JPH0627112A - Immunological measurement method - Google Patents

Immunological measurement method

Info

Publication number
JPH0627112A
JPH0627112A JP18417392A JP18417392A JPH0627112A JP H0627112 A JPH0627112 A JP H0627112A JP 18417392 A JP18417392 A JP 18417392A JP 18417392 A JP18417392 A JP 18417392A JP H0627112 A JPH0627112 A JP H0627112A
Authority
JP
Japan
Prior art keywords
particles
antibody
measured
human
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18417392A
Other languages
Japanese (ja)
Inventor
Kenjiro Mori
健二郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP18417392A priority Critical patent/JPH0627112A/en
Publication of JPH0627112A publication Critical patent/JPH0627112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To obtain an immunological measurement method which can clearly distinguish two or more kinds of measurement substances in solution to be examined and highly detect them as well as which can increase the number of items to be simultaneously measured. CONSTITUTION:Reagent obtained by making an antibody or antigen respectively coupled to measurement substances a solid phase on two or more kinds of particles having different refraction factors is mixed with solution to be examined and a fluorescent marker antibody to have them reacted, and then fluorescent intensity of the particles is measured by a flowcytometer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、免疫学的測定方法に関
し、詳しくは、フローサイトメーターを用いて、測定物
質と蛍光標識抗体の複合体を結合した粒子の蛍光強度を
測定することによつて、被検液中の2種以上の測定物質
を同時に高精度にて定量することができる免疫学的測定
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immunological measuring method, and more specifically, it uses a flow cytometer to measure the fluorescence intensity of particles bound with a complex of a substance to be measured and a fluorescent labeled antibody. The present invention also relates to an immunological measurement method capable of simultaneously quantifying two or more kinds of measurement substances in a test liquid with high accuracy.

【0002】[0002]

【従来の技術】近年、医療分野をはじめ、生化学、衛生
学、免疫学等の種々の分野において、血液等の中の微量
物質を定量的に正確に測定することの重要性が増してい
る。血清等の被検液中の抗原や抗体を抗原抗体反応を利
用して検出する測定方法として、従来より、RIA、E
IA、FIA等が知られている。EIAは、被検液中の
抗原や抗体の量と酵素活性が比例することを利用した方
法であつて、酵素標識体と基質の反応による発色を分光
光度計等によつて測定するものである。FIAは、例え
ば、被検液中の抗原と蛍光標識抗原を一定量の抗体と競
合的に結合させた後、励起光を照射して、そのときに放
出される蛍光を蛍光光度計にて測定するものである。
2. Description of the Related Art In recent years, in medical fields, biochemistry, hygiene, immunology, and other fields, it has become increasingly important to quantitatively and accurately measure trace substances in blood and the like. . As a measuring method for detecting an antigen or an antibody in a test liquid such as serum using an antigen-antibody reaction, RIA, E have been conventionally used.
IA, FIA, etc. are known. EIA is a method that utilizes the fact that the amount of an antigen or antibody in a test solution is proportional to the enzyme activity, and that the color development due to the reaction between the enzyme-labeled substance and the substrate is measured by a spectrophotometer or the like. . FIA is, for example, after the antigen in a test solution and a fluorescent-labeled antigen are competitively bound to a fixed amount of antibody, then irradiated with excitation light, and the fluorescence emitted at that time is measured with a fluorometer. To do.

【0003】最近、抗体又は抗原を固相化したラテツク
ス粒子等の微小な粒子に測定物質を抗原抗体反応にて結
合させ、更に、これに蛍光標識体を反応させた後、この
粒子の蛍光強度をフローサイトメーターで測定すること
によつて、測定物質を定量する方法が提案されている。
フローサイトメーターによれば、レーザー光を照射した
ときの散乱光を検出することによつて、レーザー光照射
部を通過する個々の物質の大きさの情報を得ることがで
き、大きさの異なる各物質ごとの蛍光強度を測定するこ
とができる。従つて、抗体又は抗原を固相化した粒子と
被検液と蛍光標識体の混合反応溶液中に存在する未結合
の過剰蛍光標識体を上記粒子と区別して測定することが
できるので、フローサイトメーターによる測定前に過剰
の蛍光標識体をB/F分離する必要がない。更に、散乱
光強度によつて、粒子の大きさの情報を得ることができ
ることを利用して、以下のような多項目同時測定が提案
されている。
Recently, a substance to be measured is bound to a minute particle such as latex particles having an antibody or an antigen immobilized thereon by an antigen-antibody reaction, and further, a fluorescent label is reacted therewith, and then the fluorescence intensity of the particle is increased. A method for quantifying a substance to be measured has been proposed by measuring a substance with a flow cytometer.
According to the flow cytometer, by detecting the scattered light when the laser light is irradiated, it is possible to obtain the information on the size of each substance passing through the laser light irradiation part, and to detect the size of each substance different in size. The fluorescence intensity of each substance can be measured. Therefore, since the unbound excess fluorescent label present in the mixed reaction solution of the antibody or the antigen-immobilized particles, the test solution, and the fluorescent label can be measured separately from the particles, the flow site can be measured. It is not necessary to perform B / F separation of excess fluorescent label prior to measurement with a meter. Furthermore, the following multi-item simultaneous measurement has been proposed by utilizing the fact that information on particle size can be obtained from scattered light intensity.

【0004】即ち、被検液中に存在する複数の項目の測
定物質に対して、それぞれ特異的に結合する抗体又は抗
原を粒子径の異なる一群の粒子にそれぞれ固相化し、か
かる粒子径の異なる粒子からなる試薬と被検液と蛍光標
識体との混合反応液をフローサイトメーターにて1回測
定するのみで、被検液中の複数の測定物質を同時に検出
することができるというものである(特開昭52−15
815号公報)。
That is, an antibody or an antigen that specifically binds to each of a plurality of measurement substances present in a test liquid is solid-phased into a group of particles having different particle diameters, and the different particle diameters are obtained. It is possible to detect a plurality of substances to be measured in a test solution at the same time by measuring a mixed reaction solution of a reagent composed of particles, a test solution, and a fluorescent label only once with a flow cytometer. (JP-A-52-15
No. 815).

