JPS622163A - Measurement of bodily liquor component - Google Patents
Measurement of bodily liquor componentInfo
- Publication number
- JPS622163A JPS622163A JP14109085A JP14109085A JPS622163A JP S622163 A JPS622163 A JP S622163A JP 14109085 A JP14109085 A JP 14109085A JP 14109085 A JP14109085 A JP 14109085A JP S622163 A JPS622163 A JP S622163A
- Authority
- JP
- Japan
- Prior art keywords
- antigen
- antibody
- reaction
- labeled
- body fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、抗原抗体反応を利用した体液成分の測定方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for measuring body fluid components using antigen-antibody reactions.
従来の技術
粒状担体に抗体または抗原を付着させ抗原抗体反応を行
わせて体液成分を光学的に測定する方法としては、比濁
法と計数法とが知られている。前者は抗体(または抗原
)を付着(感作)させた担体を含有した溶液に抗原(ま
たは抗体)を含む試料を加えて特異的な抗原抗体反応に
基づく免疫学的凝集作用によって粒子が凝集するときの
溶液の濁度変化を透過および(または)散乱光の変化で
捉える方法であり、凝集が進むにつれて溶液の濁度は減
少する。一方、後者の方法は本出願人の出願になる特願
昭58−219753号、同59−100090号にみ
られる方法であり、前記と同様にして凝集反応を行わせ
た反応液をフローセルに流して粒子検出曲線により凝集
粒子数を凝集していない粒子等と弁別しそれぞれの計数
比率から試料の測定値を得るものである。また、これら
以外に免疫学的な沈降反応を利用した一元放射状免疫拡
散法(SRID法)、エンザイムイムノアソセイ法(E
I A法)、RIA法などが従来よりよく知られてい
る。Background of the Invention Nephelometry and counting methods are known as methods for optically measuring body fluid components by attaching antibodies or antigens to particulate carriers and causing antigen-antibody reactions. In the former, a sample containing an antigen (or antibody) is added to a solution containing a carrier to which antibodies (or antigens) are attached (sensitized), and particles are aggregated by immunological agglutination based on a specific antigen-antibody reaction. This is a method of capturing changes in the turbidity of a solution by changes in transmitted and/or scattered light, and as aggregation progresses, the turbidity of the solution decreases. On the other hand, the latter method is a method found in Japanese Patent Applications No. 58-219753 and No. 59-100090 filed by the present applicant, in which the reaction solution subjected to the aggregation reaction in the same manner as above is poured into a flow cell. The number of aggregated particles is distinguished from non-agglomerated particles using a particle detection curve, and the measured value of the sample is obtained from the respective counting ratios. In addition to these methods, the single radial immunodiffusion method (SRID method), which uses immunological precipitation reactions, and the enzyme immunoassay method (E
IA method), RIA method, etc. are conventionally well known.
発明が解決しようとする問題点
上記比濁法や計数法のように粒子の凝集作用を利用する
方法では、必要とする抗原抗体反応が起きても、次に粒
子の凝集にまで至らなければ検知することができないた
め、感度が悪く、また他の要因で凝集が起こり測定誤差
を生じるおそれがあった。Problems to be Solved by the Invention In methods that utilize particle aggregation, such as the nephelometric method and counting method, even if the desired antigen-antibody reaction occurs, it cannot be detected unless particle aggregation occurs. As a result, sensitivity is poor and there is a risk that aggregation may occur due to other factors, resulting in measurement errors.
また、その他の測定方法の場合は、測定に長時間を要す
るうえに、放射性物質、酵素などを使用するため測定前
後の処理に特別の注意を要するという問題があった。In addition, other measurement methods require a long time for measurement and require special care in processing before and after measurement because radioactive substances, enzymes, etc. are used.
この発明の主たる目的は、叙上の問題を排除し短時間に
かつ高精度で体液成分を定量することができる体液成分
の測定方法を提供することである。The main object of the present invention is to provide a method for measuring body fluid components that eliminates the above-mentioned problems and can quantify body fluid components in a short time and with high precision.
この発明の他の目的は、同時に複数項目の体液成分を定
量することができる体液成分の測定方法を提供すること
である。Another object of the present invention is to provide a method for measuring body fluid components that can simultaneously quantify a plurality of body fluid components.
