JPS6158957A - Manufacture of combustion chamber for pocket engine - Google Patents
Manufacture of combustion chamber for pocket engineInfo
- Publication number
- JPS6158957A JPS6158957A JP18001984A JP18001984A JPS6158957A JP S6158957 A JPS6158957 A JP S6158957A JP 18001984 A JP18001984 A JP 18001984A JP 18001984 A JP18001984 A JP 18001984A JP S6158957 A JPS6158957 A JP S6158957A
- Authority
- JP
- Japan
- Prior art keywords
- filler
- layer
- cooling passage
- groove
- inner cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K9/00—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
- F02K9/42—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
- F02K9/60—Constructional parts; Details not otherwise provided for
- F02K9/62—Combustion or thrust chambers
- F02K9/64—Combustion or thrust chambers having cooling arrangements
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemically Coating (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は再生冷却式液体ロケットエンジン燃焼室及び熱
交換器等の製造に応用できるロケットエンジン燃焼室製
造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a rocket engine combustion chamber that can be applied to manufacturing regeneratively cooled liquid rocket engine combustion chambers, heat exchangers, and the like.
(従来技術)
再生冷却式液体ロケットエンジン燃焼室は、その内面が
高温高圧の燃焼ガスにさらされるために、内壁に冷却通
路を設け、高圧の推進薬の一部又は全量を用いて冷却し
ている。この冷却通路の製造方法として、従来は二重壁
構造、ろう伸管構造又はろう付溝構造が使われている。(Prior art) Since the inner surface of the regeneratively cooled liquid rocket engine combustion chamber is exposed to high-temperature, high-pressure combustion gas, a cooling passage is provided on the inner wall and a part or all of the high-pressure propellant is used to cool the combustion chamber. There is. Conventionally, a double wall structure, a brazed elongated pipe structure, or a brazed groove structure has been used as a manufacturing method for this cooling passage.
しかし燃焼圧の高圧化に伴い、内筒と外筒の接合のより
完全な溝構造燃焼室が不可欠となってきた。However, as combustion pressures become higher, a combustion chamber with a groove structure where the inner cylinder and outer cylinder are more perfectly joined has become essential.
従来提案されているものとしてSSME(スペース・シ
ャトル・メイン・エンジン)がある。これは第6図〜第
8図の如く銅mtJ付き内筒10の外側に、冷却通路1
1を形成するように、電鋳にてニッケル外被12を設け
たものである。更に冷却液である高圧水素によるニッケ
ルの脆化を防止するために、ニッケル層の下に予め電気
銅メッキ13を施しである。更に高強度合金鋼(インコ
ネル等)!I!の周辺部材14についても、その内面に
別途保護層を設ける必要があった。また二・ノケル層電
鋳時に、溝内充填剤の電気伝導率を調整するa・要があ
った。One example that has been proposed so far is SSME (Space Shuttle Main Engine). As shown in FIGS. 6 to 8, a cooling passage 1 is provided on the outside of the inner cylinder 10 with copper mtJ.
1, a nickel jacket 12 is provided by electroforming. Further, in order to prevent the nickel from becoming brittle due to high-pressure hydrogen, which is a cooling liquid, electrolytic copper plating 13 is applied in advance under the nickel layer. Furthermore, high-strength alloy steel (Inconel, etc.)! I! It was also necessary to separately provide a protective layer on the inner surface of the peripheral member 14. Also, when electroforming the second layer, it was necessary to adjust the electrical conductivity of the filler in the groove.
(発明が解決しようとする問題点)
本発明は、従来の保護層を設けたり、溝内充填剤の電気
伝導率の調整の必要がある等の問題点を解決し、外筒電
鋳時の溝内充填剤の調整が不要で、水素脆性防と層を一
度に付与できるロケットエンジン燃焼室製造方法を提供
しようとするものである。(Problems to be Solved by the Invention) The present invention solves problems such as the need to provide a conventional protective layer and adjust the electrical conductivity of the filler in the groove. The present invention aims to provide a method for manufacturing a combustion chamber of a rocket engine that does not require adjustment of the filler in the groove and can apply a hydrogen embrittlement protection layer and a layer at the same time.