【0005】しかし、通常、このような測定を行なう場
合、試薬粒子は、塩等を含む緩衝液中に置かれるので、
粒子の凝集が生じることが多い。また、測定物質が結合
した粒子が蛍光標識体を橋かけとして凝集することがあ
る。このように、粒子が凝集した場合、フローサイトメ
ーターでは、見掛け上、粒子径の大きい粒子として検出
されるので、粒子径の異なる別の一群の粒子と区別する
ことができなくなり、その結果、正確な多項目同時測定
を行なうことができないという問題がある。
However, when such a measurement is carried out, the reagent particles are usually placed in a buffer solution containing salts and the like.
Aggregation of particles often occurs. In addition, particles to which the substance to be measured is bound may aggregate using the fluorescent label as a bridge. In this way, when particles agglomerate, the flow cytometer apparently detects them as particles with a large particle size, so it cannot be distinguished from another group of particles with different particle sizes, and as a result, There is a problem that it is not possible to perform simultaneous multi-item simultaneous measurement.

【0006】更に、粒子径の異なる粒子は、フローサイ
トメーターの前方散乱光強度(横軸)/側方散乱光強度
(縦軸)ドツトプロツト図では、右上りの直線上だけに
並ぶので、測定できる粒子径の異なる粒子の種類が少な
くなり、従つて、同時測定し得る項目数が限られること
となる。
Further, particles having different particle diameters can be measured because they are aligned only on the upper right line in the forward scattered light intensity (horizontal axis) / side scattered light intensity (vertical axis) dot plot diagram of the flow cytometer. The number of types of particles having different particle diameters is reduced, so that the number of items that can be simultaneously measured is limited.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述したよ
うな従来のフローサイトメーターを用いる多項目同時測
定における問題を解決するためになされたものであつ
て、被検液中の2種以上の測定物質を明確に区別して、
高精度にて検出することができると共に、同時測定する
ことができる項目数を多くすることができる免疫学的測
定方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the problem in the multi-item simultaneous measurement using the conventional flow cytometer as described above, and comprises two or more kinds in the test liquid. Clearly distinguishing the measured substances of
It is an object of the present invention to provide an immunological measurement method capable of detecting with high accuracy and increasing the number of items that can be simultaneously measured.

【0008】[0008]

【課題を解決するための手段】本発明による免疫学的測
定方法は、屈折率の異なる2種以上の粒子にそれぞれ異
なる測定物質と結合する抗体又は抗原を固相化してなる
試薬を被検液及び蛍光標識抗体と共に混合し、反応させ
た後、フローサイトメーターにて上記粒子の蛍光強度を
測定することを特徴とする。
The immunological assay method according to the present invention comprises a reagent in which two or more kinds of particles having different refractive indexes are immobilized with an antibody or an antigen that binds to different assay substances, respectively. And the fluorescence-labeled antibody are mixed and reacted, and the fluorescence intensity of the particles is measured with a flow cytometer.

【0009】本発明において用いる粒子は、フローサイ
トメーターにて測定し得る粒子であれば、特に限定され
るものではなく、例えば、合成高分子重合体粒子、赤血
球、ゼラチン粒子等が用いられる。これらのなかでも、
本発明においては、粒子の屈折率を容易に変えて調整す
ることができることから、水不溶性水分散型合成高分子
重合体粒子が好ましく用いられる。
The particles used in the present invention are not particularly limited as long as they can be measured by a flow cytometer, and for example, synthetic high polymer particles, red blood cells, gelatin particles and the like can be used. Among these,
In the present invention, water-insoluble, water-dispersible synthetic polymer particles are preferably used because the refractive index of the particles can be easily changed and adjusted.

【0010】一般に、水不溶性水分散型合成高分子重合
体粒子は、適宜の単量体の乳化(共)重合や懸濁(共)
重合等によつて得ることができることが既に知られてい
るが、屈折率の異なる粒子は、適宜の単量体の(共)重
合による粒子の製造において、用いる単量体の組成を適
切に選択することによつて得ることができる。例えば、
屈折率の高い粒子として、ポリスチレン粒子(屈折率1.
59)を用いることができ、他方、屈折率の低い粒子と
して、メタクリル酸トリフルオロエチル(屈折率1.4
5)等のメタクリル酸フルオロアルキルエステル誘導体
の(共)重合体粒子を用いることができる。必要に応じ
て、上記粒子を調製する際に、共単量体として、例え
ば、アクリル酸等の重合性不飽和カルボン酸を用いるこ
とによつて、得られる粒子の表面にカルボキシル基を導
入することができ、このような官能基は、粒子に抗体や
抗原を共有結合にて結合させるために有利に用いられ
る。更に、本発明において用いる粒子は、上記のような
合成高分子重合体粒子の内部に無機物、金属等を内包さ
せて、その屈折率を調節することもできる。本発明にお
いて用いる粒子の屈折率は、フローサイトメーターにて
測定し得る範囲であれば、特に限定されるものではな
い。
Generally, water-insoluble water-dispersible synthetic polymer particles are prepared by emulsion (co) polymerization or suspension (co) of appropriate monomers.
It is already known that it can be obtained by polymerization, etc., but for particles having different refractive indices, the composition of the monomer used is appropriately selected in the production of particles by (co) polymerization of an appropriate monomer. It can be obtained by doing. For example,
As high refractive index particles, polystyrene particles (refractive index 1.
59) can be used, while trifluoroethyl methacrylate (refractive index 1.4
(Co) polymer particles of a methacrylic acid fluoroalkyl ester derivative such as 5) can be used. If necessary, when preparing the particles, as a comonomer, for example, by using a polymerizable unsaturated carboxylic acid such as acrylic acid, to introduce a carboxyl group on the surface of the resulting particles Such functional groups are advantageously used to covalently attach the antibody or antigen to the particles. Further, the particles used in the present invention can be adjusted in refractive index by encapsulating an inorganic substance, a metal or the like inside the above-mentioned synthetic high molecular weight polymer particles. The refractive index of the particles used in the present invention is not particularly limited as long as it can be measured with a flow cytometer.