問題点を解決するための手段
この発明の体液成分の測定方法は、担体に抗体(または
抗原)を付着させて試薬を作成する工程と、前記試薬を
試料体液に加え試料体液中に含有される未知濃度の抗原
(または抗体)と第1の抗原抗体反応を行わせる工程と
、反応後9反応液に標識抗原(または標識抗体)を加え
未反応抗体(または未反応抗原)と第2の抗原抗体反応
を行わせる工程と、第2の抗原抗体反応で得た反応液か
ら標識抗原(または標識抗体)の前記試薬との反応量を
求める工程と、得られた反応量を、前記標識抗原(また
は抗体)のみを前記試薬と反応させて得られた基準反応
量と比較してその変化量から試料体液中の抗原(または
抗体)濃度を定量する工程とを含むものである。Means for Solving the Problems The method for measuring body fluid components of the present invention includes the steps of preparing a reagent by attaching an antibody (or antigen) to a carrier, and adding the reagent to a sample body fluid to be contained in the sample body fluid. A step of performing a first antigen-antibody reaction with an antigen (or antibody) at an unknown concentration, and a step of adding a labeled antigen (or labeled antibody) to the reaction solution after the reaction to form an unreacted antibody (or unreacted antigen) and a second antigen. a step of conducting an antibody reaction; a step of determining the amount of the labeled antigen (or labeled antibody) reacted with the reagent from the reaction solution obtained in the second antigen-antibody reaction; or antibody) alone with the reagent, and quantifying the antigen (or antibody) concentration in the sample body fluid from the amount of change.
また、この発明の他の測定方法は、粒径が異なる複数種
の担体にそれぞれ異なる抗原(または抗体)に対する抗
体(または抗原)を付着させた試薬を作成する工程と、
前記試薬を試料体液に加え試料体液中に含有される未知
濃度の複数種の抗原(または抗体)とそれぞれ第1の抗
原抗体反応を行わせる工程と、反応後1反応液に前記複
数種の抗原にそれぞれ対応する標識抗原(または標識抗
体)を加え未反応抗体(または未反応抗原)と第2の抗
原抗体反応を行わせる工程と、第2の抗原抗体反応で得
た反応液から前記標識抗原(または標識抗体)の前記試
薬との反応量を求める工程と、得られた反応量を、前記
PJ識抗原(または標識抗体)のみを前記試薬と反応さ
せて得られた基準反9量と比較してその変化量から試料
体液中の抗原(または抗体)濃度を定量する工程とを含
むものである。Further, another measurement method of the present invention includes the step of creating a reagent in which antibodies (or antigens) for different antigens (or antibodies) are attached to multiple types of carriers having different particle sizes;
A step of adding the reagent to the sample body fluid to perform a first antigen-antibody reaction with each of the plurality of antigens (or antibodies) at unknown concentrations contained in the sample body fluid, and adding the plurality of antigens to one reaction solution after the reaction. a step of adding labeled antigens (or labeled antibodies) corresponding to each to perform a second antigen-antibody reaction with the unreacted antibodies (or unreacted antigens); (or labeled antibody) with the reagent, and compare the obtained reaction amount with the standard anti-9 amount obtained by reacting only the PJ recognition antigen (or labeled antibody) with the reagent. and quantifying the antigen (or antibody) concentration in the sample body fluid from the amount of change.
以下、この発明の詳細な説明するが、説明の便宜上、前
記担体には抗体を付着させて試料体液中の抗原量を測定
するものとする。これとは逆に、担体に抗原が付着され
試料体液中の抗体量を測定する場合も同様にして通用可
能である。The present invention will be described in detail below, but for convenience of explanation, it will be assumed that an antibody is attached to the carrier and the amount of antigen in a sample body fluid is measured. On the contrary, the same method can be applied to the case where an antigen is attached to a carrier and the amount of antibody in a sample body fluid is measured.
前記担体としては、均一な粒径を有する高分子ラテック
スがあげられ、このものは安定な分散媒に浮遊させて互
いに凝集しないようにする。ラテックスの粒径が不均一
なときは、後述のように蛍光強度と散乱光強度とから積
算蛍光強度を求める場合に粒子の径を示す前方散乱光強
度がばらつき、データの解析が困難となる。これは、粒
径で項目情報を解析するためである。前記高分子ラテッ
クスとしては、ポリスチレン、カルボキシル化ポリスチ
レン、アミノ基を有するカルボキシル化ポリスチレン、
ポリビニルトルエン、スチレン−ブタジェン共重合体、
カルボキシル化スチレン−ブタシェフ共重合体、スチレ
ン−ジビニルベンゼン共主合体、ビニルトルエン−第三
ブチルスチレン共生合体、ポリエステル、ポリアクリル
酸、ポリメタクリル酸、ポリアクリロニトリル、アクリ
ロニトリル−ブタジェン−スチレン共重合体、ポリ酢酸
ビニルアクリレート、ポリビニルピロリドン。The carrier may be a polymer latex having a uniform particle size, which is suspended in a stable dispersion medium to prevent mutual aggregation. When the particle size of the latex is non-uniform, when calculating the integrated fluorescence intensity from the fluorescence intensity and the scattered light intensity as described later, the forward scattered light intensity, which indicates the particle diameter, varies, making data analysis difficult. This is to analyze item information based on particle size. The polymer latex includes polystyrene, carboxylated polystyrene, carboxylated polystyrene having an amino group,
Polyvinyltoluene, styrene-butadiene copolymer,
Carboxylated styrene-butashev copolymer, styrene-divinylbenzene copolymer, vinyltoluene-tert-butylstyrene copolymer, polyester, polyacrylic acid, polymethacrylic acid, polyacrylonitrile, acrylonitrile-butadiene-styrene copolymer, poly Vinyl acetate acrylate, polyvinylpyrrolidone.
