JPS61261645A - Heat insulating wall structure of thermal engine - Google Patents

Heat insulating wall structure of thermal engine

Info

Publication number
JPS61261645A
JPS61261645A JP10154585A JP10154585A JPS61261645A JP S61261645 A JPS61261645 A JP S61261645A JP 10154585 A JP10154585 A JP 10154585A JP 10154585 A JP10154585 A JP 10154585A JP S61261645 A JPS61261645 A JP S61261645A
Authority
JP
Japan
Prior art keywords
heat insulating
ceramics
piston
recess
insulating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10154585A
Other languages
Japanese (ja)
Inventor
Masaki Okada
岡田 正貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP10154585A priority Critical patent/JPS61261645A/en
Publication of JPS61261645A publication Critical patent/JPS61261645A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • F02F7/0087Ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/10Syntactic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/14Foam

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To prevent the blowing-off of combustion gas or intrusion into basic material, developing heat insulating effect, by joining the back surface of a heat insulating member made of formed ceramics onto the wall surface of a combustion chamber and forming a ceramics-coated layer onto the back surface of the heat insulating member made of foamed ceramics. CONSTITUTION:The heat insulating structure of a combustion chamber of the piston 2 of a Diesel engine is constituted so that a recess 4 is formed at the center of the upper surface 3 of the piston 2, and the fuel jetted inside said recess 4 is ignited. In this case, a heat insulating member 12 made of foamed ceramics is connected onto the upper surface 3 and the surface of the recess 4 which are exposed to combustion gas, and heat transmission to the piston 2 is suppressed. Said heat insulating member 12 is formed from the ceramics having continuous gas holes 17, and a ceramics-coated layer 15 is formed onto the surface 13 which is formed flat and closes the gas holes 17. The back surface of the heat insulating member 12 thus formed is jointed onto the upper surface 3 and the recess 4 of the piston 2 by adhesive 16.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱機関などの断熱壁構造に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to heat insulating wall structures for heat engines and the like.

[従来の技術] 従来断熱材としてセラミックスを利用することは内燃機
関の燃焼室などにもすでに数多く提案されている。しか
し、従来の技術では全体が緻密な組纜をもつセラミック
スを燃焼変の壁部に溶射するかまたは予め焼成してなる
セラミックス断熱材を燃焼室の壁部に適当な手段により
結合しているのが一般的である。このような全体がm密
なセラミックス断熱材を用いたものでは、熱伝導はほぼ
金属の3分の1ないし10分の1程度であり、断熱度だ
けについて見れば、ステンレス鋼と比べてもあまり顕著
な効果は期待できない。しかし、表面温度が高くなって
もセラミックス断熱材によって母材の温度上昇とこれに
よる強度低下を抑えることができるために、部分的にセ
ラミックス断熱材が実用に供されている。
[Prior Art] The use of ceramics as a heat insulating material has already been widely proposed for combustion chambers of internal combustion engines. However, in the conventional technology, ceramics having a dense structure as a whole is thermally sprayed on the wall of the combustion chamber, or a pre-sintered ceramic insulation material is bonded to the wall of the combustion chamber by appropriate means. is common. When using such a ceramic insulation material that is dense throughout, the heat conduction is approximately 1/3 to 1/10 of that of metal, and if we look only at the degree of insulation, it is not much better than stainless steel. No significant effects can be expected. However, even if the surface temperature rises, ceramic heat insulators can suppress the rise in temperature of the base material and the resulting decrease in strength, so ceramic heat insulators are put into practical use in some areas.