【0011】本発明において、用いる粒子の粒子径は、
フローサイトメーターにて測定可能なものであれば何ら
の問題もないが、通常、1〜20μmの粒子が好適に用
いられる。また、屈折率が異なる粒子は、粒子径が異な
るものを用いてもよい。本発明においては、屈折率の異
なる粒子にそれぞれ異なる測定物質と結合する抗体又は
抗原を固相化し、これを混合して試薬として用いる。こ
こに、屈折率の異なる粒子の混合割合は、特に限定され
るものではないが、しかし、屈折率の異なる粒子間で粒
子径も異なる場合は、それぞれの粒子の検出個数を合わ
せるためには、粒子数を合わせて混合するのが好まし
い。
In the present invention, the particle size of the particles used is
There is no problem as long as it can be measured by a flow cytometer, but particles of 1 to 20 μm are usually preferably used. Moreover, particles having different particle diameters may be used as the particles having different refractive indexes. In the present invention, an antibody or an antigen that binds to a different substance to be measured is immobilized on particles having different refractive indexes, and this is mixed and used as a reagent. Here, the mixing ratio of the particles having different refractive indexes is not particularly limited, however, when the particle diameter is different between the particles having different refractive indexes, in order to match the detected number of each particle, It is preferable to mix the particles according to their numbers.

【0012】本発明において、粒子に抗体又は抗原を固
相化する方法は、特に限定されるものではなく、従来よ
り知られている任意の方法によることができる。そのよ
うな方法の代表例として、例えば、抗体や抗原を粒子に
物理吸着させる方法や、前述したように、カルボキシル
基を有する粒子にカルボジイミド等を用いて抗体や抗原
を共有結合にて固相化する方法等を挙げることができ
る。
In the present invention, the method of immobilizing the antibody or antigen on the particles is not particularly limited, and any conventionally known method can be used. As a typical example of such a method, for example, a method of physically adsorbing an antibody or an antigen to a particle, or as described above, a carbodiimide or the like is used for a particle having a carboxyl group to immobilize the antibody or the antigen by covalent bonding. And the like.

【0013】次に、本発明による免疫学的測定方法につ
いて説明する。その方法によれば、先ず、前述したよう
に、屈折率の異なる2種以上の粒子にそれぞれ異なる測
定物質と結合する抗体又は抗原の固相化したものを混合
して、粒子混合試薬を調製し、かかる粒子混合試薬の所
定量に、血清等の被検液を所定量加えて、数分乃至数時
間反応させる。次に、この反応液にFITC(fluoresc
ein isothiocyanate)やPE(phycoerythrin)等の蛍光
物質で標識された抗体を所定量加える。或いは、粒子混
合試薬に被検液と蛍光標識体とを同時に加えて反応させ
てもよい。その結果、被検液中に測定物質が存在すると
きは、測定物質を橋かけとして、粒子に蛍光標識体が結
合する。次に、この反応液をフローサイトメーターで測
定するのであるが、B/F分離せずに、測定することも
できるし、或いは、遠心分離等によつて、過剰の蛍光標
識体を除去した後に、測定することもできる。
Next, the immunological measurement method according to the present invention will be described. According to the method, as described above, first, two or more kinds of particles having different refractive indices are mixed with solid-phased antibodies or antigens that bind to different measurement substances to prepare a particle mixing reagent. Then, a predetermined amount of the test solution such as serum is added to a predetermined amount of the particle-mixed reagent, and the mixture is reacted for several minutes to several hours. Next, FITC (fluoresc
A predetermined amount of an antibody labeled with a fluorescent substance such as ein isothiocyanate) or PE (phycoerythrin) is added. Alternatively, the test liquid and the fluorescent label may be simultaneously added to the particle-mixed reagent and reacted. As a result, when the test substance is present in the test liquid, the fluorescent substance is bound to the particles by using the test substance as a bridge. Next, this reaction solution is measured by a flow cytometer, but it can be measured without B / F separation, or after removing excess fluorescent label by centrifugation or the like. , Can also be measured.

【0014】フローサイトメーターにて上記反応液を測
定するとき、粒子1個ずつが細管を流れ、レーザー光が
照射される。レーザー照射角180°で前方散乱光を、
レーザー照射角90°で側方散乱光をそれぞれ検出す
る。更に、側方散乱光は、フイルターを通過させた後、
特定の波長の蛍光を検出する。例えば、FITCは53
0nm、PEは575nmの波長で検出することができ
る。
When measuring the above reaction liquid with a flow cytometer, each particle flows through a narrow tube and is irradiated with laser light. Forward scattered light at a laser irradiation angle of 180 °
Side scattered light is detected at a laser irradiation angle of 90 °. Furthermore, the side scattered light, after passing through the filter,
Detect fluorescence of a specific wavelength. For example, FITC is 53
0 nm, PE can be detected at a wavelength of 575 nm.

