JPS60182341A - Internal-combustion engine covering combustion chamber wall surface with porous heat insulating material - Google Patents
Internal-combustion engine covering combustion chamber wall surface with porous heat insulating materialInfo
- Publication number
- JPS60182341A JPS60182341A JP3626584A JP3626584A JPS60182341A JP S60182341 A JPS60182341 A JP S60182341A JP 3626584 A JP3626584 A JP 3626584A JP 3626584 A JP3626584 A JP 3626584A JP S60182341 A JPS60182341 A JP S60182341A
- Authority
- JP
- Japan
- Prior art keywords
- heat insulating
- insulating material
- porous heat
- combustion chamber
- wall surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F3/00—Pistons
- F02F3/10—Pistons having surface coverings
- F02F3/12—Pistons having surface coverings on piston heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B77/00—Component parts, details or accessories, not otherwise provided for
- F02B77/11—Thermal or acoustic insulation
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、内燃機関における燃焼室の断熱構造に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat insulating structure for a combustion chamber in an internal combustion engine.
従来のエンジン等においては、熱効率を高めるため、シ
リンダーヘッド、ピストン、シリンダーライナー等にセ
ラミック等の断熱材からなる断熱層を備えた断熱エンジ
ンが提案され、試作されている。In conventional engines, in order to increase thermal efficiency, an adiabatic engine has been proposed and prototyped, in which the cylinder head, piston, cylinder liner, etc. are provided with a heat insulating layer made of a heat insulating material such as ceramic.
しかしながら、従来の断熱エンジンの考えは、膨張行程
において燃焼ガスの熱が逃げるの全阻止することを主眼
としており、従って可成厚い断熱層金膜けているため、
断熱層の熱容量が大となってくる。そして断熱層の熱容
量が太きいと、膨張行程において断熱層に蓄熱された熱
が、吸気行程においてシリンダー内に吸入された空気を
加熱し、その熱膨張のため吸入空気が減少するのでエン
ジンの体積効率が低下し、燃費が悪化するという問題が
ある。However, the idea behind conventional adiabatic engines is to completely prevent the heat of the combustion gas from escaping during the expansion stroke, and therefore, a fairly thick insulating layer of gold film is used.
The heat capacity of the insulation layer increases. If the heat capacity of the heat insulating layer is large, the heat stored in the heat insulating layer during the expansion stroke will heat the air sucked into the cylinder during the intake stroke, and due to the thermal expansion, the intake air will decrease, resulting in a reduction in engine volume. There is a problem that efficiency decreases and fuel consumption worsens.
本発明は、前記従来技術における問題点を解決し、断熱
効果を維持しながら体積効率の優れた内燃機関を提供す
ることを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to solve the problems in the prior art and provide an internal combustion engine that has excellent volumetric efficiency while maintaining a heat insulating effect.
本発明は、内燃機関のピストン、ヘッド下面、ライナー
等の燃焼室壁面を、表面に耐熱性金属フィルム層を設け
た気孔率80%以上の多孔質断熱材で被覆した内燃機関
である。The present invention is an internal combustion engine in which the walls of the combustion chamber such as the piston, the lower surface of the head, and the liner are covered with a porous heat insulating material having a porosity of 80% or more and having a heat-resistant metal film layer on the surface.
以下本発明の詳細な説明する。The present invention will be explained in detail below.