塩化ビニル−アクリレート共重合体等の合成高分子ラテ
ックス粒子からなるラテックスがあげられ、さらにこれ
らの合成高分子ラテックス粒子の表面を非イオン界面活
性剤等で処理したものも使用可能である。また、ラテッ
クスのほかに、1(IIの合成高分子物質(たとえばベ
ントナイト、カオリン。Examples include latex made of synthetic polymer latex particles such as vinyl chloride-acrylate copolymer, and also latexes whose surfaces are treated with nonionic surfactants and the like can also be used. In addition to latex, synthetic polymer substances (such as bentonite and kaolin) are also available.
コロジオン等)も使用可能である。collodion, etc.) can also be used.
担体粒子の表面に付着される抗体としては、特定の抗原
に対してのみ反応する抗体を使用する。As the antibody attached to the surface of the carrier particles, an antibody that reacts only with a specific antigen is used.
かかる抗体としては、モノクロナール抗体が好適に採用
可能であり、このものは抗体産生細胞と腫瘍細胞との細
胞融合によって得られた細胞を培養して得られる。この
モノクロナール抗体は単一の抗原決定基にのみ結合する
ので、ある抗体が表面にその抗体と結合しうる決定基が
1つしかない場合には、すでにある抗原と結合した抗体
はもはや他の抗原と結合しない、そのため、担体の粒子
表面にモノクロナール抗体を結合させたものは抗原を仲
立ちとして粒子同士が凝集することはない。As such antibodies, monoclonal antibodies can be suitably employed, and are obtained by culturing cells obtained by cell fusion of antibody-producing cells and tumor cells. This monoclonal antibody binds only to a single antigenic determinant, so if an antibody has only one determinant on its surface that can bind to it, the antibody that has already bound to one antigen will no longer be able to bind to another antigen. It does not bind to antigens, so when a monoclonal antibody is bound to the particle surface of a carrier, the particles do not aggregate with each other using the antigen as a mediator.
これに対し、ポリクロナール抗体は抗原のもつ多くの抗
原決定基に対して反応性を有する抗体の集団であり、こ
のような抗体を用いた場合は担体粒子が抗原を介して互
いに凝集する可能性がある。On the other hand, polyclonal antibodies are a group of antibodies that are reactive with many antigenic determinants of an antigen, and when such antibodies are used, there is a possibility that the carrier particles aggregate with each other via the antigen. be.
このような凝集は測定誤差の原因となるので好ましくな
い。ただし、抗原自身がただ1つのエピトープしか有し
ない場合はモノクロナール抗体と同様の作用となり粒子
同士の凝集は起こらないので、ポリクロナール抗体でも
使用可能である。また、粒子同士の凝集を防ぐための他
の手段としては、たとえばラテックスやその他の合成高
分子物質の有するゼータ電位を利用する方法がある。す
なわち、粒子表面のゼータ電位は一4QmV以上になる
と、粒子同士の反発力が強くなり安定な分散媒をつくる
のに対し、−40mVより小さいときは反発力が弱く自
然に凝集してしまう。そこ°で、粒子のゼータ電位を調
整することにより、抗原を介して粒子同士が凝集するの
を防止する。このような方法であっても、粒子表面の抗
体と遊離の抗原との結合に悪影響を及ぼすことはない。Such aggregation is undesirable because it causes measurement errors. However, if the antigen itself has only one epitope, it will have the same effect as a monoclonal antibody and particles will not aggregate, so polyclonal antibodies can also be used. Further, as another means for preventing particles from coagulating with each other, there is a method of utilizing the zeta potential of latex or other synthetic polymer substances, for example. That is, when the zeta potential of the particle surface is -4 QmV or more, the repulsive force between the particles becomes strong and a stable dispersion medium is created, whereas when it is less than -40 mV, the repulsive force is weak and the particles spontaneously aggregate. Thereupon, by adjusting the zeta potential of the particles, aggregation of the particles via the antigen is prevented. Even with such a method, the binding between the antibody and free antigen on the particle surface is not adversely affected.