【0015】図9にフローサイトメーターで測定した前
方散乱光強度/側方散乱光強度ドツトプロツトを示す。
A1、A2、A3は、同じ屈折率で、粒子径が異なる粒
子群を示す。A1'、A2'は、A1、A2の粒子が2個凝
集した粒子群を示す。各粒子がそれぞれ完全に単分散の
粒子群であれば、ドツトプロツト上で分別できるが、粒
子が凝集しているときは、A1'とA2、A2'とA3の粒
子群が重複しているので、正確な測定ができない。ま
た、A1、A2、A3は、右上りの直線上にのみあらわ
れ、各粒子群が相互に重複しないようにするには、多く
の種類の粒子を用いることができない。
FIG. 9 shows the forward scattered light intensity / side scattered light intensity dot plot measured by a flow cytometer.
A1, A2 and A3 represent particle groups having the same refractive index but different particle diameters. A1 ′ and A2 ′ represent a particle group in which two particles A1 and A2 are aggregated. If each particle is a completely monodisperse particle group, it can be separated on the dot plot, but when the particles are agglomerated, the particle groups of A1 'and A2, A2' and A3 overlap, Accurate measurement is not possible. Further, A1, A2, and A3 appear only on the upper right straight line, and many kinds of particles cannot be used in order to prevent the particle groups from overlapping with each other.

【0016】一方、B1は、A1〜A3よりも屈折率が
低く、粒子径がA1と同じ粒子群を示し、C1は、B1
より更に屈折率が低く、粒子径がA1と同じ粒子群を示
している。B1、C1は、上記右上りの直線上とは異な
る位置にドツトプロツトがあらわれるので、より多くの
種類の粒子を分別して測定することができる。また、B
1'、C1'は、B1、C1の粒子が2個凝集した粒子群を
示しているが、A1、B1、C1、A1'、B1'、C1'の
粒子群は重複することがないので、正確な測定が可能と
なる。
On the other hand, B1 represents a particle group having a lower refractive index than A1 to A3 and the same particle size as A1, and C1 represents B1.
The particle group has a lower refractive index and the same particle size as A1. In B1 and C1, since the dot plot appears at a position different from the above-mentioned straight line on the upper right side, more kinds of particles can be separated and measured. Also, B
1'and C1 'represent a particle group in which two particles of B1 and C1 are aggregated, but since the particle groups of A1, B1, C1, A1', B1 'and C1' do not overlap, Accurate measurement is possible.

【0017】フローサイトメーターによる測定では、粒
子1個ずつに関して、前方散乱光強度、側方散乱光強
度、蛍光強度が測定される。例えば、A1の粒子群がも
つ蛍光強度を解析するには、ドツトプロツト上でA1粒
子群にある粒子だけを取出し、これらの粒子の蛍光強度
の平均値として計算される。従つて、ドツトプロツト上
で分別された粒子は、別々に蛍光強度を求めることがで
きるので、多項目同時測定を行なうことができる。
In the measurement with the flow cytometer, the forward scattered light intensity, the side scattered light intensity, and the fluorescence intensity are measured for each particle. For example, in order to analyze the fluorescence intensity of the A1 particle group, only the particles in the A1 particle group on the dot plot are taken out and calculated as the average value of the fluorescence intensity of these particles. Therefore, since the fluorescence intensity of each of the particles sorted on the dot plot can be obtained separately, multi-item simultaneous measurement can be performed.

【0018】被検液中の測定物質濃度を求めるには、よ
く知られているように、予め検量線を作成しておけば、
蛍光強度より直ちに計算にて得ることができる。
To obtain the concentration of the substance to be measured in the test liquid, it is well known that if a calibration curve is prepared in advance,
It can be calculated immediately from the fluorescence intensity.

【0019】[0019]

【発明の効果】以上のように、本発明の方法によれば、
屈折率の異なる粒子にそれぞれ異なる測定物質と特異的
に結合する抗体又は抗原を固相化してなる試薬を用い
て、フローサイトメーターによつて蛍光強度を測定する
ので、散乱光ドツトプロツトの出現位置の違いによつ
て、2種以上の測定物質を同時に正確に測定することが
できる。
As described above, according to the method of the present invention,
Since the fluorescence intensity is measured by a flow cytometer using a reagent obtained by immobilizing antibodies or antigens that specifically bind to different measurement substances to particles having different refractive indexes, the appearance position of scattered light dot plots can be measured. Due to the difference, it is possible to accurately measure two or more kinds of measurement substances simultaneously.

【0020】[0020]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。 実施例1 (a) 粒子への抗体の固相化 シード重合法で調製したカルボキシル化ポリスチレン粒
子(粒子径2.5μm、屈折率1.59)の5%蒸留水分散
液5ml、ホウ酸緩衝液(0.1M、pH7.5)2ml及び蒸留
水11mlを混合し、これに1−エチル−3−(3−ジメ
チルアミノプロピル)カルボジイミド塩酸塩水溶液(2
mg/ml)2mlを加え、10分後に抗ヒトAFP抗体(マ
ウスIgG)水溶液(2mg/ml)5mlを加え、10℃で
2時間反応させた。次いで、ホウ酸緩衝液(0.01M、
pH8)で遠心分離洗浄を3回行なつた後、同様の緩衝液
に再分散させて、抗AFP抗体固相化粒子分散液を調製
した。
The present invention will be described below with reference to examples.
The present invention is not limited to these examples. Example 1 (a) Immobilization of antibody on particles 5 ml of 5% distilled water dispersion of carboxylated polystyrene particles (particle diameter 2.5 μm, refractive index 1.59) prepared by seed polymerization method, borate buffer solution (0.1 M, pH 7.5) 2 ml and distilled water 11 ml were mixed, and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride aqueous solution (2
2 ml of (mg / ml) was added, and 10 minutes later, 5 ml of an anti-human AFP antibody (mouse IgG) aqueous solution (2 mg / ml) was added, and the mixture was reacted at 10 ° C. for 2 hours. Then borate buffer (0.01M,
After centrifugation and washing at pH 8) three times, the particles were redispersed in the same buffer to prepare an anti-AFP antibody-immobilized particle dispersion.