(問題点をjW決するための手段及び作用)このため本
発明は、銅製内筒の外径側に溝加工を施し、この溝内に
可溶性不導体充填剤を充填し、同充瞑剤の表面を前記内
筒外径面と同一面に仕上げると共に、同充虜剤表面に導
電性を付与したのち、同内筒外面全面にニッケル電鋳層
を形成し、次いで前記充填剤を熔融除去してここに冷却
通路を形成すると共に、同通路内面に無電解メッキにて
防護層を設け、更に前記ニッケル電&i?一層の外面に
合金鋼製の外筒を取付けるようにしてなるも・のである
。(Means and operations for resolving the problem) Therefore, the present invention provides a method in which a groove is formed on the outer diameter side of the copper inner cylinder, a soluble nonconductor filler is filled in the groove, and the surface of the filled filler is After finishing the filler to be flush with the outer diameter surface of the inner cylinder and imparting conductivity to the surface of the filling agent, a nickel electroforming layer is formed on the entire outer surface of the inner cylinder, and then the filler is melted and removed. A cooling passage is formed here, a protective layer is provided on the inner surface of the passage by electroless plating, and the above-mentioned nickel electrode &i? An outer cylinder made of alloy steel is attached to the outer surface of one layer.
(実施例)
以下本発明の実施例を図面について説明すると、第1図
〜第5図は本発明の実施例を示す。先ず銅製内筒1の外
径側に溝加工2を施し、この溝内に可溶性不導体充填剤
(ワックス)3を充填し、内筒1の外径面1aと同一面
となるように仕上げる。(Example) Examples of the present invention will be described below with reference to the drawings. FIGS. 1 to 5 show examples of the present invention. First, a groove 2 is formed on the outer diameter side of the copper inner cylinder 1, and a soluble nonconductor filler (wax) 3 is filled in the groove so that it is flush with the outer diameter surface 1a of the inner cylinder 1.
次いでワックス3の表面に導電性粉体く銀粉)4をすり
込み、導電性を付与したのち、全面にニッケル電鋳層5
を所要厚さ施す。電鋳後加温し、ワックス3を溶融して
除去することにより、冷却通路8を形成することができ
る。次いで外形等を機械加工等により仕上げ、高強度合
金鋼製部材(外筒6、マニホールド7等)を溶接等によ
り取付けた後、冷却通路8の内面を無電解メッキ(銅ン
9する。Next, conductive powder (silver powder) 4 is rubbed onto the surface of the wax 3 to give it conductivity, and then a nickel electroformed layer 5 is applied to the entire surface.
Apply to the required thickness. The cooling passage 8 can be formed by heating after electroforming, melting the wax 3, and removing it. Next, the outer shape and the like are finished by machining, etc., and high-strength alloy steel members (outer cylinder 6, manifold 7, etc.) are attached by welding, etc., and then the inner surface of the cooling passage 8 is electroless plated (copper plate 9).
(発明の効果)
以上説明した如く本発明は構成されており、滑かな銅表
面へのニッケルの電着であるので、均一な高強度接合が
得られる。なお、マニホールド等を取付けた後に無電P
i¥銅メンキを実施すれば、水素に接触する部分全面に
無電解メッキによる水素脆性防護層を設けることができ
る。またワックス表面への導電性付与を銀粉によるよう
にすれば、微妙な導電性ワックスの調整が不要である。(Effects of the Invention) The present invention is configured as described above, and since nickel is electrodeposited on a smooth copper surface, a uniform high-strength bond can be obtained. In addition, after installing the manifold etc.
By carrying out i\copper coating, a hydrogen brittle protective layer can be provided by electroless plating on the entire surface of the part that comes into contact with hydrogen. Moreover, if silver powder is used to impart conductivity to the wax surface, delicate adjustment of the conductive wax is not necessary.
