type; and a base region of the first conductivity type between the source region and the base region of the second conductivity type. A conductivity modulation type MOSFET characterized by having a gate electrode provided on a base region of a conductivity type via a gate insulating film and inducing a channel in the base region of the first conductivity type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62017372A JPS63186475A (en) | 1987-01-29 | 1987-01-29 | Conductivity modulation type mosfet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62017372A JPS63186475A (en) | 1987-01-29 | 1987-01-29 | Conductivity modulation type mosfet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63186475A true JPS63186475A (en) | 1988-08-02 |
Family
ID=11942189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62017372A Pending JPS63186475A (en) | 1987-01-29 | 1987-01-29 | Conductivity modulation type mosfet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63186475A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5519245A (en) * | 1989-08-31 | 1996-05-21 | Nippondenso Co., Ltd. | Insulated gate bipolar transistor with reverse conducting current |
EP0869558A2 (en) * | 1997-03-31 | 1998-10-07 | Motorola, Inc. | Insulated gate bipolar transistor with reduced electric fields |
WO1999039388A1 (en) * | 1998-01-29 | 1999-08-05 | Siemens Aktiengesellschaft | Semiconductor insulating structure with reduced surface field strength and method for the production of the said structure |
WO2000002250A1 (en) * | 1998-07-07 | 2000-01-13 | Infineon Technologies Ag | Vertical semiconductor element with reduced electric surface field |
US7265416B2 (en) * | 2002-02-23 | 2007-09-04 | Fairchild Korea Semiconductor Ltd. | High breakdown voltage low on-resistance lateral DMOS transistor |
US9224853B2 (en) | 2007-12-26 | 2015-12-29 | Fairchild Semiconductor Corporation | Shielded gate trench FET with multiple channels |
US9368587B2 (en) | 2001-01-30 | 2016-06-14 | Fairchild Semiconductor Corporation | Accumulation-mode field effect transistor with improved current capability |
US9431481B2 (en) | 2008-09-19 | 2016-08-30 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
US9595596B2 (en) | 2007-09-21 | 2017-03-14 | Fairchild Semiconductor Corporation | Superjunction structures for power devices |
-
1987
- 1987-01-29 JP JP62017372A patent/JPS63186475A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5519245A (en) * | 1989-08-31 | 1996-05-21 | Nippondenso Co., Ltd. | Insulated gate bipolar transistor with reverse conducting current |
EP0869558A2 (en) * | 1997-03-31 | 1998-10-07 | Motorola, Inc. | Insulated gate bipolar transistor with reduced electric fields |
EP0869558A3 (en) * | 1997-03-31 | 1999-07-21 | Motorola, Inc. | Insulated gate bipolar transistor with reduced electric fields |
WO1999039388A1 (en) * | 1998-01-29 | 1999-08-05 | Siemens Aktiengesellschaft | Semiconductor insulating structure with reduced surface field strength and method for the production of the said structure |
WO2000002250A1 (en) * | 1998-07-07 | 2000-01-13 | Infineon Technologies Ag | Vertical semiconductor element with reduced electric surface field |
US6847091B2 (en) | 1998-07-07 | 2005-01-25 | Infineon Technologies Ag | Vertical semiconductor component having a reduced electrical surface field |
US9368587B2 (en) | 2001-01-30 | 2016-06-14 | Fairchild Semiconductor Corporation | Accumulation-mode field effect transistor with improved current capability |
US7265416B2 (en) * | 2002-02-23 | 2007-09-04 | Fairchild Korea Semiconductor Ltd. | High breakdown voltage low on-resistance lateral DMOS transistor |
US9595596B2 (en) | 2007-09-21 | 2017-03-14 | Fairchild Semiconductor Corporation | Superjunction structures for power devices |
US9224853B2 (en) | 2007-12-26 | 2015-12-29 | Fairchild Semiconductor Corporation | Shielded gate trench FET with multiple channels |
US9431481B2 (en) | 2008-09-19 | 2016-08-30 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0693512B2 (en) | Vertical MOSFET | |
JPS60196974A (en) | Conduction modulation type mosfet | |
JPS63127572A (en) | Conductivity modulation type mosfet | |
JPH09321290A (en) | Semiconductor device with insulted gate bipolar transistor | |
JPH06244430A (en) | Semiconductor device | |
JPS63186475A (en) | Conductivity modulation type mosfet | |
JPH03194974A (en) | Mos type semiconductor device | |
US10600898B2 (en) | Vertical bidirectional insulated gate turn-off device | |
JP4177229B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS605568A (en) | Vertical insulated gate field effect transistor | |
JPS61222260A (en) | Conductivity-modulation type mosfet | |
JP3240896B2 (en) | MOS type semiconductor device | |
JP3249891B2 (en) | Semiconductor device and method of using the same | |
JP2601862B2 (en) | Anode short type conductive modulation MOSFET | |
JP3371836B2 (en) | Semiconductor device | |
JPH04196174A (en) | Insulated-gate bipolar | |
JPH06275818A (en) | Power semiconductor device | |
JPH05114737A (en) | Conductivity modulated mosfet | |
JPS6373670A (en) | Conductive modulation type mosfet | |
JP2856257B2 (en) | P-channel insulated gate bipolar transistor | |
JP3489426B2 (en) | Semiconductor device | |
JPH04180680A (en) | Insulated-gate bipolar transistor | |
JPH0758328A (en) | Self-extinction type semiconductor device | |
JP2003332577A (en) | Semiconductor device and its manufacturing method | |
JPH04320377A (en) | Insulated gate bipolar transistor |