JPS6225614B2 - - Google Patents

Info

Publication number
JPS6225614B2
JPS6225614B2 JP9422580A JP9422580A JPS6225614B2 JP S6225614 B2 JPS6225614 B2 JP S6225614B2 JP 9422580 A JP9422580 A JP 9422580A JP 9422580 A JP9422580 A JP 9422580A JP S6225614 B2 JPS6225614 B2 JP S6225614B2
Authority
JP
Japan
Prior art keywords
glass
furnace
melting
molten glass
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9422580A
Other languages
Japanese (ja)
Other versions
JPS5722122A (en
Inventor
Susumu Kase
Chikahiro Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SASAKI GLASS KK
Original Assignee
SASAKI GLASS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SASAKI GLASS KK filed Critical SASAKI GLASS KK
Priority to JP9422580A priority Critical patent/JPS5722122A/en
Publication of JPS5722122A publication Critical patent/JPS5722122A/en
Publication of JPS6225614B2 publication Critical patent/JPS6225614B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/24Automatically regulating the melting process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】 本発明はガラス溶融炉内のガラス原料を溶融す
るために供給する溶融エネルギーの制御方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling melting energy supplied to melt glass raw materials in a glass melting furnace.

工業的にガラス溶融炉でガラス原料を溶融する
には溶融エネルギー源として通常は重油、ガス等
の化石燃料の燃焼熱又は電力の使用により発生す
るジユール熱を利用しており、その溶融に必要な
エネルギー量は理論的にはガラス原料がガラス化
するに必要なエネルギー、及び溶融炉より放熱さ
れるエネルギーの和である。しかし実際には溶融
ガラスの清澄のためにやや多目のエネルギーを供
給するのが普通である。これは清澄の内で最終的
に重視される脱泡のためには、溶融ガラスの温度
を上げて粘度を低下させることにより脱泡をし易
くすることが望ましいという知見に基づくもので
ある。
Industrially, to melt glass raw materials in a glass melting furnace, the energy source for the melting is usually the combustion heat of fossil fuels such as heavy oil and gas, or the Joule heat generated by the use of electricity. The amount of energy is theoretically the sum of the energy required to vitrify the glass raw material and the energy radiated from the melting furnace. However, in reality, it is common to supply slightly more energy to refine the molten glass. This is based on the knowledge that for defoaming, which is ultimately important in fining, it is desirable to raise the temperature of the molten glass and lower its viscosity to facilitate defoaming.

ところで、この溶融、清澄のためのエネルギー
供給量の制御は溶融炉内の溶融ガラス温度を測定
し、これをあらかじめ粘度曲線等より予想して設
定した基準的な温度と比較判断することによつて
行なうことが多いが、実際には操業中のガラス引
上量やガラス原料の組成等の徴妙な変化により同
一温度にあつても脱泡が不完全になる場合のある
ように、上記脱泡・清澄のために与える必要のあ
る供給エネルギーの増量分は動的な変動要因を持
つており、結局測定した溶融ガラス温度のみを要
素としてエネルギー供給量を調整制御する間接方
式では清澄安定維持の上で難点がある。勿論必要
エネルギー量を大巾に上まわる量を常に供給して
おけば清澄の面では良いが、これはエネルギーの
無駄な消費と炉の損傷を著しく高めることになる
ので、通常は必要範囲で可及的小なる量のエネル
ギーを供給するのが望ましいことは当然である。
By the way, the amount of energy supplied for this melting and clarification can be controlled by measuring the temperature of the molten glass in the melting furnace and comparing it with a standard temperature predicted and set in advance from the viscosity curve etc. However, in reality, defoaming may be incomplete even at the same temperature due to subtle changes in the amount of glass pulled up during operation, the composition of glass raw materials, etc.・The increase in the amount of supplied energy that needs to be given for fining has dynamic fluctuation factors, and in the end, indirect methods that adjust and control the amount of energy supplied using only the measured molten glass temperature as a factor cannot maintain stable fining. There is a problem with this. Of course, it would be better in terms of clarification if the amount of energy greatly exceeded the required amount was always supplied, but this would lead to wasteful energy consumption and damage to the furnace, so it is usually possible to supply only within the necessary range. Naturally, it is desirable to provide as little energy as possible.