その他、粒子を安定な状態に保ちかつ抗原抗体反応によ
って粒子が凝集するのを防止しうる限り、種々の方法が
採用可能である。In addition, various methods can be employed as long as they can maintain the particles in a stable state and prevent the particles from aggregating due to antigen-antibody reactions.
担体表面の抗体が試料体液中の抗原と反応したのち、未
反応の抗体と結合する標識抗原としては、たとえばFI
TC(フルオレッセインイソチオシアネート)などの蛍
光色素を付着させた抗原があげられる。ただし、標識の
操作においては、抗原性が失われないように注意するこ
とが必要である。After the antibody on the surface of the carrier reacts with the antigen in the sample body fluid, the labeled antigen that binds to the unreacted antibody is, for example, FI.
Examples include antigens to which a fluorescent dye such as TC (fluorescein isothiocyanate) is attached. However, when manipulating the label, care must be taken to avoid loss of antigenicity.
作用
この発明によれば、担体に付着した抗体に試料体液に含
まれる抗原を反応させる第1の抗原抗体反応を行い、つ
いで試料中の抗原と反応せずに残った未反応抗体に標識
抗原を反応させる第2の抗原抗体反応を行わせるので、
この場合の標識抗原の抗体との反応量を測定し、標識抗
原のみを反応させたときの基準反応量との変化It(減
少量)を求めると、これが試料体液に含まれる抗原量と
対応しており、容易にかつ高精度に抗原濃度の定量を行
うことができる。According to the present invention, a first antigen-antibody reaction is performed in which an antigen contained in a sample body fluid is reacted with an antibody attached to a carrier, and then a labeled antigen is added to the unreacted antibody remaining without reacting with the antigen in the sample. Since the second antigen to be reacted causes an antibody reaction,
In this case, the amount of reaction between the labeled antigen and the antibody is measured, and the change It (decreased amount) from the standard reaction amount when only the labeled antigen is reacted is determined, and this corresponds to the amount of antigen contained in the sample body fluid. The antigen concentration can be easily and accurately quantified.
反応量の測定は蛍光色素を付着させた標識抗原に基づく
蛍光強度と粒子の散乱光強度とから積算蛍光強度を求め
る。この積算蛍光強度は標識抗原の反応量に対応してお
り、これから試料中の抗原量を知ることができる。粒子
の散乱光強度と蛍光強度はたとえばフローサイトメータ
ーに反応液を流して測定することができる。フローサイ
トメータとしては、たとえば米国特許4325706号
明細書に記載のものが使用可能である。To measure the reaction amount, the integrated fluorescence intensity is determined from the fluorescence intensity based on the labeled antigen to which a fluorescent dye is attached and the scattered light intensity of the particles. This integrated fluorescence intensity corresponds to the amount of labeled antigen that reacted, and from this the amount of antigen in the sample can be determined. The scattered light intensity and fluorescence intensity of the particles can be measured, for example, by flowing the reaction solution through a flow cytometer. As the flow cytometer, for example, the one described in US Pat. No. 4,325,706 can be used.
次に第1図〜第3図に基づいてより詳細に説明する。第
1図は担体表面に結合した抗体に過剰量の標識抗原を作
用させて基準となる積算蛍光強度を求める説明図である
。同図において、6はこの発明における試薬であり、こ
のものはラテフクスな゛どの担体1に抗体2を結合させ
たものである。Next, a more detailed explanation will be given based on FIGS. 1 to 3. FIG. 1 is an explanatory diagram for determining the reference integrated fluorescence intensity by allowing an excess amount of labeled antigen to act on the antibody bound to the surface of the carrier. In the figure, 6 is a reagent according to the present invention, which is a carrier 1 such as latex and antibody 2 bound to the carrier 1.
抗体2は特定の抗原とのみ反応する。使用する標識抗原
3はあらかじめ蛍光色素4を結合させたものであり、そ
れぞれが各抗体2と反応しすべての抗体2と結合する0
反応後、反応液をフローサイトメータに流し蛍光強度、
前方散乱光強度および側方散乱光強度をそれぞれ測定す
る。このとき、溶液は過剰の未反応標識抗原3を含有し
ているので、背後蛍光の影響を無視できるほど反応液を
希釈しなければならない0反応後は、担体1表面の抗原
3が遊離しないように、かつ担体1同士が結合しないよ
うに注意する必要がある。測定された蛍光強度および散
乱光強度から蛍光強度の積算値を求める。この積算値は
第1図に示す三次元のグラフのピーク5で示され、この
ピーク5の体積が積算蛍光強度となる。この値は粒子の
カウント数が一定ならば、はぼ一定である。すなわち、
1個の担体1に結合する抗体2の量は一定であり、これ
に結合する標識抗原3の量もほぼ一定であるから、ある
一定数の粒子をカウントすると、その総室光1)(総標
識抗原量)もほぼ一定となり、個々の担体1に結合する
標識抗原3の量にばらつきがあっても、充分に多い数を
カウントすれば、総量としては一定となるのである。な
お、小ピーク9は抗体2と結合しない遊離の蛍光色素の
ピークである。Antibody 2 reacts only with specific antigens. The labeled antigen 3 used is one to which a fluorescent dye 4 has been bound in advance, and each reacts with each antibody 2 and binds to all antibodies 2.
After the reaction, the reaction solution is poured into a flow cytometer and the fluorescence intensity is measured.
The forward scattered light intensity and the side scattered light intensity are each measured. At this time, since the solution contains an excess of unreacted labeled antigen 3, the reaction solution must be diluted to the extent that the influence of background fluorescence can be ignored. In addition, care must be taken to prevent the carriers 1 from bonding to each other. An integrated value of fluorescence intensity is determined from the measured fluorescence intensity and scattered light intensity. This integrated value is indicated by peak 5 in the three-dimensional graph shown in FIG. 1, and the volume of this peak 5 becomes the integrated fluorescence intensity. This value is approximately constant if the particle count is constant. That is,
The amount of antibody 2 bound to one carrier 1 is constant, and the amount of labeled antigen 3 bound to it is also almost constant, so when a certain number of particles are counted, the total room light 1) (total The amount of labeled antigen (labeled antigen amount) is also approximately constant, and even if there are variations in the amount of labeled antigen 3 bound to each carrier 1, if a sufficiently large number of labeled antigens are counted, the total amount will be constant. Note that the small peak 9 is a peak of free fluorescent dye that does not bind to the antibody 2.
試料体液中の抗原濃度を求める場合、この試料体液に前
記試薬6を加え、第2図に示すように試料体液中に含有
される抗原7と第1の抗原抗体反応をおこさせる。つい
で、前記と同じ標識抗原3で第2の抗原抗体反応をおこ
させる。このため、標識抗原3の抗体2への結合量(反
応量、第2図に示すピーク8)は試料に含まれていた抗
原量だけ減少することになる。したがって、求められた
積算蛍光強度は試料中の抗原量に応じて変化し、その変
化量は抗原量と一定の関係にあるので、これから抗原濃
度を定量することができる。When determining the antigen concentration in a sample body fluid, the reagent 6 is added to the sample body fluid to cause a first antigen-antibody reaction with the antigen 7 contained in the sample body fluid, as shown in FIG. Next, a second antigen-antibody reaction is caused using the same labeled antigen 3 as described above. Therefore, the amount of labeled antigen 3 bound to antibody 2 (reaction amount, peak 8 shown in FIG. 2) decreases by the amount of antigen contained in the sample. Therefore, the calculated integrated fluorescence intensity changes depending on the amount of antigen in the sample, and since the amount of change has a constant relationship with the amount of antigen, the antigen concentration can be quantified from this.
また、第3図に示すように、粒径の異なる複数種の担体
1a、lb、lc・・・にそれぞれ異なる抗原に対する
抗体を付着させると、1つの試料体液に含まれる多数の
抗原8a、8b、8c・・・を同時に測定することがで
きる。第3図のグラフに示す各ピーク5a、5b、5c
・・・はそれぞれの抗原の変化量を示している。Furthermore, as shown in FIG. 3, when antibodies against different antigens are attached to multiple types of carriers 1a, lb, lc... having different particle sizes, a large number of antigens 8a, 8b contained in one sample body fluid can be attached. , 8c... can be measured simultaneously. Each peak 5a, 5b, 5c shown in the graph of FIG.
...indicates the amount of change in each antigen.
なお、第1図〜第3図では、三次元のグラフで積算蛍光
強度を示したが、この場合、X方向の前方散乱光強度で
粒子の径を示しており、これとZ方向の蛍光強度とで積
算蛍光強度を算出することもできるので、側方散乱強度
の測定は省略してもよい、側方散乱光強度は粒子の性質
、とくに粒子の表面状態と関係がある。In Figures 1 to 3, the integrated fluorescence intensity is shown in three-dimensional graphs, but in this case, the diameter of the particle is shown by the forward scattered light intensity in the X direction, and the fluorescence intensity in the Z direction is Since the integrated fluorescence intensity can be calculated using the above, the measurement of the side scattered light intensity may be omitted.The side scattered light intensity is related to the properties of the particles, especially the surface condition of the particles.
また、蛍光色素による標識に代えて、酵素で標識した抗
原を用いて、反応後酵素量を測定するようにしてもよい
。Furthermore, instead of labeling with a fluorescent dye, an antigen labeled with an enzyme may be used to measure the amount of enzyme after the reaction.
実施例 次に例をあげてこの発明の方法を詳細に説明する。Example The method of the present invention will now be explained in detail by way of example.
例:粒径が0.75μのポリスチレンラテックスにウサ
ギのイムノグロブリンG(ウサギTgG )を吸着させ
た。すなわち、0.5%のラテックス溶液1ml当り4
0μgのウサギIgGが吸着したちのを調整した。つい
で、これに検体中の抗ウサギIgGを各濃度で反応させ
た後、蛍光色素(F I TC)で標識した標識抗ウサ
ギIgGを反応させた。ここで、ウサギIgGは抗原と
なり、抗ウサギIgGは抗体となる0反応後、反応液を
第4図に示すフローサイトメーター(本出願人の製造に
かかるAR−IT)によって蛍光強度を測定し、抗つサ
ギTgG濃度に対する平均蛍光強度を求め、これから第
5図に示す検量線を作成した。平均蛍光強度とはラテッ
クス1個当りの蛍光強度であって、積算蛍光強度十カウ
ント数で算出される。Example: Rabbit immunoglobulin G (rabbit TgG) was adsorbed onto polystyrene latex with a particle size of 0.75μ. i.e. 4 per ml of 0.5% latex solution.
A sample was prepared in which 0 μg of rabbit IgG was adsorbed. Next, this was reacted with anti-rabbit IgG in the sample at various concentrations, and then with labeled anti-rabbit IgG labeled with a fluorescent dye (FITC). Here, rabbit IgG serves as an antigen, and anti-rabbit IgG serves as an antibody. After 0 reactions, the fluorescence intensity of the reaction solution was measured using a flow cytometer (AR-IT manufactured by the present applicant) shown in FIG. The average fluorescence intensity with respect to the TgG concentration was determined, and the calibration curve shown in FIG. 5 was created from this. The average fluorescence intensity is the fluorescence intensity per latex, and is calculated by ten counts of cumulative fluorescence intensity.
フローサイトメーターは、第4図に示すように、Arイ
オン・レーザ(50mW)の光へをフローセル10に導
びき、ピンホール板1)を経た前方散乱光Bを光検出器
12で受け、電気信号に変換して増幅器13へ送る。一
方、フローセル10から放出される蛍光および側方散乱
光Cは第1および第2のカラーフィルター14.15を
経てピンホール板16を通り、青反射グイクロイック文
子−17、赤反射(580nm)ダイクロイックミラー
18赤蛍光および線蛍光を反射させる。各反射光は受光
フィルタ20.21を通ってそれぞれの受光部22,2
3.24 (光増倍管、PMT)で受けられる。線蛍光
信号(540〜580nm)Dは増幅器13へ送られる
。増幅器13へ送られた各信号はデータ解析部25によ
り各粒子の蛍光強度が測定される。As shown in FIG. 4, the flow cytometer guides light from an Ar ion laser (50 mW) to a flow cell 10, receives forward scattered light B through a pinhole plate 1) with a photodetector 12, and generates electricity. It is converted into a signal and sent to the amplifier 13. On the other hand, the fluorescence and side scattering light C emitted from the flow cell 10 pass through the first and second color filters 14, 15, the pinhole plate 16, the blue reflection Gichroic Fumiko-17 and the red reflection (580 nm) dichroic mirror. 18 reflects red fluorescence and line fluorescence. Each reflected light passes through the light receiving filter 20.21 and the light receiving portion 22, 2.
3.24 (photomultiplier tube, PMT). The line fluorescence signal (540-580 nm) D is sent to the amplifier 13. For each signal sent to the amplifier 13, the data analysis section 25 measures the fluorescence intensity of each particle.
前記検量線を作成することにより、抗つサギIgG量が
未知の試料の蛍光強度を検量線に照らし合わせてその濃
度を決定することができる。By creating the calibration curve, the concentration of the sample can be determined by comparing the fluorescence intensity of a sample with an unknown amount of anti-heron IgG against the calibration curve.
発明の効果
この発明によれば、抗原抗体反応による凝集作および全
反射ミラー19でそれぞれ側方散乱光。Effects of the Invention According to the present invention, aggregation occurs due to antigen-antibody reaction and side-scattered light is generated by the total reflection mirror 19.
用を利用することなく、簡単にかつ高精度に試料中の抗
原(または抗体)の定量を行うことができるという効果
がある。This method has the advantage that antigen (or antibody) in a sample can be quantified easily and with high precision without using any equipment.
また、粒径が異なる複数種の担体にそれぞれ異なる抗原
(または抗体)に対する(または抗原)を付着させた試
薬を用いることにより、同時に複数項目の体液成分の測
定が可能になるという効果がある。Furthermore, by using reagents in which different antigens (or antibodies) (or antigens) are attached to multiple types of carriers with different particle sizes, it is possible to simultaneously measure multiple body fluid components.
第1図および第2図はこの発明の方法を示す説明図、第
3図はこの発明における他の方法を示す説明図、第4図
はこの発明の例におけるフローサイトメーターの説明図
、第5図は検量線を示すグラフである。
1・・・担体、2・・・抗体、3・・・標識抗原、6・
・・試薬、7・・・抗原
第4図1 and 2 are explanatory diagrams showing the method of this invention, FIG. 3 is an explanatory diagram showing another method in this invention, FIG. 4 is an explanatory diagram of a flow cytometer in an example of this invention, and FIG. The figure is a graph showing a calibration curve. DESCRIPTION OF SYMBOLS 1...Carrier, 2...Antibody, 3...Labeled antigen, 6...
...Reagent, 7...Antigen Figure 4
Claims (6)
成する工程と、前記試薬を試料体液に加え試料体液中に
含有される未知濃度の抗原(または抗体)と第1の抗原
抗体反応を行わせる工程と、反応後、反応液に標識抗原
(または標識抗体)を加え未反応抗体(または未反応抗
原)と第2の抗原抗体反応を行わせる工程と、第2の抗
原抗体反応で得た反応液から前記標識抗原(または標識
抗体)の前記試薬との反応量を求める工程と、得られた
反応量を、前記標識抗原(または標識抗体)のみを前記
試薬と反応させて得られた基準反応量と比較してその変
化量から試料体液中の抗原(または抗体)濃度を定量す
る工程とを含む体液成分の測定方法。(1) A step of creating a reagent with an antibody (or antigen) attached to a carrier, and adding the reagent to a sample body fluid to perform a first antigen-antibody reaction with an unknown concentration of the antigen (or antibody) contained in the sample body fluid. After the reaction, a step of adding a labeled antigen (or labeled antibody) to the reaction solution and causing a second antigen-antibody reaction with the unreacted antibody (or unreacted antigen); a step of determining the reaction amount of the labeled antigen (or labeled antibody) with the reagent from the obtained reaction solution; and a step of determining the reaction amount of the labeled antigen (or labeled antibody) with the reagent. A method for measuring body fluid components, comprising the step of comparing the amount of antigen (or antibody) in a sample body fluid with the amount of change in the amount of the antigen (or antibody) in the sample body fluid.
着させた抗体(または抗原)と特異的に反応する抗原(
または抗体)に蛍光色素を付着させたものである特許請
求の範囲第(1)項記載の体液成分の測定方法。(2) The labeled antigen (or labeled antibody) specifically reacts with the antibody (or antigen) attached to the carrier (
The method for measuring body fluid components according to claim (1), wherein a fluorescent dye is attached to a fluorescent dye (or an antibody).
応液に含まれる粒子の散乱光強度と蛍光強度とから求め
た積算蛍光強度より算出される特許請求の範囲第(1)
項記載の体液成分の測定方法。(3) Claim No. 1, wherein the reaction amount of the labeled antigen (or labeled antibody) is calculated from the cumulative fluorescence intensity determined from the scattered light intensity and fluorescence intensity of particles contained in the reaction solution.
Method for measuring body fluid components described in section.
ある特許請求の範囲第(1)項記載の体液成分の測定方
法。(4) The method for measuring body fluid components according to claim (1), wherein the antibody attached to the carrier is a monoclonal antibody.
ある特許請求の範囲第(1)項記載の体液成分の測定方
法。(5) The method for measuring body fluid components according to claim (1), wherein the carrier is latex particles having a uniform particle size.
(または抗体)に対する抗体(または抗原)を付着させ
た試薬を作成する工程と、前記試薬を試料体液に加え試
料体液中に含有される未知濃度の複数種の抗原(または
抗体)とそれぞれ第1の抗原抗体反応を行わせる工程と
、反応後、反応液に前記複数種の抗原にそれぞれ対応す
る標識抗原(または標識抗体)を加え未反応抗体(また
は未反応抗原)と第2の抗原抗体反応を行わせる工程と
、第2の抗原抗体反応で得た反応液から前記各標識抗原
(または標識抗体)の前記試薬との反応量を求める工程
と、得られた反応量を、前記標識抗原(または標識抗体
)のみを前記試薬と反応させて得られた基準反応量と比
較してその変化量から試料体液中の抗原(または抗体)
濃度を定量する工程とを含む体液成分の測定方法。(6) A step of creating a reagent in which antibodies (or antigens) for different antigens (or antibodies) are attached to multiple types of carriers with different particle sizes, and adding the reagent to the sample body fluid to be contained in the sample body fluid. A step of performing a first antigen-antibody reaction with multiple types of antigens (or antibodies) at unknown concentrations, and after the reaction, adding labeled antigens (or labeled antibodies) corresponding to each of the multiple types of antigens to the reaction solution. A step of conducting a second antigen-antibody reaction with the reacted antibody (or unreacted antigen), and calculating the amount of reaction of each labeled antigen (or labeled antibody) with the reagent from the reaction solution obtained in the second antigen-antibody reaction. The step of determining the antigen (or antibody) in the sample body fluid by comparing the obtained reaction amount with the standard reaction amount obtained by reacting only the labeled antigen (or labeled antibody) with the reagent and determining the amount of change in the reaction amount.
A method for measuring body fluid components, the method comprising: quantifying the concentration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60141090A JPH06100599B2 (en) | 1985-06-27 | 1985-06-27 | How to measure body fluid components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60141090A JPH06100599B2 (en) | 1985-06-27 | 1985-06-27 | How to measure body fluid components |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS622163A true JPS622163A (en) | 1987-01-08 |
JPH06100599B2 JPH06100599B2 (en) | 1994-12-12 |
Family
ID=15283966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60141090A Expired - Lifetime JPH06100599B2 (en) | 1985-06-27 | 1985-06-27 | How to measure body fluid components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06100599B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5393673A (en) * | 1992-10-30 | 1995-02-28 | Sarasep, Inc. | Method for particulate reagent sample treatment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5215815A (en) * | 1975-07-23 | 1977-02-05 | Coulter Electronics | Measurement of presence of antigen or antibody within sample |
JPS5616872A (en) * | 1979-07-13 | 1981-02-18 | Ortho Diagnostics | Automatized identification and counting method of and apparatus for subclass of specified blood cell |
JPS5951354A (en) * | 1975-04-28 | 1984-03-24 | マイルス・ラボラトリ−ズ・インコ−ポレ−テツド | Unhomogeneous system immunity analysis method and reagent for analyzing hapten or antigen in liquid |
-
1985
- 1985-06-27 JP JP60141090A patent/JPH06100599B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5951354A (en) * | 1975-04-28 | 1984-03-24 | マイルス・ラボラトリ−ズ・インコ−ポレ−テツド | Unhomogeneous system immunity analysis method and reagent for analyzing hapten or antigen in liquid |
JPS5215815A (en) * | 1975-07-23 | 1977-02-05 | Coulter Electronics | Measurement of presence of antigen or antibody within sample |
JPS5616872A (en) * | 1979-07-13 | 1981-02-18 | Ortho Diagnostics | Automatized identification and counting method of and apparatus for subclass of specified blood cell |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5393673A (en) * | 1992-10-30 | 1995-02-28 | Sarasep, Inc. | Method for particulate reagent sample treatment |
Also Published As
Publication number | Publication date |
---|---|
JPH06100599B2 (en) | 1994-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU724443B2 (en) | Assays using reference microparticles | |
RU2111488C1 (en) | Particle agglutination method for simultaneously examining several anolytes in the same sample | |
McHugh | Flow microsphere immunoassay for the quantitative and simultaneous detection of multiple soluble analytes | |
JPH03502246A (en) | Coagulation methods for the analysis of substances | |
US6551788B1 (en) | Particle-based ligand assay with extended dynamic range | |
NO164622B (en) | BINAER IMMUNOMETRIC PARTICLE-BASED METHOD FOR MEASURING SPECIFIC SERUM ANTIGENS USING LIQUID FLOW MICROPHOTOMETRY AND A PREPARED TARGET SET UP THEREOF. | |
EP0536593B1 (en) | Method for specimen measurement, and reagent therefor | |
JP3908272B2 (en) | Solid phase assay for detection of ligands | |
JP2005510706A5 (en) | ||
JPWO2003029822A1 (en) | Specific binding analyzer and specific binding analysis method | |
Gella et al. | Latex agglutination procedures in immunodiagnosis | |
Fulwyler et al. | Flow Microsphere Immunoassay for the Quantitative and SimultaneousDetection of Multiple Soluble Analytes | |
JPS61128168A (en) | Immunological analysis | |
JP4219491B2 (en) | Dry analysis method and dry analysis element | |
JPS622163A (en) | Measurement of bodily liquor component | |
JPH03216553A (en) | Method and apparatus for immunoassay due to particles | |
JPH03167475A (en) | Method and apparatus for immunoassay | |
JPS61128169A (en) | Immunological analysis | |
JPH04127061A (en) | Immunoassay due to fluorescent minute particles | |
JPH03216554A (en) | Method and apparatus for particle labelling immunoassay | |
JPH0627112A (en) | Immunological measurement method | |
JP2001183377A (en) | Immunological inspection method for many items | |
JPS62116264A (en) | Method for quantification using particle agglutination reaction | |
JPS61290362A (en) | Measurement of fine particle size | |
JP3375739B2 (en) | Highly sensitive immunoassay method |