【0021】次に、シード重合法で調製したカルボキシ
ル化(スチレン/2,2,2−トリフルオロエチルメタクリ
レート)共重合体粒子(スチレン/2,2,2−トリフルオ
ロエチルメタクリレート共重合重量比3/1、粒子径2.
5μm、屈折率1.55)に上記と同様にして、抗ヒトC
EA抗体(マウスIgG)を固相化した粒子分散液を調
製した。
Next, carboxylated (styrene / 2,2,2-trifluoroethylmethacrylate) copolymer particles (styrene / 2,2,2-trifluoroethylmethacrylate copolymerization weight ratio 3) prepared by the seed polymerization method. / 1, particle size 2.
5 μm, refractive index 1.55) in the same manner as above, anti-human C
A particle dispersion liquid in which an EA antibody (mouse IgG) was immobilized was prepared.

【0022】更に、カルボキシル化(スチレン/2,2,2
−トリフルオロエチルメタクリレート)共重合体粒子
(スチレン/2,2,2−トリフルオロエチルメタクリレー
ト共重合重量比1/1、粒子径2.5μm、屈折率1.5
1)に上記と同様にして、抗ヒトβ2 −ミクログロブリ
ン抗体(マウスIgG)(以下、単に、β2 −抗体とい
うことがある。)を固相化した粒子分散液を調製した。 (b) FITC標識抗体の調製 抗ヒトAFP抗体(ウサギIgG)を炭酸緩衝液(0.5
M、pH9.5)で透析した後、この抗体(1mg/ml)3ml
にFITC(0.2mg/ml)0.6mlを加え、25℃で3時
間、静置した。次いで、Sephadex G-25 で上記反応液中
の過剰のFITCを除去し、FITC標識抗ヒトAFP
抗体(リン酸緩衝液、pH8、F/P=3)を得た。
Furthermore, carboxylation (styrene / 2,2,2
-Trifluoroethylmethacrylate) copolymer particles (styrene / 2,2,2-trifluoroethylmethacrylate copolymerization weight ratio 1/1, particle diameter 2.5 μm, refractive index 1.5)
In the same manner as in 1) above, an anti-human β 2 -microglobulin antibody (mouse IgG) (hereinafter, also simply referred to as β 2 -antibody) was solid-phased to prepare a particle dispersion liquid. (b) Preparation of FITC-labeled antibody An anti-human AFP antibody (rabbit IgG) was added to a carbonate buffer solution (0.5
3 ml of this antibody (1 mg / ml) after dialysis against M, pH 9.5)
FITC (0.2 mg / ml) (0.6 ml) was added to and the mixture was allowed to stand at 25 ° C. for 3 hours. Then, excess FITC in the above reaction solution was removed with Sephadex G-25, and FITC-labeled anti-human AFP was added.
An antibody (phosphate buffer, pH 8, F / P = 3) was obtained.

【0023】次に、上記と同様にして、FITC標識抗
ヒトCEA抗体(リン酸緩衝液、pH8、F/P=3)と
FITC標識抗ヒトβ2 −ミクログロブリン抗体(リン
酸緩衝液、pH8、F/P=3)を得た。 (c) フローサイトメーターによる測定 (a) で調製した抗ヒトAFP抗体固相化粒子分散液(0.
02%)100μlに既知濃度のヒトAFP溶液100
μlを加え、次に、(b) で調製したFITC標識抗ヒト
AFP抗体(0.02mg/ml)100μlを加え、37℃
で3時間反応させた。この混合溶液をフローサイトメー
ター(ベクトンデイツキンソン製、FACScan)に
よる測定を行なつた。得られた前方散乱光強度/側方散
乱光強度ドツトプロツトを図1に示し、また、各ヒトA
FP濃度における蛍光強度を表1に示す。
Then, in the same manner as above, the FITC-labeled anti-human CEA antibody (phosphate buffer, pH 8, F / P = 3) and the FITC-labeled anti-human β 2 -microglobulin antibody (phosphate buffer, pH 8) were used. , F / P = 3) was obtained. (c) Flow cytometer measurement Anti-human AFP antibody-immobilized particle dispersion prepared in (a) (0.
02%) 100 μl of human AFP solution of known concentration 100
Then, 100 μl of FITC-labeled anti-human AFP antibody (0.02 mg / ml) prepared in (b) was added, and the mixture was added at 37 ° C.
And reacted for 3 hours. The mixed solution was measured by a flow cytometer (FACScan, manufactured by Becton Ditzkinson). The obtained forward scattered light intensity / side scattered light intensity dot plots are shown in FIG.
Table 1 shows the fluorescence intensity at the FP concentration.

【0024】次いで、(a) で調製した抗ヒトCEA抗体
固相化粒子分散液(0.02%)100μlに既知濃度の
ヒトCEA溶液100μlを加え、次に、(b) で調製し
たFITC標識抗ヒトCEA抗体(0.02mg/ml)10
0μlを加え、37℃で3時間反応させた。この混合溶
液をフローサイトメーター(ベクトンデイツキンソン
製、FACScan)による測定を行なつた。得られた
前方散乱光強度/側方散乱光強度ドツトプロツトを図2
に示し、各ヒトCEA濃度における蛍光強度を表2に示
す。
Next, 100 μl of the human CEA solution having a known concentration was added to 100 μl of the anti-human CEA antibody-immobilized particle dispersion (0.02%) prepared in (a), and then the FITC label prepared in (b) was added. Anti-human CEA antibody (0.02mg / ml) 10
0 μl was added, and the mixture was reacted at 37 ° C. for 3 hours. The mixed solution was measured by a flow cytometer (FACScan, manufactured by Becton Ditzkinson). Figure 2 shows the obtained forward scattered light intensity / side scattered light intensity dot plot.
And the fluorescence intensity at each human CEA concentration is shown in Table 2.