本発明者等は、前記従来技術における問題点全解決する
ため鋭意研究を行って来た。即ち、気孔率の大きい多孔
質断熱材は断熱性が大きく、熱容量が小さいことに着目
して気孔率の大きい多孔質断熱材で内燃機関の燃焼室壁
面を被穆することを試みたが、気孔率の大きい多孔η断
熱材は、通常連続微細孔構造を有しているため、燃焼行
程で生成する高温ガスが微細孔中に保持され、次の吸気
行程において該微細孔中の高温ガスが吸気中に混入され
吸気の温度を高めるため体積効率が悪化し、また燃費も
悪化することがわかった。そこで微細孔への高温ガスの
出入りを防止するため、気孔率の太ぎい断熱材の表面に
薄い金属フィルムの層を設けた所、断熱性が向上すると
共に、体積効率の優れた内燃機関を得ることが出来るこ
とを見出だした。The inventors of the present invention have conducted extensive research in order to solve all of the problems in the prior art. In other words, focusing on the fact that porous insulation materials with high porosity have high insulation properties and low heat capacity, attempts were made to cover the walls of combustion chambers of internal combustion engines with porous insulation materials with high porosity. Since porous η insulation materials with a high ratio usually have a continuous micropore structure, high-temperature gas generated during the combustion process is retained in the micropores, and in the next intake stroke, the high-temperature gas in the micropores is transferred to the intake air. It was found that the volumetric efficiency deteriorates as the intake air temperature increases, and fuel efficiency also deteriorates. Therefore, in order to prevent hot gas from entering and exiting the micropores, a thin metal film layer is provided on the surface of the heat insulating material with a large porosity, which not only improves the heat insulation but also provides an internal combustion engine with excellent volumetric efficiency. I discovered that it is possible.
以下図面に基いて本発明の詳細な説明する。The present invention will be described in detail below based on the drawings.
第1図は本発明で使用する表面に耐熱性金属フィルム層
を設けた多孔質断熱材の断面図全示し、付号1は表面に
金属フィルム層を設けた断熱材、2は多孔質断熱材、3
は金属フィルム層を示す。Figure 1 shows a complete cross-sectional view of a porous heat insulating material with a heat-resistant metal film layer on its surface used in the present invention, number 1 is a heat insulating material with a metal film layer on its surface, and number 2 is a porous heat insulating material. ,3
indicates a metal film layer.
第2図は本発明の断熱材で上面を被覆したピストンの断
面図全示し、符号4はピストン、2は断熱材、6は金属
フィルム層、5は断熱材を母材に接合するために断熱材
の裏面に設けたメタライジング層を示す。FIG. 2 is a complete cross-sectional view of a piston whose upper surface is covered with the heat insulating material of the present invention, where 4 is the piston, 2 is the heat insulating material, 6 is the metal film layer, and 5 is the heat insulating material for joining the heat insulating material to the base material. This shows the metallizing layer provided on the back side of the material.
本発明で用い5る多孔質断熱材の一例としては微細孔を
有するセラミックがある。An example of the porous heat insulating material used in the present invention is ceramic having micropores.
断熱材1の気孔率は80%以上のものが好ましい。その
理由について説明すると、第3図は断熱材の気孔率と断
熱度の関係を示す図であるが、読図かられかるように、
気孔率80%以上になると断熱度が急激に犬となるから
である金属フィルム層の厚さは出来るだけ薄いものを用
いるのがよく、o、+ gut以下のものが好筐しい。The porosity of the heat insulating material 1 is preferably 80% or more. To explain the reason for this, Fig. 3 is a diagram showing the relationship between the porosity of the heat insulating material and the degree of heat insulation.
When the porosity becomes 80% or more, the degree of insulation rapidly decreases. Therefore, the thickness of the metal film layer should be as thin as possible, preferably less than o, +gut.
断熱材1の厚さは製作の容易性ならびにエンジンの体積
効率を考慮した場合、0.2〜3111の厚さのものが
好ましい。その理由について述べると、第4図は気孔率
80%の断熱材の厚さと断熱度および体積効率の関係を
示す図であるが、断熱度の観点からは断熱材の厚さは厚
いものが好ましいが体積効率からみた場合3B以下の厚
さのものが好ましい。The thickness of the heat insulating material 1 is preferably 0.2 to 3111 mm in consideration of ease of manufacture and volumetric efficiency of the engine. To explain the reason for this, Figure 4 is a diagram showing the relationship between the thickness of an insulating material with a porosity of 80%, the degree of insulation, and the volumetric efficiency, and from the perspective of the degree of insulation, it is preferable that the thickness of the insulating material be thicker. When viewed from the volumetric efficiency, a thickness of 3B or less is preferable.