本発明は洞内筒の機械加工面へ直接ニッケルを電着させ
るため、完全な接合が得られる。またマニホールド等周
辺部品の内面を含め冷却通路内面に、1工程にて水素脆
性防護層を設けることができる。The present invention electrodeposit nickel directly onto the machined surfaces of the canal tube, resulting in a complete bond. Furthermore, a hydrogen embrittlement protective layer can be provided on the inner surface of the cooling passage, including the inner surface of peripheral parts such as a manifold, in one step.
第1図は本発明の実施例を示す方法において、ニッケル
電鋳層を形成するまでの工程を示す側断面図、第2図は
第1図のA −A Ili面図、第3図は本発明方法に
より製造された燃焼室の側断面図、第4図は第3図のB
−B断面図、第5図は第4図のC部詳細図、第6図は従
来のロケットエンジン燃焼室の側断面図、第7図は第6
図のD−D断面図、第8図は第7図のE部詳細図である
。
図の主要部分の説明
1−銅製内筒 °1a−・内筒外径面2・・・・溝加
工 3−・可溶性不導体充瞑剤4−・−導電性
粉体 5−・ニッケル電鋳層6・−外?F18−冷
却通路
9・−無電解メッキ
特 許 出 願 人 三菱重工業株式会社第1図
第2図
第6図
第7図
第8図Fig. 1 is a side cross-sectional view showing the steps up to forming a nickel electroformed layer in a method showing an embodiment of the present invention, Fig. 2 is a cross-sectional view taken along A-A Ili in Fig. A side sectional view of the combustion chamber manufactured by the method of the invention, FIG. 4 is B in FIG.
-B sectional view, Fig. 5 is a detailed view of C section in Fig. 4, Fig. 6 is a side sectional view of a conventional rocket engine combustion chamber, and Fig. 7 is a sectional view of C section in Fig. 4.
FIG. 8 is a detailed view of section E in FIG. 7. Explanation of the main parts of the diagram 1 - Copper inner cylinder ° 1a - Inner cylinder outer diameter surface 2 - Grooving 3 - Soluble nonconductor filler 4 - Conductive powder 5 - Nickel electroforming Layer 6 - outside? F18-Cooling passage 9--Electroless plating patent applicant Mitsubishi Heavy Industries, Ltd. Figure 1
Figure 2 Figure 6 Figure 7 Figure 8
Claims (1)
導体充填剤を充填し、同充填剤の表面を前記内筒外径面
と同一面に仕上げると共に、同充填剤表面に導電性を付
与したのち、同内筒外面全面にニッケル電鋳層を形成し
、次いで前記充填剤を溶融除去してここに冷却通路を形
成すると共に、同通路内面に無電解メッキにて防護層を
設け、更に前記ニッケル電鋳層の外面に合金鋼製の外筒
を取付けることを特徴とするロケットエンジン燃焼室製
造方法。A groove is machined on the outer diameter side of the copper inner cylinder, a soluble nonconductor filler is filled in this groove, and the surface of the filler is finished to be flush with the outer diameter surface of the inner cylinder, and the surface of the filler is After imparting conductivity, a nickel electroforming layer is formed on the entire outer surface of the inner cylinder, and then the filler is melted and removed to form a cooling passage there, and a protective layer is applied to the inner surface of the passage by electroless plating. A method of manufacturing a combustion chamber for a rocket engine, further comprising: providing an outer cylinder made of alloy steel on the outer surface of the electroformed nickel layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59180019A JPH0713500B2 (en) | 1984-08-29 | 1984-08-29 | Rocket engine combustion chamber manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59180019A JPH0713500B2 (en) | 1984-08-29 | 1984-08-29 | Rocket engine combustion chamber manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6158957A true JPS6158957A (en) | 1986-03-26 |
JPH0713500B2 JPH0713500B2 (en) | 1995-02-15 |
Family
ID=16076037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59180019A Expired - Lifetime JPH0713500B2 (en) | 1984-08-29 | 1984-08-29 | Rocket engine combustion chamber manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0713500B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5154352A (en) * | 1990-05-11 | 1992-10-13 | Mtu Motoren - Und Turbinen-Union Munchen Gmbh | Propelling nozzle for an aircraft engine |
DE102006021539A1 (en) * | 2006-05-08 | 2007-11-15 | Eads Space Transportation Gmbh | Method for producing components for rocket construction |