【0025】次に、(a) で調製した抗ヒトβ2 −ミクロ
グロブリン抗体固相化粒子分散液(0.02%)100μ
lに既知濃度のヒトβ2 −ミクログロブリン溶液100
μlを加え、次に、(b) で調製したFITC標識抗ヒト
β2 −ミクログロブリン抗体(0.02mg/ml)100μ
lを加え、37℃で3時間反応させた。この混合溶液を
フローサイトメーター(ベクトンデイツキンソン製、F
ACScan)による測定を行なつた。得られた前方散
乱光強度/側方散乱光強度ドツトプロツトを図3に、各
ヒトβ2 −ミクログロブリン濃度における蛍光強度を表
3に、それぞれ示す。
Next, 100 μm of the anti-human β 2 -microglobulin antibody-immobilized particle dispersion liquid (0.02%) prepared in (a).
100 μl of human β 2 -microglobulin solution of known concentration
100 μl of FITC-labeled anti-human β 2 -microglobulin antibody (0.02 mg / ml) prepared in (b) was added.
1 was added and the mixture was reacted at 37 ° C. for 3 hours. This mixed solution was applied to a flow cytometer (Becton Ditzkinson, F
ACS Scan). The obtained forward scattered light intensity / side scattered light intensity dot plot is shown in FIG. 3, and the fluorescence intensity at each human β 2 -microglobulin concentration is shown in Table 3.

【0026】次に、(a) で調製した抗ヒトAFP抗体固
相化粒子分散液(0.06%)、抗ヒトCEA抗体固相化
粒子分散液(0.06%)及び抗ヒトβ2 −ミクログロブ
リン抗体固相化粒子分散液(0.06%)を等量ずつ混合
し、AFP、CEA及びβ2−ミクログロブリン同時測
定用の粒子分散液を調製した。次に、(b) で調製したF
ITC標識抗ヒトAFP抗体(0.06mg/ml)、FIT
C標識抗ヒトCEA抗体(0.06mg/ml)、FITC標
識抗ヒトβ2 −ミクログロブリン抗体(0.06mg/ml)
を等量ずつ混合して、AFP、CEA及びβ2−ミクロ
グロブリン同時測定用の標識抗体溶液を調製した。
Next, the anti-human AFP antibody-immobilized particle dispersion liquid (0.06%) prepared in (a), the anti-human CEA antibody-immobilized particle dispersion liquid (0.06%) and the anti-human β 2 -Equivalent amounts of microglobulin antibody-immobilized particle dispersion (0.06%) were mixed to prepare a particle dispersion for simultaneous measurement of AFP, CEA and β 2 -microglobulin. Next, F prepared in (b)
ITC-labeled anti-human AFP antibody (0.06 mg / ml), FIT
C-labeled anti-human CEA antibody (0.06 mg / ml), FITC-labeled anti-human β 2 -microglobulin antibody (0.06 mg / ml)
Were mixed in equal amounts to prepare a labeled antibody solution for simultaneous measurement of AFP, CEA and β 2 -microglobulin.

【0027】次に、上記同時測定用の粒子分散液100
μlに既知濃度のヒトAFP溶液、ヒトCEA溶液及び
ヒトβ2 −ミクログロブリン溶液各100μlを加え、
更に、上記同時測定用FITC標識抗体100μlを加
え、37℃で3時間反応させた。この混合溶液につい
て、フローサイトメーター測定を行なつた。得られた前
方散乱光強度/側方散乱光強度ドツトプロツトを図4
に、各測定物質濃度における蛍光強度を表4に、それぞ
れ示す。
Next, the particle dispersion 100 for simultaneous measurement described above.
100 μl each of human AFP solution, human CEA solution and human β 2 -microglobulin solution of known concentration were added to μl,
Further, 100 μl of the FITC-labeled antibody for simultaneous measurement described above was added, and the mixture was reacted at 37 ° C. for 3 hours. A flow cytometer measurement was performed on this mixed solution. Figure 4 shows the obtained forward scattered light intensity / side scattered light intensity dot plot.
Table 4 shows the fluorescence intensity at each concentration of the measurement substance.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】表に示す結果から明らかなように、同時測
定においても、それぞれ単独で測定した場合と殆ど同じ
蛍光強度を得ることができた。
As is clear from the results shown in the table, even in the simultaneous measurement, almost the same fluorescence intensity as in the case of measuring each independently could be obtained.

【0033】比較例1 (a) 粒子への抗体の固相化 シード重合法で調製したカルボキシル化ポリスチレン粒
子(粒子径3.1μm、屈折率1.59)を用いて、実施例
1と同様にして、抗ヒトCEA抗体固相化粒子分散液を
調製した。
Comparative Example 1 (a) Immobilization of Antibody on Particles Carboxylated polystyrene particles (particle diameter 3.1 μm, refractive index 1.59) prepared by the seed polymerization method were used in the same manner as in Example 1. Thus, an anti-human CEA antibody-immobilized particle dispersion liquid was prepared.