また多孔質断熱材2の孔間隔は0.11111以下のも
のが好ましい。その理由について述べると、第5図は厚
さ0.7mの断熱材について隔壁の厚さく孔間隔)と体
積効率および断熱度の関係を示すものであるが、第5図
に示されるように隔壁の厚さが0.1鵡以下の場合、体
積効率、断熱度共に優れているからである。Further, the pore spacing of the porous heat insulating material 2 is preferably 0.11111 or less. To explain the reason for this, Figure 5 shows the relationship between partition wall thickness (hole spacing), volumetric efficiency, and degree of insulation for a 0.7 m thick insulation material. This is because when the thickness is 0.1 mm or less, both volumetric efficiency and heat insulation are excellent.
金属フィルム層は、耐熱性金属例えばチタンまたはニッ
ケルを多孔質断熱材の表面に蒸着することにより、或い
は該金属のフィルを張り合わせることにより製造するこ
とができる。即ち、断熱材表面にメタライズ加工を行っ
た後、更にニッケル等の耐熱金属のメッキを施すとか、
あるいは、セラばツク表面にメタライズ加工を行った後
耐熱性金属のフィルムを銀ろ5付げにより張り合わせる
等の方法で金属フィルム層を形成することができる。つ
ぎに、断熱材を母材上に接合する方法であるが、多孔質
断熱材の裏面にメタライズ加工を行った後pciをろう
付し。The metal film layer can be produced by depositing a heat-resistant metal such as titanium or nickel on the surface of the porous insulation material or by laminating a film of the metal. In other words, after metallizing the surface of the insulation material, plating with a heat-resistant metal such as nickel, etc.
Alternatively, a metal film layer can be formed by metallizing the surface of the ceramic bag and then laminating a film of a heat-resistant metal using silver soldering. Next, the method of joining the heat insulating material onto the base material is to metallize the back side of the porous heat insulating material and then braze the PCI.
これを鋳込んで部品を形成してもよ(、或いは前記FC
材層にボルト穴を設は裏面よりボルトで止める等任意の
方法で接合することができる。This may be cast to form parts (or the FC
They can be joined by any method such as providing bolt holes in the material layer or bolting from the back side.
以上連続微細孔を有する断熱材について説明したが、粒
径10μm前後の窒化ケイ素15容量部と平均直径10
0μm肉厚1〜2μの中空炭素球85容量部を混合して
所定の形に成形し常圧焼結により製造した断熱材の表面
に耐熱性金属フィルムを設けたものを用いてもよい。こ
の方法により製造される断熱材は多数の独立微細孔有す
るものではあるが製造条件により表面に微細孔が露出し
ていることがあり、この場合この孔に燃焼行程における
高温ガスが保持されており、吸気行程において吸気中に
混入することにより体積効果を悪化するからである。In the above description of a heat insulating material having continuous micropores, 15 parts by volume of silicon nitride with a particle size of around 10 μm and an average diameter of 10 μm are used.
A heat-resistant metal film may be used on the surface of a heat insulating material produced by mixing 85 volume parts of hollow carbon spheres with a wall thickness of 0 μm and 1 to 2 μm, molding the mixture into a predetermined shape, and performing pressureless sintering. The insulation manufactured by this method has many independent micropores, but depending on the manufacturing conditions, the micropores may be exposed on the surface, and in this case, the high temperature gas during the combustion process is retained in these pores. This is because the volume effect is worsened by mixing into the intake air during the intake stroke.