燃焼ガスに晒される壁面の断熱度を向上するためには、
気孔率を高めることが効果的である。この気孔率の高い
セラミックス断熱材の製造方法として、発泡ウレタンに
セラミックスと水の混合物を吸い込ませ、これを乾燥し
た後に焼成し、この段階で発泡ウレタンを焼失させて気
孔を有する所定形状のセラミックス材を形成する方法が
知られている。この方法によれば気孔率が95%程度の
スポンジ状の発泡セラミックス断熱材が1造可能であり
、強度上もかなり高いものが得られる。この発泡セラミ
ックス断熱材は厚さ1mmについて固体(密実)セラミ
ックス断熱材の10〜25mm(形状により異なる)に
相当する断熱度を有する。ただ、この発泡セラミックス
断熱材は独立気孔のものでなく通気性を有するので、こ
れを内燃機関のピストンなどの表面へ接合しても燃焼ガ
スが母材へ吹き抜け、断熱効果は全く期待できない。
In order to improve the insulation of walls exposed to combustion gases,
It is effective to increase the porosity. The method for manufacturing this high-porosity ceramic insulation material is to suck a mixture of ceramics and water into urethane foam, dry it, and then fire it. At this stage, the urethane foam is burned out to create a ceramic material with a predetermined shape that has pores. There are known methods of forming . According to this method, it is possible to make one sponge-like foamed ceramic insulation material with a porosity of about 95%, and it is also possible to obtain one with considerably high strength. This foamed ceramic insulation material has a degree of insulation corresponding to 10 to 25 mm (depending on the shape) of a solid (dense) ceramic insulation material for a thickness of 1 mm. However, this foamed ceramic insulation material is not closed pore and has air permeability, so even if it is bonded to the surface of an internal combustion engine piston or the like, combustion gas will blow through into the base material, and no insulation effect can be expected.

なお、断熱すべき壁面の最表層部に緻密なセラミックス
−を溶射により備えることは特開昭58−15742j
14公報などに提案されているが、これは母材との結合
1溶射層が3!Iに分けられており、王の組織構造もか
なり複雑であり、工程も複雑になる。
It should be noted that providing dense ceramics on the outermost layer of the wall surface to be insulated by thermal spraying is disclosed in Japanese Patent Application Laid-Open No. 58-15742J.
This is proposed in Publication No. 14, etc., but this requires 1 bond with the base material, 1 thermal spray layer, and 3! The organization structure of the king is quite complicated, and the process is also complicated.

[発明が解決しようとする問題点] 本発明の目的は、発泡セラミックスのもつ断熱9jJ果
を十分生かし、しかも燃焼ガスの吹ぎ抜けないし母材へ
の浸透を防止し得る、工程が@単で量産が容易な熱8!
閏などの断熱U構造を提供することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to make full use of the thermal insulation properties of foamed ceramics, to prevent combustion gases from blowing through or permeating into the base material, and to create a process that is simple. Heat 8 is easy to mass produce!
The purpose of the present invention is to provide a heat insulating U structure such as a leapfrog.

[問題を解決するための手段] 上記目的を達成するために、本発明の構成は発泡セラミ
ックス断熱材の表面を燃焼室の壁面に結合し、11’l
記発泡セラミックス断熱材の表向にセラミックスコーテ
ィング層を設けたものである。
[Means for solving the problem] In order to achieve the above object, the structure of the present invention combines the surface of the foamed ceramic heat insulating material with the wall surface of the combustion chamber, and
A ceramic coating layer is provided on the surface of the foamed ceramic heat insulating material.

[作用] 例えば内燃機関の燃焼室の壁面に用いられる発泡セラミ
ックス断熱材としては、燃焼ガスが母材へ浸透するのを
防止するために、耐熱性を有するコーテイング材でいわ
ゆる目潰し的なガス浸透防止処理によりコーティング層
が形成される。ただ単に発泡セラミックスの断面相当部
へ直接コーティングを行うだけでは、コーティング層が
かなり厚くなり、この厚さが不均一になり、信頼性に問
題が生じるなどの不具合がある。また、コーティング層
が厚くなると、その熱容量も大きくなり、結局吸入工程
における燃焼室の温度低下が抑えられ、吸入空気量(重
量)が減少する。
[Function] For example, foamed ceramic insulation materials used on the walls of combustion chambers of internal combustion engines are coated with a heat-resistant coating material that prevents gas permeation in a so-called blinding manner in order to prevent combustion gases from permeating into the base material. The treatment forms a coating layer. If the coating is simply applied directly to the cross-sectional area of the foamed ceramic, the coating layer will become quite thick, and this thickness will become uneven, causing problems such as reliability problems. Furthermore, as the coating layer becomes thicker, its heat capacity also increases, which ultimately suppresses the temperature drop in the combustion chamber during the intake process and reduces the intake air amount (weight).