【0034】次に、カルボキシル化ポリスチレン粒子
(粒子径4.2μm、屈折率1.59)を用いて、実施例1
と同様にして、抗ヒトβ2 −ミクログロブリン抗体固相
化粒子分散液を調製した。 (b) フローサイトメーターによる測定 実施例1で調製した抗ヒトAFP抗体固相化粒子分散液
(0.04%)100μlに既知濃度のヒトAFP溶液1
00μlを加え、実施例1で調製したFITC標識抗ヒ
トAFP抗体(0.02mg/ml)100μlを加え、37
℃で3時間反応させた。この混合溶液について、フロー
サイトメーターによる測定を行なつた。得られた前方散
乱光強度/側方散乱光強度ドツトプロツトを図5に示
し、各ヒトAFP濃度における蛍光強度を表5に示す。
Next, using carboxylated polystyrene particles (particle diameter 4.2 μm, refractive index 1.59), Example 1
In the same manner as above, an anti-human β 2 -microglobulin antibody-immobilized particle dispersion liquid was prepared. (b) Measurement by flow cytometer Human AFP solution 1 of known concentration in 100 μl of anti-human AFP antibody-immobilized particle dispersion liquid (0.04%) prepared in Example 1
00 μl was added, 100 μl of FITC-labeled anti-human AFP antibody (0.02 mg / ml) prepared in Example 1 was added, and 37
The reaction was carried out at 0 ° C for 3 hours. This mixed solution was measured by a flow cytometer. The obtained forward scattered light intensity / side scattered light intensity dot plot is shown in FIG. 5, and the fluorescence intensity at each human AFP concentration is shown in Table 5.

【0035】(a) で調製した抗ヒトCEA抗体固相化粒
子分散液(0.04%)100μlに既知濃度のヒトCE
A溶液100μlを加え、実施例1で調製したFITC
標識抗ヒトCEA抗体(0.02mg/ml)100μlを加
え、37℃で3時間反応させた。この混合溶液につい
て、フローサイトメーターによる測定を行なつた。得ら
れた前方散乱光強度/側方散乱光強度ドツトプロツトを
図6に、各ヒトCEA濃度における蛍光強度を表6に、
それぞれ示す。
100 μl of the anti-human CEA antibody-immobilized particle dispersion (0.04%) prepared in (a) had a known concentration of human CE.
FITC prepared in Example 1 by adding 100 μl of solution A
100 μl of labeled anti-human CEA antibody (0.02 mg / ml) was added, and the mixture was reacted at 37 ° C. for 3 hours. This mixed solution was measured by a flow cytometer. The obtained forward scattered light intensity / side scattered light intensity dot plot is shown in FIG. 6, and the fluorescence intensity at each human CEA concentration is shown in Table 6.
Shown respectively.

【0036】次に、(a) で調製した抗ヒトβ2 −ミクロ
グロブリン抗体固相化粒子分散液(0.10%)100μ
lに既知濃度のヒトβ2 −ミクログロブリン溶液100
μlを加え、実施例1で調製したFITC標識抗ヒトβ
2 −ミクログロブリン抗体(0.02mg/ml)100μl
を加え、37℃で3時間反応させた。この混合溶液につ
いて、フローサイトメーターによる測定を行なつた。得
られた前方散乱光強度/側方散乱光強度ドツトプロツト
を図7に、各ヒトβ2 −ミクログロブリン濃度における
蛍光強度を表7に、それぞれ示す。
Next, 100 μm of the anti-human β 2 -microglobulin antibody-immobilized particle dispersion liquid (0.10%) prepared in (a).
100 μl of human β 2 -microglobulin solution of known concentration
μl was added to the FITC-labeled anti-human β prepared in Example 1.
2- microglobulin antibody (0.02 mg / ml) 100 μl
Was added and reacted at 37 ° C. for 3 hours. This mixed solution was measured by a flow cytometer. The obtained forward scattered light intensity / side scattered light intensity dot plot is shown in FIG. 7, and the fluorescence intensity at each human β 2 -microglobulin concentration is shown in Table 7.

【0037】次に、実施例1で調製した抗ヒトAFP抗
体固相化粒子分散液(0.06%)、上記抗ヒトCEA抗
体固相化粒子分散液(0.12%)及び抗ヒトβ2 −ミク
ログロブリン抗体固相化粒子分散液(0.30%)を等量
ずつ混合して、AFP、CEA及びβ2 −ミクログロブ
リン同時測定用の粒子分散液を調製した。次に、上記同
時測定用の粒子分散液100μlに既知濃度のヒトAF
P溶液、ヒトCEA溶液及びヒトβ2 −ミクログロブリ
ン溶液各100μlを加え、更に、実施例1で調製した
同時測定用FITC標識抗体100μlを加え、37℃
で3時間反応させた。この混合溶液について、フローサ
イトメーターによる測定を行なつた。得られた前方散乱
光強度/側方散乱光強度ドツトプロツトを図8に、各測
定物質濃度における蛍光強度を表8に、それぞれ示す。
Next, the anti-human AFP antibody-immobilized particle dispersion liquid (0.06%) prepared in Example 1, the anti-human CEA antibody-immobilized particle dispersion liquid (0.12%) and anti-human β were prepared. Equal amounts of 2- microglobulin antibody-immobilized particle dispersion (0.30%) were mixed to prepare a particle dispersion for simultaneous measurement of AFP, CEA and β 2 -microglobulin. Next, 100 μl of the particle dispersion for simultaneous measurement described above was added with human AF of known concentration.
100 μl each of P solution, human CEA solution and human β 2 -microglobulin solution were added, and further 100 μl of FITC-labeled antibody for simultaneous measurement prepared in Example 1 was added, and the mixture was incubated at 37 ° C.
And reacted for 3 hours. This mixed solution was measured by a flow cytometer. The obtained forward scattered light intensity / side scattered light intensity dot plot is shown in FIG. 8, and the fluorescence intensity at each concentration of the measured substance is shown in Table 8.