本発明において、金属フィルム層を表面に有する多数の
微細孔を有する断熱材で、燃焼室壁面即ちピストンの上
面、ヘッドの下面、ライチ−の上部或いはパルプの上面
等を被覆すればよい。このようにすることにより、断熱
材層の断熱効果により燃焼時の熱が逃げることな(、が
っ、微細孔の断熱効果により断熱材表面上の金属フィル
ム面及び七ラミックの上面に蓄熱されるに過ぎず、かつ
微細孔への高温ガスの出入が防止できるので、吸気の加
熱を減少でき、従って体積効果を向上させることが可能
となる。In the present invention, the wall surface of the combustion chamber, that is, the upper surface of the piston, the lower surface of the head, the upper surface of the lychee or the upper surface of the pulp, etc. may be covered with a heat insulating material having a large number of micropores and having a metal film layer on the surface. By doing this, the heat during combustion will not escape due to the heat insulating effect of the heat insulating material layer. Moreover, since high-temperature gas can be prevented from entering and exiting the micropores, heating of the intake air can be reduced, and the volumetric effect can therefore be improved.
第1図および第2図は本発明の一実施の態様を説明する
だめの図面であり、第6図は断熱材の気孔率と断熱度の
関係を示す図、第4図は断熱材の厚さと体積効率および
断熱度との関係を示す図、第5図は断熱材の隔壁の厚さ
と体積効率および断熱度との関係を示す図である。Figures 1 and 2 are preliminary drawings for explaining one embodiment of the present invention, Figure 6 is a diagram showing the relationship between the porosity of the heat insulating material and the degree of heat insulation, and Figure 4 is the thickness of the heat insulating material. FIG. 5 is a diagram showing the relationship between the thickness of the partition wall of the heat insulating material, the volumetric efficiency, and the degree of heat insulation.
Claims (1)
焼室壁面を、表面に耐熱性金属フィルム層を設けた気孔
率80%以上の多孔質断熱材で被覆した内燃機関。t An internal combustion engine in which the piston, lower head surface, liner, and other combustion chamber walls are covered with a porous heat insulating material having a porosity of 80% or more and having a heat-resistant metal film layer on the surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3626584A JPS60182341A (en) | 1984-02-29 | 1984-02-29 | Internal-combustion engine covering combustion chamber wall surface with porous heat insulating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3626584A JPS60182341A (en) | 1984-02-29 | 1984-02-29 | Internal-combustion engine covering combustion chamber wall surface with porous heat insulating material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60182341A true JPS60182341A (en) | 1985-09-17 |
Family
ID=12464935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3626584A Pending JPS60182341A (en) | 1984-02-29 | 1984-02-29 | Internal-combustion engine covering combustion chamber wall surface with porous heat insulating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60182341A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2596104A1 (en) * | 1986-03-22 | 1987-09-25 | Kloeckner Humboldt Deutz Ag | THERMALLY INSULATING PISTON IN PARTICULAR FOR A SELF-IGNITION ENGINE |
JPS62240457A (en) * | 1986-04-10 | 1987-10-21 | Toyota Motor Corp | Diesel engine piston |
JPS62240454A (en) * | 1986-04-10 | 1987-10-21 | Toyota Motor Corp | Diesel engine piston |
JPS62240456A (en) * | 1986-04-10 | 1987-10-21 | Toyota Motor Corp | Diesel engine piston |
JPS62240459A (en) * | 1986-04-11 | 1987-10-21 | Toyota Motor Corp | Diesel engine piston |
JPS62243948A (en) * | 1986-04-15 | 1987-10-24 | Toyota Motor Corp | Piston for diesel engine |
EP0609795A1 (en) * | 1993-02-04 | 1994-08-10 | Mtu Motoren- Und Turbinen-Union MàNchen Gmbh | Ceramic insulation layer on metallic piece parts and method of manufacture |
WO2016103856A1 (en) * | 2014-12-25 | 2016-06-30 | 日立オートモティブシステムズ株式会社 | Piston for internal combustion engine, and process and device for producing said piston |
US10578049B2 (en) | 2017-04-28 | 2020-03-03 | Mahle International Gmbh | Thermal barrier coating for engine combustion component |
-
1984
- 1984-02-29 JP JP3626584A patent/JPS60182341A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2596104A1 (en) * | 1986-03-22 | 1987-09-25 | Kloeckner Humboldt Deutz Ag | THERMALLY INSULATING PISTON IN PARTICULAR FOR A SELF-IGNITION ENGINE |
JPS62240457A (en) * | 1986-04-10 | 1987-10-21 | Toyota Motor Corp | Diesel engine piston |
JPS62240454A (en) * | 1986-04-10 | 1987-10-21 | Toyota Motor Corp | Diesel engine piston |
JPS62240456A (en) * | 1986-04-10 | 1987-10-21 | Toyota Motor Corp | Diesel engine piston |
JPS62240459A (en) * | 1986-04-11 | 1987-10-21 | Toyota Motor Corp | Diesel engine piston |
JPS62243948A (en) * | 1986-04-15 | 1987-10-24 | Toyota Motor Corp | Piston for diesel engine |
EP0609795A1 (en) * | 1993-02-04 | 1994-08-10 | Mtu Motoren- Und Turbinen-Union MàNchen Gmbh | Ceramic insulation layer on metallic piece parts and method of manufacture |
WO2016103856A1 (en) * | 2014-12-25 | 2016-06-30 | 日立オートモティブシステムズ株式会社 | Piston for internal combustion engine, and process and device for producing said piston |
JPWO2016103856A1 (en) * | 2014-12-25 | 2017-06-08 | 日立オートモティブシステムズ株式会社 | Piston for internal combustion engine, and method and apparatus for manufacturing the piston |
CN107110061A (en) * | 2014-12-25 | 2017-08-29 | 日立汽车系统株式会社 | The manufacture method and manufacture device of piston for IC engine and the piston |
US10578049B2 (en) | 2017-04-28 | 2020-03-03 | Mahle International Gmbh | Thermal barrier coating for engine combustion component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10634091B2 (en) | Multi-layered piston crown for opposed-piston engines | |
US9683480B2 (en) | Spark ignition type internal combustion engine | |
US8202588B2 (en) | Hybrid ceramic structure with internal cooling arrangements | |
EP2436898A1 (en) | Heat-insulting structure | |
JPS60184950A (en) | Internal-combustion engine having wall face of combustion chamber applied with heat insulating material | |
JPS60182341A (en) | Internal-combustion engine covering combustion chamber wall surface with porous heat insulating material | |
CN105986921B (en) | Piston for internal combustion engine, the internal combustion engine including it and its manufacturing method | |
US10851711B2 (en) | Thermal barrier coating with temperature-following layer | |
JPH07103816B2 (en) | Internal combustion engine in which the wall of the combustion chamber is covered with a porous heat insulating material | |
JPS61268850A (en) | Construction of heat insulating wall in heat engine or the like | |
JPS5925058A (en) | Cylinder for internal combustion engine | |
JPH03145516A (en) | Structure of engine with heat insulated sub-chamber | |
JP2014105619A (en) | Piston | |
JP2018053879A (en) | Piston for internal combustion engine and method for manufacturing the same | |
US20190107045A1 (en) | Multi-layer thermal barrier | |
JPS60184951A (en) | Internal-combustion engine having wall face of combustion chamber applied with heat insulating layer | |
JP2964102B2 (en) | Adiabatic piston and its manufacturing method | |
JP2004044468A (en) | Engine combustion chamber structure | |
US10578049B2 (en) | Thermal barrier coating for engine combustion component | |
JP2870069B2 (en) | Insulated engine structure | |
JPS61261645A (en) | Heat insulating wall structure of thermal engine | |
JP2019124189A (en) | Compression ignition type engine | |
JPS63272951A (en) | Manufacture of heat insulation material | |
JPS61215415A (en) | Exhaust manifold of internal-combustion engine | |
JP2709738B2 (en) | Adiabatic piston and method of manufacturing the same |