本発明では発泡セラミックス断熱材を製造する段階から
コーティング層を備える面すなわち表面を予め決めてお
き、このコーティングすべき表面は殆ど気孔がない平坦
面となるようにし、かつこの表面を基準として寸法精度
が確保される。このように、部分的に緻密な平坦な表面
を備えることにより、コーテイング材の浸透が阻止され
るので、層圧が均一で燃焼ガスの浸透を防止できる*m
ないしコーティング層が形成され、熱容量が少なく断熱
度の優れた熱機関などの断熱壁構造が得られる。
In the present invention, the surface on which the coating layer is to be provided is determined in advance from the stage of manufacturing the foamed ceramic insulation material, and the surface to be coated is made to be a flat surface with almost no pores, and the dimensional accuracy is determined based on this surface. is ensured. In this way, by providing a partially dense and flat surface, the penetration of the coating material is prevented, so the bed pressure is uniform and the penetration of combustion gas can be prevented.
A coating layer is formed, and an insulating wall structure such as a heat engine with a small heat capacity and excellent insulation degree can be obtained.

[発明の実施例] 本発明を実施例に基づいて説明する。第1図はディーゼ
ル機関のピストン2の燃焼室の断熱壁構造の実施例を示
す。ピストン2の上面3の中央にはくぼみ4が設けられ
、このくぼみ4の内部で噴射された燃料が着火されるよ
うになっている。燃焼ガスに晒される上面3およびくぼ
み4の表面に本発明による発泡セラミックス断熱材12
が結合され、ピストン2への熱伝達を抑えるように構成
される。
[Examples of the Invention] The present invention will be described based on Examples. FIG. 1 shows an embodiment of a heat insulating wall structure of a combustion chamber of a piston 2 of a diesel engine. A recess 4 is provided in the center of the upper surface 3 of the piston 2, and the fuel injected inside this recess 4 is ignited. A foamed ceramic insulation material 12 according to the present invention is provided on the surfaces of the upper surface 3 and the recess 4 exposed to the combustion gas.
are coupled to each other and configured to suppress heat transfer to the piston 2.

つ ・パ           発泡セラックス断熱材12
は第2図に示すように、連続した気孔17を有するセラ
ミックスから成形され、この表面13は平坦に構成され
、この表面13にセラミックスコーティング!1115
が形成され、これにより気孔17が閉鎖される。このよ
うに構成された発泡セラミックス断熱材12はこの表面
を母材である鋳鉄またはアルミニウム合金からなるピス
トン2の上面3およびくぼみ4に接着剤16により結合
される。使用されるセラミックスとしてはジルコニアな
どが適当であり、表面13のセラミックスコーティング
層15は耐熱性1000℃以上のセラミックス系塗料(
シリカ、ジルコニアなど)で形成され、その厚さは15
〜50μm程度である。発泡セラミックス断熱材12の
全体の厚さは約2mmであり、その気孔率は70%以上
である。
・Pa Foamed ceramic insulation material 12
As shown in FIG. 2, it is molded from ceramics having continuous pores 17, this surface 13 is constructed flat, and this surface 13 is coated with ceramics! 1115
is formed, thereby closing the pores 17. The surface of the foamed ceramic heat insulating material 12 thus constructed is bonded to the upper surface 3 and recess 4 of the piston 2 made of cast iron or aluminum alloy as a base material by an adhesive 16. Zirconia or the like is suitable as the ceramic to be used, and the ceramic coating layer 15 on the surface 13 is made of ceramic paint (with a heat resistance of 1000°C or more).
silica, zirconia, etc.), and its thickness is 15
It is about ~50 μm. The entire thickness of the foamed ceramic heat insulating material 12 is about 2 mm, and its porosity is 70% or more.

