JPS61218073A - Fuel cell system - Google Patents
Fuel cell systemInfo
- Publication number
- JPS61218073A JPS61218073A JP60059993A JP5999385A JPS61218073A JP S61218073 A JPS61218073 A JP S61218073A JP 60059993 A JP60059993 A JP 60059993A JP 5999385 A JP5999385 A JP 5999385A JP S61218073 A JPS61218073 A JP S61218073A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- hydrogen
- fuel cell
- line
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は燃料電池装置に係り、特に電池排ガスに含まれ
る水素の再利用に好適な同装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a fuel cell device, and particularly to the same device suitable for reusing hydrogen contained in battery exhaust gas.
(従来の技術)
従来のこの種の燃料電池、特にリン酸型燃料電池装置に
おいては、一般に第3図に示すように、燃料電池8への
発電用H2ガスとしては改質器1で製造されたものが使
用されている。すなわち、該改質器1は、内側に改質触
媒14を充填した反応管13、外側に燃焼触媒層15を
設けた構成となっており、該燃焼触媒層15で燃料4を
燃焼させることにより、反応管13を加熱するようにな
っている。このようにして加熱状態とされた反応管13
に原料ガス、例えばの天然ガス(主成分はメタン)とス
チームをそれぞれ供給ライン2および3を経て供給すれ
ば、H2とcoの混合ガスからなる改質ガス5が生成さ
れる。この改質ガス5は次いでシフトコンバータ6に通
され、ここで含有COガスはH2ガスに転換され、得ら
れたH2リッチガスは水素供給ライン7を経て燃料電池
8に供給される。かくして供給されたH2ガスの一部は
発電用に消費されるが、残部は燃料電池8外に排気され
てオフガスとなる。通常、上記水素リッチガスのH2濃
度は約80%であるが、オフガスのそれは約30%であ
る。このようなオフガスは、なお十分な可燃性を有して
いるので、従来から水素回収ライン9を経て改質器1に
送られ燃料4として再利用されている。しかし、燃料電
池8の発電用原料としては利用する試みはなされていな
い。(Prior Art) In conventional fuel cells of this type, particularly in phosphoric acid fuel cell devices, as shown in FIG. are used. That is, the reformer 1 has a structure in which a reaction tube 13 filled with a reforming catalyst 14 is provided on the inside and a combustion catalyst layer 15 is provided on the outside.By burning the fuel 4 in the combustion catalyst layer 15, , the reaction tube 13 is heated. The reaction tube 13 heated in this way
When raw material gases, such as natural gas (mainly methane) and steam, are supplied through supply lines 2 and 3, respectively, a reformed gas 5 consisting of a mixed gas of H2 and co is produced. This reformed gas 5 is then passed through a shift converter 6, where the CO gas it contains is converted to H2 gas, and the resulting H2 rich gas is supplied to the fuel cell 8 via the hydrogen supply line 7. A portion of the H2 gas thus supplied is consumed for power generation, but the remainder is exhausted outside the fuel cell 8 and becomes off-gas. Usually, the H2 concentration of the hydrogen-rich gas is about 80%, while that of the off-gas is about 30%. Since such off-gas still has sufficient flammability, it has conventionally been sent to the reformer 1 via the hydrogen recovery line 9 and reused as the fuel 4. However, no attempt has been made to use it as a raw material for power generation in the fuel cell 8.
また、従来の反応管13の加熱においては、前述のよう
な接触燃焼方式が採用されているが、これは他のバーナ
方式等に比べて燃焼空間を著しく小さくできる上、燃焼
反応性が極端によいので、空燃比や燃料発熱量の多少を
問わず完全燃焼が可能となり、かつ低騒音、低NOxの
下で無公害燃焼が可能であるためである。しかしながら
、この燃焼方式によるときは、触媒表面で着火燃焼を開
始する際に燃料に応じた一定の温度レベルを保持する必
要があり、そのためスタートアップバーナや起動用の熱
風炉等を設ける必要があり、装置の複雑化が避けられな
いという欠点がある。Furthermore, in the conventional heating of the reaction tube 13, the catalytic combustion method described above has been adopted, but this method allows the combustion space to be significantly smaller than other burner methods, and the combustion reactivity is extremely low. This is because complete combustion is possible regardless of the air-fuel ratio or fuel calorific value, and pollution-free combustion is possible with low noise and low NOx. However, when using this combustion method, it is necessary to maintain a constant temperature level depending on the fuel when ignition combustion starts on the catalyst surface, and therefore it is necessary to provide a startup burner or a hot air stove for startup. The disadvantage is that the device becomes unavoidably complicated.