そこで従来は、成形完了したガラス製品、ある
いは溶融炉の作業槽より溶融ガラスとサンプリン
グし冷却して得たガラス塊を目視により気泡が残
つているかどうか観察して清澄の良否を判定し、
その結果により溶融ガラス温度の設定値を可変調
整して供給エネルギーの増減を操作していた。し
かしこの方法は人手にたよるため労力が必要なこ
と、実質的に連続監視が出来ないこと、清澄不良
が見つかつた時の対応制御にかなりの遅れを持つ
ためこれにより生ずる損失が大きい等の問題があ
つた。本発明は上記問題点に鑑み溶融ガラスを連
続的に自動的に監視し気泡の増減に即応して供給
エネルギーを操作する方法を提供するものであ
る。
Therefore, in the past, the quality of fining was determined by visually observing whether there were any remaining air bubbles in a glass product that had been formed, or a glass lump obtained by sampling molten glass from the working tank of a melting furnace and cooling it.
Based on the results, the set value of the molten glass temperature was variably adjusted to increase or decrease the supplied energy. However, this method requires labor because it relies on manual labor, it is virtually impossible to perform continuous monitoring, and there is a considerable delay in response control when a clarification defect is found, resulting in large losses. It was hot. In view of the above-mentioned problems, the present invention provides a method of continuously and automatically monitoring molten glass and manipulating the supplied energy in immediate response to the increase or decrease of bubbles.

即ち本発明はガラス原料を溶融するガラス溶融
炉に供給する溶融エネルギーの制御方法におい
て、溶融炉に付設したサンプリングオリフイスよ
り炉外に連続導出されるサンプリング溶融ガラス
中の含有気泡数を単位時間毎に計数した検出値
と、前記炉内の溶融ガラス温度の検出値とを、あ
らかじめ設定した標準気泡数及び標準温度と比較
演算することにより供給エネルギー量を制御する
ことを特徴とするガラス溶融炉の溶融エネルギー
制御方法である。
That is, the present invention provides a method for controlling the melting energy supplied to a glass melting furnace for melting glass raw materials, in which the number of bubbles contained in sampled molten glass continuously drawn out of the furnace from a sampling orifice attached to the melting furnace is calculated per unit time. Melting in a glass melting furnace, characterized in that the amount of energy supplied is controlled by calculating and comparing the counted detected value and the detected value of the temperature of molten glass in the furnace with a preset standard number of bubbles and standard temperature. This is an energy control method.

以下本発明を図に示す実施例に従い詳細に説明
する。
The present invention will be explained in detail below according to embodiments shown in the drawings.

第1図において、ガラス溶融炉1は溶融槽2と
これに底部にて接続する作業槽3とから成り、溶
融槽2はガラス原料を溶融するエネルギー供給源
として直接通電加熱方式の一対の電極4,4′を
有しており、該電極4,4′には供給電力量を可
変制御しうる電力供給装置24により電力が供給
されるべく構成されている。12はガラス原料で
あり、溶融ガラスの引上に従いホツパー11より
投入コンベヤ5に流下させられ、該投入コンベヤ
5により溶融ガラス6上に一様の厚さに投入され
て熱の放散を防止するいわゆるコールドトツプを
形成している。
In FIG. 1, a glass melting furnace 1 consists of a melting tank 2 and a working tank 3 connected to it at the bottom. , 4', and the electrodes 4, 4' are configured to be supplied with power by a power supply device 24 that can variably control the amount of power supplied. Reference numeral 12 denotes a glass raw material, which is made to flow down from the hopper 11 to the charging conveyor 5 as the molten glass is pulled up, and is thrown onto the molten glass 6 to a uniform thickness by the charging conveyor 5 to prevent heat dissipation. It forms a cold top.

作業槽3には、溶融ガラス6を製品として成形
するために取り出すオリフイス7と、溶融ガラス
6を連続的にサンプリングして清澄を監視するた
めにこの溶融ガラス6を流下させる小さなサンプ
リングオリフイス8とが設けられている。サンプ
リングオリフイス8の真下には流下する溶融ガラ
ス6をほぼ一定の厚さのリボン状板ガラスにロー
ル成形するための成形ロール装置9が設けられて
おり、これは金属製ロールにより構成されること
によつて冷却器としての機能を兼ね備えている。
又該成形ロール装置9の下方には、前記サンプリ
ングオリフイス8より連続的に流下し成形された
リボン状板ガラス10中に含有する気泡を検知す
るための光源を持つ反射型光電スイツチ20が対
面配置されており、この光電スイツチ20により
検知された気泡は単位時間毎の泡数として計数さ
れる。
The working tank 3 includes an orifice 7 for taking out the molten glass 6 to be molded into a product, and a small sampling orifice 8 for continuously sampling the molten glass 6 and allowing the molten glass 6 to flow down in order to monitor fining. It is provided. Immediately below the sampling orifice 8, a forming roll device 9 is provided for roll forming the flowing molten glass 6 into a ribbon-shaped plate glass having a substantially constant thickness. It also functions as a cooler.
Further, below the forming roll device 9, a reflective photoelectric switch 20 having a light source for detecting air bubbles contained in the ribbon-shaped plate glass 10 continuously flowed and formed from the sampling orifice 8 is disposed facing the forming roll device 9. The bubbles detected by this photoelectric switch 20 are counted as the number of bubbles per unit time.

又溶融槽2の炉内には溶融ガラスの温度測定の
ための熱電対21が炉床より嵌挿固定されてい
る。溶融炉へ供給する電気エネルギー量の制御シ
ステムは、光電スイツチ20及び熱電対21の出
力信号又はその計数値をあらかじめ設定した基準
温度、基準泡数と比較するデーター処理装置22
と、この後段に接続されて前記電力供給装置24
の溶融炉への供給電力を可変制御するための所定
の出力信号を発する供給電力制御装置23とより
構成されている。次にこれ等の制御装置による供
給電力の制御方法について説明する。
Further, a thermocouple 21 for measuring the temperature of the molten glass is inserted and fixed in the furnace of the melting tank 2 from the hearth. The control system for the amount of electrical energy supplied to the melting furnace includes a data processing device 22 that compares the output signals of the photoelectric switch 20 and thermocouple 21 or their counts with a preset reference temperature and reference bubble number.
and the power supply device 24 is connected to this latter stage.
The power supply control device 23 generates a predetermined output signal for variably controlling the power supply to the melting furnace. Next, a method of controlling power supply by these control devices will be explained.

前述の如く、サンプリングオリフイス8より流
下する溶融ガラスは圧延ロール装置9によりリボ
ン状板ガラス10に成形されると共に、冷却され
連続的に垂下する(尚このガラスは回収してカレ
ツトにしガラス原料として再使用することができ
る)。このリボン状板ガラス10が光電スイツチ
20の配置部を通過すると、該光電スイツチ20
の内蔵光源から投光される光がその板ガラス中の
気泡に反射されて、該光電スイツチ20は反射光
を検知してパルス信号を発生させデーター処理装
置22にこれを送る。このデーター処理装置22
はその前段部においてパルス信号を単位時間毎に
計数し、この計数値aoを単位時間毎に後段部に送
る。一方、熱電対21において検出された炉内溶
融ガラスの溶融温度(以下T゜とする)もデータ
ー処理装置22に送られる。データー処理装置2
2はこれ等の信号入力を受けて、あらかじめ指示
記憶されている標準気泡数(以下aoとする)との
比較を行い偏差を判断する。一方T゜は同様あら
かじめ指示記憶されている最高設定温度(T゜が
この温度より高い時は異状とみなすべき溶融ガラ
スの種類又は引上量により自動又は手動により設
定された温度で以下MAX.T゜とする。)及び最低
設定温度(T゜がこの温度より低い時は異状とみ
なすべき溶融ガラスの種類又は引上量により自動
又は手動により設定された温度で以下MIN.T゜
とする。)とそれぞれ比較され偏差を判断する。
そして検出気泡数a及びガラス溶融温度T゜と、
これらの標準値ao、及びMAX.T゜,MAX.T゜と
の比較信号に基づき供給電力制御装置23は図示
するAND,OR回路の構成にて次の様に電力の増
減の制御信号を発生させる。即ち第2図に示され
る如くaがaoより大なる時でかつT゜がMAX.T
゜より低い時は電力増加の指示信号S1が発生さ
れ、MAX.T゜より高い時は警告信号S3が発生さ
れる。一方、aがaoより小なる時でかつT゜が
MIN.T゜より高い時は電力減少の指示信号S2
発生されMIN.T゜より低い時は警告信号S3が発
生される。
As mentioned above, the molten glass flowing down from the sampling orifice 8 is formed into a ribbon-shaped plate glass 10 by the rolling roll device 9, and is cooled and continuously hangs down (this glass is collected, culled, and reused as a raw material for glass). can do). When this ribbon-shaped plate glass 10 passes through a portion where a photoelectric switch 20 is arranged, the photoelectric switch 20
Light emitted from the built-in light source is reflected by bubbles in the plate glass, and the photoelectric switch 20 detects the reflected light, generates a pulse signal, and sends it to the data processing device 22. This data processing device 22
counts the pulse signals every unit time in its front stage, and sends this counted value ao to the rear stage every unit time. On the other hand, the melting temperature (hereinafter referred to as T°) of the molten glass in the furnace detected by the thermocouple 21 is also sent to the data processing device 22 . Data processing device 2
2 receives these signals and compares them with the standard number of bubbles (hereinafter referred to as ao) stored in advance to determine the deviation. On the other hand, T゜ is the maximum set temperature that is specified and memorized in advance (if T゜ is higher than this temperature, it should be considered as abnormal. It is a temperature that is set automatically or manually depending on the type of molten glass or the amount of pulled up. (hereinafter referred to as MIN.T゜) and minimum set temperature (temperature set automatically or manually depending on the type of molten glass or the amount of molten glass pulled up, which should be considered abnormal when T゜ is lower than this temperature, hereinafter referred to as MIN.T゜). are compared with each other to determine the deviation.
And the number of detected bubbles a and the glass melting temperature T゜,
Based on the comparison signals with these standard values ao and MAX.T゜, MAX.T゜, the power supply control device 23 generates control signals for increasing and decreasing the power as shown below using the AND and OR circuit configuration shown in the figure. let That is, as shown in Fig. 2, when a is larger than ao and T゜ is MAX.T
When it is lower than MAX.T°, a power increase instruction signal S 1 is generated, and when it is higher than MAX.T°, a warning signal S 3 is generated. On the other hand, when a is smaller than ao and T゜
When it is higher than MIN.T°, a power reduction instruction signal S2 is generated, and when it is lower than MIN.T°, a warning signal S3 is generated.

そして、これ等の供給電力制御装置23より発
生された信号により電力供給装置24は供給電力
を増減制御し、あるいは場合により異状の警告を
ブザー音又は光等の形で行なう。尚、本例におけ
る警告発生は、温度が高いにも拘らず気泡が多
く、あるいは温度が低いにも拘らず気泡が少ない
という状態であり、実用上はそのままの連続運転
は不適として引き上げ量等との関係で標準値を再
調整するか、引き上げ量等を変える必要のある場
合である。また検出T゜がMIN.T゜<T゜<
MAX.T゜の範囲からはずれたときに必ず警告信
号が発するようにしてもよいことは当然である。
Then, the power supply device 24 controls the increase/decrease of the power supply based on the signals generated by the power supply control device 23, or gives a warning of abnormality in the form of a buzzer sound, light, etc. as the case may be. Note that the warning in this example occurs when there are many bubbles despite the high temperature, or when there are few bubbles despite the low temperature, and in practical terms, continuous operation as it is is inappropriate and the amount of lifting etc. In this case, it is necessary to readjust the standard value or change the amount of increase, etc. Also, the detection T゜ is MIN.T゜<T゜<
It goes without saying that a warning signal may be generated whenever the value deviates from the MAX.T° range.

以上の構成をなす本発明によるガラス溶融炉の
ガラス原料を溶融するために供給するエネルギー
の制御方法は、従来方法の作業員による定期的な
溶融ガラスのサンプリングや成形製品の最終工程
での品質検査により発見される方法に比べ、溶融
ガラスの時点で連続かつ自動的に溶融温度、気泡
の発生状況が検出され即時的に供給エネルギーが
制御されるものであり労力の省力、歩留と品質の
向上及び省エネルギーに著しい効果を有するもの
である。
The method for controlling the energy supplied for melting glass raw materials in a glass melting furnace according to the present invention having the above-described structure is based on the conventional method of regularly sampling molten glass by workers and quality inspection in the final process of molded products. Compared to the method discovered by , the melting temperature and bubble generation status are continuously and automatically detected at the time of molten glass, and the supply energy is immediately controlled, saving labor and improving yield and quality. and has a remarkable effect on energy saving.

尚、本実施例においては直接通電によるガラス
溶融炉について述べたが、他の重油等、化石燃料
の燃焼によりエネルギーを得る炉の場合は、例え
ば燃焼バーナーの火力調整操作を前記実施例の制
御装置により行えばよいことは明らかであろう。
Although this embodiment describes a glass melting furnace that uses direct electricity, in the case of a furnace that obtains energy by burning fossil fuels such as other heavy oils, for example, the control device of the above embodiment may be used to adjust the thermal power of the combustion burner. It is clear that this can be done by

又サンプリングオリフイスの位置は炉の型式に
応じて溶融ガラスの清澄を監視するに最も適切な
場所例えば本実施例の他、溶融槽の炉床又は炉内
へ白金チユーブを挿入することにより任意の場所
から溶融ガラスを炉外へ導出すれば良いことは当
然であり、サンプリングガラスも圧延してリボン
状板ガラスにせず単に棒状に垂下したものから光
学的に気泡を検出する事も可能である他、光学的
な検出もTVカメラ等を用いた映像処理方式によ
ることも可能な事は勿論である。
The sampling orifice can be located at the most appropriate location for monitoring the fining of the molten glass depending on the type of furnace, for example, in addition to this embodiment, it can be placed at any location by inserting a platinum tube into the hearth of the melting tank or into the furnace. It goes without saying that it is sufficient to lead the molten glass out of the furnace, and it is also possible to optically detect bubbles from the sampling glass that is simply hung in the shape of a rod instead of being rolled into a ribbon-shaped sheet glass. It goes without saying that the detection can also be performed by an image processing method using a TV camera or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるガラス溶融炉及びガラ
ス原料を溶融するために供給するエネルギーの制
御装置の概略説明図である。第2図は本発明にか
かるガラス溶融炉のガラス原料を溶融するために
供給するエネルギーの制御方法のブロツク図であ
る。 図中、1……溶融炉、6……溶融ガラス、8…
…サンプリングオリフイス、9……圧延ローラ
ー、10……リボン状板ガラス、20……光電ス
イツチ、21……熱電対、22……データー処理
装置、23……供給電力制御装置、24……電力
供給装置。
FIG. 1 is a schematic explanatory diagram of a glass melting furnace and a control device for energy supplied to melt glass raw materials according to the present invention. FIG. 2 is a block diagram of a method for controlling energy supplied to melt glass raw materials in a glass melting furnace according to the present invention. In the figure, 1... melting furnace, 6... molten glass, 8...
... Sampling orifice, 9 ... Rolling roller, 10 ... Ribbon plate glass, 20 ... Photoelectric switch, 21 ... Thermocouple, 22 ... Data processing device, 23 ... Power supply control device, 24 ... Power supply device .

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス原料を溶融するガラス溶融炉に供給す
る溶融エネルギーの制御方法において、溶融炉に
付設したサンプリングオリフイスより炉外に連続
導出されるサンプリング溶融ガラス中の含有気泡
数を単位時間毎に計数した検出値と、前記炉内の
溶融ガラス温度の検出値とを、あらかじめ設定し
た標準気泡数及び標準温度と比較演算することに
より供給エネルギー量を制御することを特徴とす
るガラス溶融炉の溶融エネルギー制御方法。
1. In a method for controlling the melting energy supplied to a glass melting furnace that melts glass raw materials, detection is performed by counting the number of bubbles contained in sampled molten glass that is continuously drawn out of the furnace from a sampling orifice attached to the melting furnace every unit time. A method for controlling melting energy in a glass melting furnace, characterized in that the amount of energy supplied is controlled by comparing and calculating the detected value of the temperature of molten glass in the furnace with a standard number of bubbles and a standard temperature set in advance. .
JP9422580A 1980-07-10 1980-07-10 Melting energy cntrolling method of glass melting furnace Granted JPS5722122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9422580A JPS5722122A (en) 1980-07-10 1980-07-10 Melting energy cntrolling method of glass melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9422580A JPS5722122A (en) 1980-07-10 1980-07-10 Melting energy cntrolling method of glass melting furnace

Publications (2)

Publication Number Publication Date
JPS5722122A JPS5722122A (en) 1982-02-05
JPS6225614B2 true JPS6225614B2 (en) 1987-06-04

Family

ID=14104364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9422580A Granted JPS5722122A (en) 1980-07-10 1980-07-10 Melting energy cntrolling method of glass melting furnace

Country Status (1)

Country Link
JP (1) JPS5722122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266150A (en) * 2020-10-22 2021-01-26 凯盛科技集团有限公司 Energy-saving control system and method for glass manufacturing process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10057285B4 (en) * 2000-11-17 2004-07-08 Schott Glas Melting device and method for producing highly UV-transmissive glasses
US6701751B2 (en) * 2001-06-14 2004-03-09 Avacon, S.A. Glass melting furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266150A (en) * 2020-10-22 2021-01-26 凯盛科技集团有限公司 Energy-saving control system and method for glass manufacturing process
CN112266150B (en) * 2020-10-22 2021-11-09 凯盛科技集团有限公司 Energy-saving control system and method for glass manufacturing process

Also Published As

Publication number Publication date
JPS5722122A (en) 1982-02-05

Similar Documents

Publication Publication Date Title
US8820118B2 (en) Apparatus and methods for producing a glass ribbon
CA1090577A (en) Glass sheet temperature control apparatus and method
CN109114985B (en) System for detecting and controlling flame combustion uniformity in online sintering ignition furnace
CN106338203A (en) Real-time monitoring system for inside view field and temperature of rotary hearth furnace and control method
JP3573758B2 (en) Operation control method and apparatus for melting furnace
US4389725A (en) Electric boosting control for a glass forehearth
JPS6225614B2 (en)
CN111574052B (en) Fluorophosphate optical glass strip forming thickness control device and method
CN107971343A (en) A kind of induction coil flat heated self-adapting intelligent adjusting method and device
JP4191885B2 (en) Plasma ash melting furnace and operating method thereof
CN104589629A (en) Method and extrusion die head for disturbing thickness distribution of extruded thin film casting sheet
CN111459201B (en) Method and device for coordinately controlling speed of calender and annealing kiln
JP3529160B2 (en) Control method of electric melting furnace
WO2024128068A1 (en) Surface melting furnace, method for monitoring supply state of object being processed in surface melting furnace, and method for operating surface melting furnace
CN207635889U (en) A kind of heater for rolling steel combustion control system
CN211339272U (en) Glass strip thickness monitoring device of tin groove section in float glass process
CN2294437Y (en) Automatic control device for rotary-drum kiln thermodynamic process
CN213482730U (en) Automatic control device for combustion temperature of mandrel heating furnace
CN214353492U (en) A alarm reminding device for nylon production
CN214767825U (en) Temperature detection device for cold rolling raw material steel coil
Parsunkin et al. Information employed in fuel-conserving control of metal heating
JPH0566004A (en) Method and device for controlling operation of waste-melting furnace
CA1203827A (en) Electric boosting control for a glass forehearth
CN118912927A (en) Temperature control method for solar cell sintering furnace and solar cell sintering furnace
CN1849268A (en) Method for controlling the forming of flat glass