次に、本発明による発泡セラミックス断熱材12の製造
方法について説明する。第1に発泡ウレタンなどの有機
質発泡材26を第3図に示すように、型22.21の内
部に装填し、この有機質発泡材26の気孔の内部へ、水
と所定のセラミックス粉末との混合物を浸潤させる。こ
の場合、第3図に示すように、ピストン2のくぼみ4に
相当する突部24を有する型21を囲む円筒形の型22
の内部において、型21の表面に発泡材を含む合成樹脂
材料を塗布し、発泡させて有機質発泡材26を形成する
Next, a method for manufacturing the foamed ceramic heat insulating material 12 according to the present invention will be explained. First, an organic foam material 26 such as urethane foam is loaded into a mold 22.21 as shown in FIG. 3, and a mixture of water and a predetermined ceramic powder is poured into the pores of the organic foam material 26. infiltrate. In this case, as shown in FIG.
Inside the mold 21 , a synthetic resin material containing a foaming material is applied to the surface of the mold 21 and foamed to form an organic foaming material 26 .

第2に、有機質発泡材26に浸潤されたセラミックスを
乾燥し、仮焼成を行って有機質発泡材26を焼失させ、
気孔17を有する発泡セラミックス断熱材]2を形成す
る。
Second, the ceramics infiltrated into the organic foam material 26 is dried and pre-fired to burn out the organic foam material 26,
A foamed ceramic heat insulating material having pores 17 ] 2 is formed.

第3に、型21に図示してない上型を押し付けて焼成さ
れた発泡セラミックスITi熱材12が型21の表面に
よく密接するように成形した後本焼成する。
Thirdly, an upper mold (not shown) is pressed against the mold 21 to form the fired foamed ceramic ITi heat material 12 in close contact with the surface of the mold 21, and then the final firing is performed.

第4に、型21から発泡セラミックス断熱材12を列順
し、第1図に示すように、ピストン2の上面3およびく
ぼみ4に発泡セラミックスIi熱材12の表面を重ね合
せ、かつ適当な接着剤をもって結合する。
Fourth, the foamed ceramic heat insulating material 12 is arranged in order from the mold 21, and as shown in FIG. bind with an agent.

第5に、型21の表面21aにより平坦に仕上げられた
発泡セラミックス断熱材12の表面13に、第2図に示
すように、セラミックスコーテイング材をコーティング
して気孔17をm鎮する緻密なセラミックスコーティン
グ層15を形成して完成する。
Fifth, as shown in FIG. 2, the surface 13 of the foamed ceramic heat insulating material 12, which has been flattened by the surface 21a of the mold 21, is coated with a ceramic coating material to form a dense ceramic coating that suppresses the pores 17. This is completed by forming layer 15.

このようにして構成されたピストン2は燃焼ガスに晒さ
れる上面3およびくぼみ4が気孔率の高い発泡セラミッ
クス断熱材12によって覆われるとともに、この発泡セ
ラミックス断熱材12の表面13に気孔17を閉鎖する
緻密なセラミックスコーティングWJ15が形成される
ので、このセラミックスコーティング層15によって発
泡セラミックス断熱材12の気孔17への燃焼ガスの吹
き抜けが阻止されるとともに、この気孔17の存在によ
ってコーティング層15からピストン2の母材への熱伝
達が抑えられる。
In the piston 2 configured in this manner, the upper surface 3 and the recess 4 exposed to combustion gas are covered with the foamed ceramic insulation material 12 with high porosity, and the pores 17 are closed on the surface 13 of the foamed ceramic insulation material 12. Since the dense ceramic coating WJ15 is formed, this ceramic coating layer 15 prevents the combustion gas from blowing into the pores 17 of the foamed ceramic heat insulating material 12, and the presence of the pores 17 prevents the piston 2 from flowing from the coating layer 15. Heat transfer to the base metal is suppressed.