JP2012057203A (en) * | 2010-09-07 | 2012-03-22 | Mitsubishi Heavy Ind Ltd | Rocket engine combustor and method for manufacturing hollow structure |
JP2020033994A (en) * | 2018-07-17 | 2020-03-05 | アリアングループ ゲーエムベーハーArianeGroup GmbH | Combustion chamber structure, particularly for rocket engine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50145711A (en) * | 1974-04-19 | 1975-11-22 | ||
JPS5675942A (en) * | 1979-11-22 | 1981-06-23 | Mitsubishi Heavy Ind Ltd | Manufacturing of combustion chamber |
-
1984
- 1984-08-29 JP JP59180019A patent/JPH0713500B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50145711A (en) * | 1974-04-19 | 1975-11-22 | ||
JPS5675942A (en) * | 1979-11-22 | 1981-06-23 | Mitsubishi Heavy Ind Ltd | Manufacturing of combustion chamber |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5154352A (en) * | 1990-05-11 | 1992-10-13 | Mtu Motoren - Und Turbinen-Union Munchen Gmbh | Propelling nozzle for an aircraft engine |
DE102006021539A1 (en) * | 2006-05-08 | 2007-11-15 | Eads Space Transportation Gmbh | Method for producing components for rocket construction |
JP2012057203A (en) * | 2010-09-07 | 2012-03-22 | Mitsubishi Heavy Ind Ltd | Rocket engine combustor and method for manufacturing hollow structure |
JP2020033994A (en) * | 2018-07-17 | 2020-03-05 | アリアングループ ゲーエムベーハーArianeGroup GmbH | Combustion chamber structure, particularly for rocket engine |
Also Published As
Publication number | Publication date |
---|---|
JPH0713500B2 (en) | 1995-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106001554B (en) | A kind of preparation method of rhenium iridium combustion chamber | |
CN109972100B (en) | Preparation method of tubular chromium target | |
EP3232042A1 (en) | Method for manufacturing combustor of rocket engine, combustor of rocket engine, and rocket engine | |
JPS591145B2 (en) | How to make a piston with an annular groove | |
JPH05134067A (en) | Manufacture of heat-receiving plate having cooling structure | |
KR100577133B1 (en) | Method of forming a rocket thrust chamber | |
US3059295A (en) | Composite mold for continuous casting | |
US3918623A (en) | Method of joining by diffusion welding a hollow part of nonferrous metal onto the inner surface of a hollow part of ferrous metal | |
JPS6158957A (en) | Manufacture of combustion chamber for pocket engine | |
US4351095A (en) | Method of making spark plugs | |
US4787228A (en) | Making molds with rectangular or square-shaped cross section | |
GB1488959A (en) | Heat exchangers primarily for combustion chambers of liquid-fuelled rockets and a method of manufacturing same | |
CA2586718C (en) | Method for producing components for rocket construction | |
Elmer et al. | Diffusion bonding and brazing of high purity copper for linear collider accelerator structures | |
JPH0619083B2 (en) | Combustion chamber | |
GB1490641A (en) | Heat exchangers for use under conditions of high thermal and mechanical loading | |
US20190270137A1 (en) | System and methods for manufacturing regeneratively cooled rocket thrust chamber nozzles | |
Wilson | Cavity construction techniques | |
JPS60181208A (en) | Manufacture of multi-shaft cylinder for plastic molding machine | |
JPH05329844A (en) | Mold | |
CA2511141A1 (en) | Cooling element, in particular for furnaces, and method for producing a cooling element | |
EP0463167A1 (en) | Method of making electrode | |
JPS6059301B2 (en) | Manufacturing method of plastic melting cylinder | |
JPS5865564A (en) | Production of composite metallic body | |
JP4494666B2 (en) | Manufacturing method of composite cylinder / column |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |