JPS628007B2 - - Google Patents
Info
- Publication number
- JPS628007B2 JPS628007B2 JP55047345A JP4734580A JPS628007B2 JP S628007 B2 JPS628007 B2 JP S628007B2 JP 55047345 A JP55047345 A JP 55047345A JP 4734580 A JP4734580 A JP 4734580A JP S628007 B2 JPS628007 B2 JP S628007B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- silicon semiconductor
- contact window
- polycrystalline
- single crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 8
- 238000005224 laser annealing Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 16
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- 239000010703 silicon Substances 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- -1 phosphorus ions Chemical class 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
- H01L21/02678—Beam shaping, e.g. using a mask
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8221—Three dimensional integrated circuits stacked in different levels
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Recrystallisation Techniques (AREA)
Description
【発明の詳細な説明】
本発明は、素子を立体的に構成することに依り
高密化した多層構造半導体装置を製造するのに好
適な方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method suitable for manufacturing a highly dense multilayer structure semiconductor device by three-dimensionally configuring elements.
近年、絶縁膜上に成長させた多結晶シリコン或
いは非晶質シリコンなどをレーザ・アニールして
単結晶化し、そこに素子を形成することに依り、
所謂SOS(Silicon on Sapphire)類似の半導体
装置を得ることができるようになつた。 In recent years, by laser annealing polycrystalline silicon or amorphous silicon grown on an insulating film to make it a single crystal, and forming devices there,
It has become possible to obtain semiconductor devices similar to so-called SOS (Silicon on Sapphire).
このようなことが可能になると、前記のように
して素子を形成した上に更に二酸化シリコンなど
の絶縁膜及びレーザ・アニールに依り単結晶化し
たシリコン層などを多層に形成して素子を立体的
に作り込み高集積化した半導体装置を得ることが
できるようになる。 If this becomes possible, it will be possible to form a three-dimensional device by forming multiple layers of an insulating film such as silicon dioxide and a single-crystal silicon layer by laser annealing on top of the device formed as described above. This makes it possible to obtain highly integrated semiconductor devices.
そのような場合、シリコン半導体基板、第1
層、第2層………の各シリコン半導体層は電気的
に接続されなければならない。 In such a case, the silicon semiconductor substrate, the first
Each silicon semiconductor layer of layer, second layer, etc. must be electrically connected.
本発明は、前記のような多層構造の半導体装置
を製造する場合の前記電気的接続を容易且つ確実
に行ない得るようにするものであり、以下これを
詳細に説明する。 The present invention enables the electrical connection to be easily and reliably made when manufacturing a semiconductor device having a multilayer structure as described above, and will be described in detail below.
第1図乃至第5図は本発明一実施例を説明する
為の工程要所に於ける半導体装置の要部側断面図
であり、次に、これ等の図を参照しつつ記述す
る。 1 to 5 are side sectional views of essential parts of a semiconductor device at key points in the process for explaining one embodiment of the present invention, and the following description will be made with reference to these figures.
第1図参照
(1) n+型シリコン半導体基板1に熱酸化法を適
用して二酸化シリコンからなる第1層目絶縁層
2を厚さ1〔μm〕程度に形成し、それを通常
のフオト・リソグラフイ技術にてパターニング
してコンタクト窓を形成する。Refer to Figure 1 (1) Apply a thermal oxidation method to an n + type silicon semiconductor substrate 1 to form a first insulating layer 2 made of silicon dioxide to a thickness of about 1 [μm], and then apply a thermal oxidation method to the n - Form a contact window by patterning using lithography technology.
(2) 化学気相成長法を適用して多結晶シリコン半
導体層3を厚さ0.5〔μm〕程度に成長させ
る。(2) Apply chemical vapor deposition to grow polycrystalline silicon semiconductor layer 3 to a thickness of about 0.5 [μm].
第2図参照
(3) 蒸着法を適用してアルミニウム膜を形成し、
それを通常のフオト・リソグラフイ技術にてパ
ターニングしてコンタクト窓領域を覆うマスク
4を形成する。See Figure 2 (3) Form an aluminum film by applying the vapor deposition method,
This is patterned using a conventional photolithography technique to form a mask 4 covering the contact window region.
(4) レーザ・ビームを照射して多結晶シリコン半
導体層3を単結晶シリコン半導体層3′に変換
する。尚、マスク4に覆われたコンタクト窓領
域の部分は多結晶シリコンのままであることは
当然である。(4) Convert the polycrystalline silicon semiconductor layer 3 into a single-crystalline silicon semiconductor layer 3' by irradiating with a laser beam. It goes without saying that the contact window region covered by the mask 4 remains polycrystalline silicon.
第3図参照
(5) マスク4を除去してから、気相成長法を適用
し、厚さ1〔μm〕程度の二酸化シリコンから
なる第2層目絶縁層5を形成し、これを通常の
フオト・リソグラフイ技術にてパターニングし
てコンタクト窓を形成する。See Figure 3 (5) After removing the mask 4, a vapor phase growth method is applied to form a second insulating layer 5 made of silicon dioxide with a thickness of approximately 1 [μm]. A contact window is formed by patterning using photolithography technology.
(6) 化学気相成長法を適用して多結晶シリコン半
導体層6を厚さ0.5〔μm〕程度に成長させ
る。(6) Apply chemical vapor deposition to grow polycrystalline silicon semiconductor layer 6 to a thickness of about 0.5 [μm].
第4図参照
(7) 前記工程3と同様にしてマスク7を形成す
る。See FIG. 4 (7) A mask 7 is formed in the same manner as in step 3 above.
(8) レーザ・ビームを照射して多結晶シリコン半
導体層6を単結晶シリコン半導体層6′に変換
する。この場合も、マスク7の下になつている
部分は多結晶シリコンのまま残る。(8) Convert the polycrystalline silicon semiconductor layer 6 into a single-crystalline silicon semiconductor layer 6' by irradiating the laser beam. In this case as well, the portion under the mask 7 remains as polycrystalline silicon.
第5図参照
(9) マスク7を除去してから、今度は残留してい
る多結晶シリコン半導体層6を露出し、単結晶
シリコン半導体層6′を覆うマスクを形成す
る。Refer to FIG. 5 (9) After removing the mask 7, the remaining polycrystalline silicon semiconductor layer 6 is exposed and a mask covering the single crystal silicon semiconductor layer 6' is formed.
(10) イオン注入法(或いは気相拡散法など適宜の
技法)を適用し、例えば燐イオンのデポジシヨ
ンを行ない拡散させると、多結晶シリコンは結
晶グレインが小さいので不純物の拡散は急速に
進行し、多結晶シリコン半導体層6,3を介
し、シリコン半導体基板1に達する。(10) When applying an ion implantation method (or an appropriate technique such as a vapor phase diffusion method) to deposit and diffuse phosphorus ions, for example, polycrystalline silicon has small crystal grains, so impurity diffusion progresses rapidly. It reaches the silicon semiconductor substrate 1 via the polycrystalline silicon semiconductor layers 6 and 3.
このようにして、シリコン半導体基板1、単結
晶シリコン半導体層3′、単結晶シリコン半導体
層6′は多結晶シリコン半導体層3,6を介して
容易且つ確実に電気接続されるものである。単結
晶シリコン半導体層3′に配線或いは素子を形成
するには工程中の適当な時期を選んで行なえば良
く、また、前記実施例の如く、2層構成であれ
ば、単結晶シリコン半導体層6′には通常の従来
技術を適用して素子を形成できる。尚、第5図に
は単結晶シリコン半導体層6′に通常のMIS電界
効果トランジスタを形成した状態が表わされてい
て、8はゲート酸化膜、9はシリコン・ゲート電
極、10Sはn+型ソース領域、10Dはn+型ド
レイン領域を示している。 In this way, silicon semiconductor substrate 1, single crystal silicon semiconductor layer 3', and single crystal silicon semiconductor layer 6' are easily and reliably electrically connected via polycrystalline silicon semiconductor layers 3 and 6. To form wiring or elements on the single crystal silicon semiconductor layer 3', it is only necessary to select an appropriate time during the process, and if the structure is two layers as in the above embodiment, the single crystal silicon semiconductor layer 6 ' can be formed by applying ordinary conventional techniques. Incidentally, FIG. 5 shows a state in which an ordinary MIS field effect transistor is formed in a single crystal silicon semiconductor layer 6', where 8 is a gate oxide film, 9 is a silicon gate electrode, and 10S is an n + type transistor. The source region and 10D indicate an n + type drain region.
以上の説明で判るように、本発明に依れば、シ
リコン半導体基板上に絶縁層及び多結晶(或いは
非晶質)シリコン半導体層をレーザ・アニールし
て得た単結晶シリコン半導体層を多層に形成し、
それ等単結晶シリコン半導体層に素子を形成する
ようにした半導体装置の製造方法に於いて、前記
絶縁層にコンタクト窓を形成してから多結晶(或
いは非晶質)シリコン半導体層を形成し、コンタ
クト窓領域をマスクで覆つてからレーザ・アニー
ルを行なつて該シリコン半導体層を単結晶シリコ
ン半導体層に変換する工程を前記コンタクト窓を
位置合せして複数回繰返すことに依り多層化し、
そのコンタクト窓領域に残留する多結晶(或いは
非晶質)シリコン層に不純物を導入して各単結晶
シリコン半導体層を電気的に接続するようにして
いる。多結晶シリコンは単結晶シリコンに比較し
てグレインが小さく、また、非晶質は勿論結晶で
はないから、導入された不純物は僅かの熱処理で
急速に拡散され、各単結晶シリコン半導体層を容
易且つ確実に電気接続することができる。ここ
で、接続に使用する多結晶シリコン半導体層は、
必然的に形成されるものを利用するのであるか
ら、その実施は容易である。 As can be seen from the above description, according to the present invention, a single crystal silicon semiconductor layer obtained by laser annealing an insulating layer and a polycrystalline (or amorphous) silicon semiconductor layer on a silicon semiconductor substrate is formed into a multilayer structure. form,
In such a method of manufacturing a semiconductor device in which an element is formed in a single crystal silicon semiconductor layer, a contact window is formed in the insulating layer, and then a polycrystalline (or amorphous) silicon semiconductor layer is formed, multilayering by aligning the contact windows and repeating the step of covering the contact window region with a mask and then performing laser annealing to convert the silicon semiconductor layer into a single crystal silicon semiconductor layer a plurality of times;
Impurities are introduced into the polycrystalline (or amorphous) silicon layer remaining in the contact window region to electrically connect the single crystal silicon semiconductor layers. Polycrystalline silicon has smaller grains than single-crystal silicon, and since polycrystalline silicon is of course not crystalline, the introduced impurities can be rapidly diffused with a small amount of heat treatment, making it easy to form each single-crystal silicon semiconductor layer. A reliable electrical connection can be made. Here, the polycrystalline silicon semiconductor layer used for connection is
It is easy to implement because it uses something that is naturally formed.
第1図乃至第5図は本発明一実施例を説明する
為の工程要所に於ける半導体装置の要部側断面図
である。
図に於いて、1はシリコン半導体基板、2は絶
縁膜、3は多結晶シリコン半導体層、3′は単結
晶シリコン半導体層、4はマスク、5は絶縁膜、
6は多結晶シリコン半導体層、6′は単結晶シリ
コン半導体層である。
1 to 5 are side cross-sectional views of essential parts of a semiconductor device at important points in the process for explaining one embodiment of the present invention. In the figure, 1 is a silicon semiconductor substrate, 2 is an insulating film, 3 is a polycrystalline silicon semiconductor layer, 3' is a single crystal silicon semiconductor layer, 4 is a mask, 5 is an insulating film,
6 is a polycrystalline silicon semiconductor layer, and 6' is a single crystal silicon semiconductor layer.
Claims (1)
を形成してから多結晶半導体層を形成し、該多結
晶半導体層のコンタクト窓領域部分を覆うマスク
を形成してからレーザ・アニールを行なつて前記
多結晶半導体層の露出部分を単結晶化する工程、
更に、前記コンタクト窓に位置合せされたコンタ
クト窓を有する絶縁膜を形成してから多結晶半導
体層を形成し、該多結晶半導体層のコンタクト窓
領域部分を覆うマスクを形成してからレーザ・ア
ニールを行なつて単結晶化する工程を少なくとも
1回実施し、しかる後、コンタクト窓領域部分に
残留している多結晶半導体層に不純物を導入して
前記半導体基板及び各単結晶半導体層を電気的に
接続する工程を含んでなることを特徴とする半導
体装置の製造方法。1. Form an insulating film having a contact window on a semiconductor substrate, then form a polycrystalline semiconductor layer, form a mask covering the contact window region of the polycrystalline semiconductor layer, and then perform laser annealing. a step of converting the exposed portion of the polycrystalline semiconductor layer into a single crystal;
Furthermore, an insulating film having a contact window aligned with the contact window is formed, a polycrystalline semiconductor layer is formed, a mask is formed to cover the contact window region of the polycrystalline semiconductor layer, and then laser annealing is performed. After that, an impurity is introduced into the polycrystalline semiconductor layer remaining in the contact window region to electrically connect the semiconductor substrate and each single-crystalline semiconductor layer. 1. A method for manufacturing a semiconductor device, comprising the step of connecting to.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4734580A JPS56144530A (en) | 1980-04-10 | 1980-04-10 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4734580A JPS56144530A (en) | 1980-04-10 | 1980-04-10 | Manufacture of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56144530A JPS56144530A (en) | 1981-11-10 |
JPS628007B2 true JPS628007B2 (en) | 1987-02-20 |
Family
ID=12772564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4734580A Granted JPS56144530A (en) | 1980-04-10 | 1980-04-10 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56144530A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5890763A (en) * | 1981-11-25 | 1983-05-30 | Mitsubishi Electric Corp | Semiconductor device |
JPS5892257A (en) * | 1981-11-27 | 1983-06-01 | Mitsubishi Electric Corp | Semiconductor device |
JPS5893372A (en) * | 1981-11-30 | 1983-06-03 | Toshiba Corp | Mos-type integrated circuit |
JP4193206B2 (en) * | 2001-07-25 | 2008-12-10 | セイコーエプソン株式会社 | Semiconductor thin film manufacturing method, semiconductor device manufacturing method, semiconductor device, integrated circuit, electro-optical device, and electronic apparatus |
JP5094099B2 (en) * | 2006-12-04 | 2012-12-12 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
-
1980
- 1980-04-10 JP JP4734580A patent/JPS56144530A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS56144530A (en) | 1981-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4725561A (en) | Process for the production of mutually electrically insulated monocrystalline silicon islands using laser recrystallization | |
JPS6359251B2 (en) | ||
JPS58116764A (en) | Manufacture of semiconductor device | |
JPS628007B2 (en) | ||
KR0142797B1 (en) | Manufacture method of silicon-on-insulator structure | |
JPS5885520A (en) | Manufacture of semiconductor device | |
JPS58175844A (en) | Manufacture of semiconductor device | |
JPH0467336B2 (en) | ||
JPH0468770B2 (en) | ||
JPH0235710A (en) | Forming method for thin film semiconductor layer | |
JPS6185815A (en) | Method for formation of polycrystalline silicon film | |
JPS6242522A (en) | Manufacture of semiconductor device | |
JPH0799742B2 (en) | Method for manufacturing semiconductor device | |
JPS621269B2 (en) | ||
JPS63117420A (en) | Manufacture of silicide layer | |
JPS62104078A (en) | Manufacture of semiconductor integrated circuit device | |
JPS63196032A (en) | Crystallization of semiconductor thin film | |
JPS60126814A (en) | Manufacture of semiconductor device | |
JPS6364892B2 (en) | ||
JPS63278217A (en) | Manufacture of semiconductor substrate | |
JPS5874034A (en) | Preparation of semiconductor device | |
JPH0147022B2 (en) | ||
JPH03108755A (en) | Manufacture of semiconductor device | |
JPS58128770A (en) | Manufacture of semiconductor device | |
JPH0722120B2 (en) | Method for manufacturing semiconductor device |