本発明による発泡セラミックス断熱材12は気孔17を
有するので、緻密なセラミックス材に比べて熱容量が非
常に小さく、排気行程の終了とともに、ピストン2の燃
焼ガスに晒される壁面すなわちセラミックスコーティン
グ層15の表面温度が低下し、続く吸入行程でシリシン
ダの内部へ吸入される吸気の温度上昇が抑えられ、それ
だけ吸入効率が向上される。
Since the foamed ceramic insulation material 12 according to the present invention has pores 17, its heat capacity is extremely small compared to dense ceramic materials, and the surface of the wall surface, that is, the ceramic coating layer 15, which is exposed to the combustion gas of the piston 2 at the end of the exhaust stroke. The temperature decreases, and the temperature rise of the intake air sucked into the syricinda during the subsequent suction stroke is suppressed, and the suction efficiency is improved accordingly.

[発明の効果] 本発明は上述のように、燃焼ガスに晒される壁面に多数
の気孔を有するスポンジ状の発泡セラミックス断熱材を
結合するとともに、この表面にセラミックスコーティン
グ層を設けることにより、発泡セラミックス断熱材の気
孔を閉鎖したものであるから、発泡セラミックス断熱材
としての層厚が従来例に比べて薄く、しかも内部の気孔
がセラミックスコーティング層により閉鎖されているの
で、燃焼室の断熱度が向上される。さらに、気孔の存在
により発泡セラミックス断熱材の熱容量が小さいので、
吸気に及ぼす熱伝達量が少なく、吸気温度の上昇による
吸入効率の低下を抑えることができる。
[Effects of the Invention] As described above, the present invention combines a foamed ceramic insulation material having a large number of pores on the wall surface exposed to combustion gas, and provides a ceramic coating layer on the surface of the foamed ceramic insulation material. Since the pores of the insulation material are closed, the layer thickness of the foamed ceramic insulation material is thinner than conventional examples, and the internal pores are closed by the ceramic coating layer, improving the degree of insulation of the combustion chamber. be done. Furthermore, the heat capacity of foamed ceramic insulation is small due to the presence of pores.
The amount of heat transferred to the intake air is small, and a decrease in intake efficiency due to an increase in intake air temperature can be suppressed.

発泡セラミックス断熱材の断熱効果により、燃焼室から
の熱放散を効果的に抑え、例えば過給機へ送られる排気
温度を大幅に上昇させ、過給機での熱回収を効果的に行
うことができる。同時に、発泡セラミックス断熱材の断
熱効果により燃焼室を区画する壁部の母材温度を下げ、
その耐久性を維持することができる。また、本発明は溶
射などによる場合に比べて、その加工工程が非常に単純
であり、量産化によるコストの低減が容易である。
The insulation effect of foamed ceramic insulation material effectively suppresses heat dissipation from the combustion chamber, significantly increasing the temperature of the exhaust gas sent to the turbocharger, and effectively recovering heat in the turbocharger. can. At the same time, the heat insulating effect of the foamed ceramic insulation material lowers the temperature of the base material of the walls that partition the combustion chamber.
Its durability can be maintained. Furthermore, the processing steps of the present invention are much simpler than those using thermal spraying, and costs can be easily reduced through mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る断熱壁構造を備えたピストンの正
面断面図、第2図は同要部拡大図、第3図および第4図
は本発明に係る発泡セラミックス断熱材の製造過程を示
す正面断面図である。 2:ピストン 3:上面 12:発泡セラミックス断熱
材 13:表面 15:セラミックスコーティングWI
 26:有機實発泡材 特許出願人 いすず自動車株式会社 代理人 弁理士    山水 俊夫 第1図 第4図 第2図 第3図
Fig. 1 is a front cross-sectional view of a piston equipped with a heat insulating wall structure according to the present invention, Fig. 2 is an enlarged view of the main part, and Figs. 3 and 4 show the manufacturing process of the foamed ceramic heat insulating material according to the present invention. FIG. 2: Piston 3: Top surface 12: Foamed ceramic insulation material 13: Surface 15: Ceramic coating WI
26: Organic foam material patent applicant: Isuzu Motors Co., Ltd. Representative Patent attorney: Toshio Yamamizu Figure 1 Figure 4 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 発泡セラミックス断熱材の表面を燃焼室の壁面に結合し
、前記発泡セラミックス断熱材の表面にセラミックスコ
ーティング層を設けたことを特徴とする熱機関などの断
熱壁構造。
A heat insulating wall structure for a heat engine or the like, characterized in that a surface of a foamed ceramic heat insulating material is bonded to a wall surface of a combustion chamber, and a ceramic coating layer is provided on the surface of the foamed ceramic heat insulating material.
JP10154585A 1985-05-15 1985-05-15 Heat insulating wall structure of thermal engine Pending JPS61261645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10154585A JPS61261645A (en) 1985-05-15 1985-05-15 Heat insulating wall structure of thermal engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10154585A JPS61261645A (en) 1985-05-15 1985-05-15 Heat insulating wall structure of thermal engine

Publications (1)

Publication Number Publication Date
JPS61261645A true JPS61261645A (en) 1986-11-19

Family

ID=14303406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10154585A Pending JPS61261645A (en) 1985-05-15 1985-05-15 Heat insulating wall structure of thermal engine

Country Status (1)

Country Link
JP (1) JPS61261645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012025283A1 (en) 2012-12-21 2014-06-26 Mahle International Gmbh Piston useful for an internal combustion engine comprises a piston head comprising a piston base and a peripheral piston junk and a piston shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012025283A1 (en) 2012-12-21 2014-06-26 Mahle International Gmbh Piston useful for an internal combustion engine comprises a piston head comprising a piston base and a peripheral piston junk and a piston shaft

Similar Documents

Publication Publication Date Title
JP2718071B2 (en) Sub-chamber insulated engine
US4988290A (en) Combustion space with a ceramic lining such as in the combustion chamber of an internal combustion engine or the combustion space in a rotary kiln furnace
JPH0689713B2 (en) Structure of adiabatic combustion chamber
JPS61268850A (en) Construction of heat insulating wall in heat engine or the like
JPS60184950A (en) Internal-combustion engine having wall face of combustion chamber applied with heat insulating material
US4715178A (en) Exhaust port assembly
JPS61142320A (en) Combustion chamber of diesel engine
JPH11193721A (en) Direct injection type spark-ignition engine
JPS61261645A (en) Heat insulating wall structure of thermal engine
JPS60182341A (en) Internal-combustion engine covering combustion chamber wall surface with porous heat insulating material
JPS58162721A (en) Sub-combustion chamber for internal-combustion engine
JPH07103816B2 (en) Internal combustion engine in which the wall of the combustion chamber is covered with a porous heat insulating material
JP2906418B2 (en) Secondary combustion chamber structure
JP2013177693A (en) Heat shielding film and method for forming the same
JPS5966618A (en) Parts of combustion chamber with catalyst
JPS6158915A (en) Wall surface structure of internal-combustion chamber of internal combustion engine
JPS61178514A (en) Ceramic precombustion chamber diesel engine
JP7129759B2 (en) Thermal barrier coating layer forming method, and engine part provided with thermal barrier coating layer
JPS61175254A (en) Port liner of engine
JPS6332925Y2 (en)
JPH03261685A (en) Heat insulating high-strength ceramics and production thereof
JPH0450427A (en) Auxiliary combustion chamber type heat insulated engine
JPH0842344A (en) Structure of piston provided with auxiliary combustion chamber
JPS6255944B2 (en)
JPH0111962Y2 (en)