【0038】[0038]

【表5】 [Table 5]

【0039】[0039]

【表6】 [Table 6]

【0040】[0040]

【表7】 [Table 7]

【0041】[0041]

【表8】 [Table 8]

【0042】表に示す結果から明らかなように、単独測
定と比較して、同時測定によれば、AFP濃度が高い場
合に、CEA低濃度における蛍光強度が異常に高く、ま
た、CEA濃度が高い場合は、β2 −ミクログロブリン
低濃度における蛍光強度が異常に高くなつており、正確
な同時測定を行なうことができなかつた。
As is clear from the results shown in the table, according to the simultaneous measurement, the fluorescence intensity at a low CEA concentration is abnormally high and the CEA concentration is high as compared with the single measurement. In this case, the fluorescence intensity at a low β 2 -microglobulin concentration was abnormally high, and accurate simultaneous measurement could not be performed.

【0043】[0043]

【図面の簡単な説明】[Brief description of drawings]

【図1】、[Figure 1]

【図2】、[Fig. 2]

【図3】及びFIG. 3 and

【図4】は、それぞれ本発明の方法による前方散乱光強
度/側方散乱光強度ドツトプロツトを示す図である。
FIG. 4 is a diagram showing forward scattered light intensity / side scattered light intensity dot plots according to the method of the present invention.

【図5】、[Fig. 5]

【図6】、[FIG. 6]

【図7】及びFIG. 7 and

【図8】は、それぞれ比較例としての従来の方法による
前方散乱光強度/側方散乱光強度ドツトプロツトを示す
図である。
FIG. 8 is a diagram showing forward scattered light intensity / side scattered light intensity dot plots by a conventional method as a comparative example.

【図9】は、フローサイトメーターで測定した前方散乱
光強度/側方散乱光強度ドツトプロツトを示す図であ
る。
FIG. 9 is a diagram showing a forward scattered light intensity / side scattered light intensity dot plot measured by a flow cytometer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】屈折率の異なる2種以上の粒子にそれぞれ
異なる測定物質と結合する抗体又は抗原を固相化してな
る試薬を被検液及び蛍光標識抗体と共に混合し、反応さ
せた後、フローサイトメーターにて上記粒子の蛍光強度
を測定することを特徴とする免疫学的測定方法。
1. A reagent obtained by immobilizing an antibody or an antigen that binds to different measuring substances to two or more kinds of particles having different refractive indexes, is mixed with a test solution and a fluorescently labeled antibody, reacted, and then flowed. An immunological measurement method, which comprises measuring the fluorescence intensity of the particles with a cytometer.
JP18417392A 1992-07-10 1992-07-10 Immunological measurement method Pending JPH0627112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18417392A JPH0627112A (en) 1992-07-10 1992-07-10 Immunological measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18417392A JPH0627112A (en) 1992-07-10 1992-07-10 Immunological measurement method

Publications (1)

Publication Number Publication Date
JPH0627112A true JPH0627112A (en) 1994-02-04

Family

ID=16148645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18417392A Pending JPH0627112A (en) 1992-07-10 1992-07-10 Immunological measurement method

Country Status (1)

Country Link
JP (1) JPH0627112A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064867A1 (en) * 1997-12-04 1999-12-16 Amersham Pharmacia Biotech Uk Limited Multiple assay method
US6225046B1 (en) 1995-04-03 2001-05-01 Macquarie Research Ltd. Method for detecting microorganisms
JP2006275905A (en) * 2005-03-30 2006-10-12 National Institute Of Advanced Industrial & Technology Fluorescence analyzing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225046B1 (en) 1995-04-03 2001-05-01 Macquarie Research Ltd. Method for detecting microorganisms
WO1999064867A1 (en) * 1997-12-04 1999-12-16 Amersham Pharmacia Biotech Uk Limited Multiple assay method
JP2006275905A (en) * 2005-03-30 2006-10-12 National Institute Of Advanced Industrial & Technology Fluorescence analyzing method
JP4652868B2 (en) * 2005-03-30 2011-03-16 独立行政法人産業技術総合研究所 Fluorescence analysis method

Similar Documents

Publication Publication Date Title
US6872578B2 (en) Magnetic particles as solid phase for multiplex flow assays
JPH03502246A (en) Coagulation methods for the analysis of substances
CN101002096A (en) Lateral flow device for the detection of large pathogens
KR20190042050A (en) An analytical concentration measurement method, a particle containing aggregated fluorescent material and an inspection device
US6551788B1 (en) Particle-based ligand assay with extended dynamic range
CN104487846B (en) People's FXIII as the normalization controls of immunoassay
JP2645211B2 (en) Highly sensitive aggregation assay using multivalent ligands
JP4853666B2 (en) Target substance detection method, mixed particles, and target substance detection reagent
JPH09504094A (en) Method for assaying immunological substances using magnetic latex particles and non-magnetic particles
WO2000051814A1 (en) Simultaneous analysis of an analyte and an interfering substance using flow cytometry
US6210975B1 (en) Process for determining a bindable analyte via immune precipitation and reagent therefor
US6548310B1 (en) Particle for diagnostic agent and turbidmetric immunoassay using the same
JPH0627112A (en) Immunological measurement method
JPS6281567A (en) Quantification method using particle agglutination reaction
JPH03123861A (en) Immunochemical measurement method of haptens
US20170227532A1 (en) Method for producing a capture phase for the detection of a biological target, and associated detection methods and kits
US6927071B2 (en) Method for reducing non-specific aggregation of latex microparticles in the presence of serum or plasma
JP5465758B2 (en) Thyroxine immunoassay using fluorescent particles
CN112114131A (en) Homogeneous phase chemiluminescence detection method and application thereof
JPS6281566A (en) Quantification method by measurement of fluorescent intensity of fine particle
JP2008215816A (en) Hollow polymer particle for immunodiagnosis, its manufacturing method, and reagent for immunodiagnosis
JPH01158354A (en) Reagent and method for immunological measurement of many components
JP2004117068A (en) Immunoassay reagent and immunoassay method
JPS6366464A (en) Carrier latex for diagnosing reagent
JPWO2008007773A1 (en) Method for confirming analyte detection activity of microparticles