(発明が解決しようとする問題点)
本発明の目的は、上記した従来技術の欠点をなくし、燃
料電池から排出されるオフガス中の水素を燃料電池の発
電用原料として利用できる燃料電池装置を提供すること
にある。(Problems to be Solved by the Invention) An object of the present invention is to eliminate the drawbacks of the prior art described above and provide a fuel cell device that can utilize hydrogen in off-gas discharged from a fuel cell as a raw material for power generation in the fuel cell. It's about doing.
(問題点を解決するための手段)
上記の目的を達成するため、本発明は、燃料電池用の水
素ガス供給源として接触燃焼方式による加熱下に改質反
応を行う改質器と、電池に使用後の水素含有オフガスを
接触燃焼用の燃料として回収するラインとを備えた燃料
電池装置において、上記のオフガス回収ラインに、水素
ガスの分離回収器と、回収水素ガスを昇圧下に貯めるレ
シーバタンクと、該レシーバタンクの後流から分岐した
のち燃料電池の入口側水素供給ラインに連結される回収
水素循環ラインと、該レシーバタンク内の圧力が所定値
以上になつたときに、前記回収水素循環ラインに余剰の
回収水素を放出する制御手段を設けたことを特徴とする
。(Means for Solving the Problems) In order to achieve the above object, the present invention provides a reformer that performs a reforming reaction under heating using a catalytic combustion method as a hydrogen gas supply source for a fuel cell, and a hydrogen gas supply source for a fuel cell. In a fuel cell device equipped with a line for recovering used hydrogen-containing off-gas as fuel for catalytic combustion, the off-gas recovery line is provided with a hydrogen gas separation and recovery device and a receiver tank for storing the recovered hydrogen gas under increased pressure. a recovered hydrogen circulation line that branches from the downstream side of the receiver tank and is connected to the hydrogen supply line on the inlet side of the fuel cell; It is characterized by providing a control means for releasing excess recovered hydrogen into the line.
上記の水素ガス分離回収器は、公知のものを適用するこ
とができるが、特にモレキュラシーブによる物理的後、
膜着現象を利用したプレッシャ・スイング(PSA)方
式のものが好適である。Any known hydrogen gas separation and recovery device can be applied to the above-mentioned hydrogen gas separation and recovery device.
A pressure swing (PSA) method that utilizes a film adhesion phenomenon is preferred.
本発明において、レシーバタンクの後流側の燃料用水素
回収ラインに、水素を燃焼触媒との接触下で自然着火温
度まで昇温可能とする昇温器を設けることにより、燃焼
触媒層の起動を容易にすることができる。In the present invention, the activation of the combustion catalyst layer is achieved by providing a heating device in the fuel hydrogen recovery line on the downstream side of the receiver tank that can raise the temperature of hydrogen to the auto-ignition temperature under contact with the combustion catalyst. It can be easily done.
また、回収水素循環ラインが連結された水素供給ライン
に、流量調節計を設け、該流量が所定値になるように、
改質器用原料ガスの供給ラインに設けた調節弁を制御し
、回収水素の循環量に応じて原料ガス量を調節し、その
節減を図ることができる。In addition, a flow rate controller is installed in the hydrogen supply line to which the recovered hydrogen circulation line is connected, and the flow rate is adjusted to a predetermined value.
By controlling the control valve provided in the supply line of raw material gas for the reformer, the amount of raw material gas can be adjusted according to the circulating amount of recovered hydrogen, and the amount of raw material gas can be reduced.
(実施例)
以下、図面に示す実施例により本発明をさらに詳しく説
明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples shown in the drawings.
第1図は、本発明の実施例に係る燃料電池装置の系統図
である。この装置は、改質器1、シフトコンバータ6お
よび燃料電池8からなる構成は第3図と同じであるが、
オフガス回収ライン9に前記PSA方式の水素ガス分離
回収器20、コンプレッサ21およびレシーバタンク2
2を順次設け、該レシーバタンク22の後流から燃料電
池8の入口側水素供給ライン7に分岐した回収水素循環
ライン24と調節弁28を設け、レシーバタンク22の
圧力によって調節弁28を制御できるようにした点が異
なる。なお、図中、23はレシーバタンク22の後流側
燃料用水素回収ライン25に設けられた、水素を燃焼触
媒層15との接触下に自然着火温度まで昇温する電熱ヒ
ータ、26は水素供給ライン7の流量を測定し、該流量
が一定になるように、改質器用原料ガスの供給ライン2
の調節弁27を調整する流量調節計、29はレシーバタ
ンク22の圧力が一定値を保持するように回収水素循環
ライン24の調節弁28を調節する圧力調節計である。FIG. 1 is a system diagram of a fuel cell device according to an embodiment of the present invention. This device has the same configuration as shown in FIG. 3, consisting of a reformer 1, a shift converter 6, and a fuel cell 8.
The off-gas recovery line 9 is equipped with the PSA type hydrogen gas separation and recovery device 20, a compressor 21, and a receiver tank 2.
2 are provided in sequence, and a recovered hydrogen circulation line 24 branched from the downstream side of the receiver tank 22 to the hydrogen supply line 7 on the inlet side of the fuel cell 8 and a control valve 28 are provided, and the control valve 28 can be controlled by the pressure of the receiver tank 22. The difference is that it is done like this. In addition, in the figure, 23 is an electric heater installed in the hydrogen recovery line 25 for fuel on the downstream side of the receiver tank 22, and raises the temperature of hydrogen to the spontaneous ignition temperature in contact with the combustion catalyst layer 15, and 26 is a hydrogen supply The flow rate of the line 7 is measured, and the supply line 2 of the raw material gas for the reformer is adjusted so that the flow rate is constant.
29 is a pressure regulator that adjusts the control valve 28 of the recovered hydrogen circulation line 24 so that the pressure in the receiver tank 22 is maintained at a constant value.
このような構成の装置において、燃料電池8からは残存
H2を大略30%含むオフガスが排出されるが、このガ
スはオフガス回収ライン9を経て先ず水素ガス分離回収
器20に送られる。ここでH2ガスが回収され、このガ
スは次いでコンプレッサ21で昇圧されたのちレシーバ
タンク22に貯蔵される。貯蔵されたH2ガスは、適時
抜き出されて電池発電用の原料ガスまたは改質器1の加
熱用燃料として再利用されるが、先ず定常運転時には、
一般に燃料用水素回収ライン25に設けられたパルプ3
0を閉とした上、レシーバタンク22の圧力調節計29
と調節弁28の作動下にレシーバタンク22内の圧力が
一定となるよ゛うに抜き出される0通常、レシーバタン
ク22は、満腹の状態にあり、この時の圧力以上になる
と調節弁28が作動して回収水素循環ライン24から回
収水素が放出される。この場合、H2ガスの抜き出し量
が変動することになるが、これに見合って改質器1から
のH2ガスの供給量も変化させることにより、改質器1
の原料を節約することができる。In an apparatus having such a configuration, off-gas containing approximately 30% residual H2 is discharged from the fuel cell 8, and this gas is first sent to the hydrogen gas separation and recovery device 20 via the off-gas recovery line 9. Here, H2 gas is recovered, and this gas is then pressurized by a compressor 21 and then stored in a receiver tank 22. The stored H2 gas is extracted in a timely manner and reused as raw material gas for battery power generation or heating fuel for the reformer 1. First, during steady operation,
Pulp 3 generally installed in hydrogen recovery line 25 for fuel
0 is closed, and the pressure regulator 29 of the receiver tank 22 is closed.
Under the operation of the control valve 28, the pressure inside the receiver tank 22 is drawn out so as to be constant. Normally, the receiver tank 22 is in a full state, and when the pressure exceeds this, the control valve 28 is activated. The recovered hydrogen is then released from the recovered hydrogen circulation line 24. In this case, the amount of H2 gas extracted will vary, but by changing the amount of H2 gas supplied from the reformer 1 accordingly,
raw materials can be saved.
このようなH2ガス供給量の制御は、水素供給ライン7
の流量調節計26と原料(メタン)の調節弁27からな
る一連の制御系を基に供給ライン2から改質器1に送ら
れる原料ガス(メタン)の流量を調節することにより行
われる。Such control of the H2 gas supply amount is performed using the hydrogen supply line 7.
This is done by adjusting the flow rate of the raw material gas (methane) sent from the supply line 2 to the reformer 1 based on a series of control systems consisting of a flow rate controller 26 and a raw material (methane) regulating valve 27.
一方、改質器lのスタートアップ時には、パルプ30を
開にして燃料用水素回収ライン25へH2ガスを案内す
るとともに、これを電熱ヒータ23で接触着火温度まで
加熱し、しかる後に改質器1の燃焼触媒層15へ供給す
る。この場合、H2ガスの接触着火温度は第2図(Pd
系燃焼触媒存在下での各種燃料の着火温度比較図)から
も明らかなように高々50℃と極めて低いので、電熱ヒ
ータ23による加熱温度は精々50〜100℃程度の低
温でよい、このような温度に昇温されたH2ガスは燃焼
触媒層15に導入されると直ちに着火して十分な温度に
達し、通常の燃料ガス4への切り替えが容易になる。な
お、上記スタートアップ時に消費されたH2ガスは、定
常運転時に水素ガス分層回収器20で補充される。On the other hand, when starting up the reformer 1, the pulp 30 is opened to guide H2 gas to the fuel hydrogen recovery line 25, and the electric heater 23 heats it to the contact ignition temperature. It is supplied to the combustion catalyst layer 15. In this case, the contact ignition temperature of H2 gas is shown in Figure 2 (Pd
As is clear from the comparison diagram of the ignition temperature of various fuels in the presence of a system combustion catalyst, it is extremely low at most 50°C, so the heating temperature by the electric heater 23 can be as low as 50-100°C. When the heated H2 gas is introduced into the combustion catalyst layer 15, it immediately ignites and reaches a sufficient temperature, making it easy to switch to the normal fuel gas 4. Note that the H2 gas consumed at the time of startup is replenished by the hydrogen gas separation collector 20 during steady operation.
水素ガス分離回収器20として、モレキエラシーブ型の
ものを採用すれば、二基切替式のものとなるので脈動を
発生するが、レシーバタンク22はこれを沈静化するバ
ラツアータンクとしての役目も合わせ有する。If a Molecule Sieve type is adopted as the hydrogen gas separation and recovery device 20, it will be a two-unit switching type, which will generate pulsation, but the receiver tank 22 also has the role of a pulsation tank to calm this down. .
(発明の効果)
本発明によれば、燃料電池のオフガス回収ラインに、H
2ガスの分離回収器と回収H2ガスを昇圧下に貯留する
レシーバタンクとを設け、レシーバタンクに貯められた
回収H2ガスを定常運転時には燃料電池の発電用原料ガ
スとして、またスタートアップ時には改質器の加熱開始
用燃料として再利用することが可能となり、これにより
改質器発生H2ガスの低減、運転経費の低減、起動設備
の簡素化等の効果が得られる。(Effects of the Invention) According to the present invention, H
A two-gas separation/recovery device and a receiver tank that stores the recovered H2 gas under increased pressure are installed, and the recovered H2 gas stored in the receiver tank is used as the raw material gas for power generation of the fuel cell during steady operation, and as a reformer during startup. This makes it possible to reuse the fuel as a fuel for starting heating, thereby achieving effects such as reduction in H2 gas generated by the reformer, reduction in operating costs, and simplification of startup equipment.
第1図は、本発明の実施例に係る燃料電池装置の系統図
、第2図は、各種燃料の接触着火温度を比較して示す図
、第3図は、従来の燃料電池装置の系統図である。
1・・・改質器、2・・・原料ガス供給ライン、3・・
・スチーム供給ライン、4・・・燃料、5・・・改質ガ
ス、6・・・シフトコンバータ、7・・・水素供給ライ
ン、8・・・燃料電池、9・・・水素回収ライン、13
・・・反応管、14−・・改質触媒、15・・・燃焼触
媒層、20・・・水素ガス分離回収器、21・・・コン
プレッサ、22・・・レシーバタンク、23・・・電熱
ヒータ、24・・・回収水im環ライン、25・・・燃
料用水素回収ライン、26・・・流量調節計、27.2
8・・・調節弁、29・・・圧力調節計、30・・・パ
ルプ。
代理人 弁理士 川 北 武 長
第1図
第3図Fig. 1 is a system diagram of a fuel cell device according to an embodiment of the present invention, Fig. 2 is a diagram showing a comparison of contact ignition temperatures of various fuels, and Fig. 3 is a system diagram of a conventional fuel cell device. It is. 1... Reformer, 2... Raw material gas supply line, 3...
- Steam supply line, 4... Fuel, 5... Reformed gas, 6... Shift converter, 7... Hydrogen supply line, 8... Fuel cell, 9... Hydrogen recovery line, 13
...Reaction tube, 14--Reforming catalyst, 15--Combustion catalyst layer, 20--Hydrogen gas separation and recovery device, 21--Compressor, 22--Receiver tank, 23--Electric heat Heater, 24...Recovered water im ring line, 25...Hydrogen recovery line for fuel, 26...Flow rate controller, 27.2
8... Control valve, 29... Pressure regulator, 30... Pulp. Agent Patent Attorney Takenaga Kawakita Figure 1 Figure 3
Claims (2)
による加熱下に改質反応を行う改質器と、電池に使用後
の水素含有オフガスを接触燃焼用の燃料として回収する
ラインとを備えた燃料電池装置において、上記のオフガ
ス回収ラインに、水素ガスの分離回収器と、回収水素ガ
スを昇圧下に貯留するレシーバタンクと、該レシーバタ
ンクの後流から分岐したのち燃料電池の入口側水素供給
ラインに連結される回収水素循環ラインと、該レシーバ
タンク内の圧力が所定値以上になったときに、前記回収
水素循環ラインに余剰の回収水素を放出する制御手段を
設けたことを特徴とする燃料電池装置。(1) Equipped with a reformer that performs a reforming reaction under heating using a catalytic combustion method as a hydrogen gas supply source for fuel cells, and a line that recovers hydrogen-containing off-gas after use in the battery as fuel for catalytic combustion. In the above-mentioned off-gas recovery line, the above-mentioned off-gas recovery line includes a hydrogen gas separation and recovery device, a receiver tank that stores the recovered hydrogen gas under increased pressure, and after branching from the downstream side of the receiver tank, the hydrogen gas is connected to the inlet side of the fuel cell. A recovered hydrogen circulation line connected to a supply line, and a control means for releasing excess recovered hydrogen to the recovered hydrogen circulation line when the pressure in the receiver tank exceeds a predetermined value. fuel cell device.
インに流量調節計を設け、水素流量が所定値になるよう
に、改質器に供給する原料量を調節する手段を設けたこ
とを特徴とする燃料電池装置。(2) Claim 1 provides that a flow rate controller is provided in the hydrogen supply line, and means is provided for adjusting the amount of raw material supplied to the reformer so that the hydrogen flow rate becomes a predetermined value. Characteristic fuel cell device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60059993A JPH0624132B2 (en) | 1985-03-25 | 1985-03-25 | Fuel cell device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60059993A JPH0624132B2 (en) | 1985-03-25 | 1985-03-25 | Fuel cell device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61218073A true JPS61218073A (en) | 1986-09-27 |
JPH0624132B2 JPH0624132B2 (en) | 1994-03-30 |
Family
ID=13129199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60059993A Expired - Lifetime JPH0624132B2 (en) | 1985-03-25 | 1985-03-25 | Fuel cell device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0624132B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62140375A (en) * | 1985-12-13 | 1987-06-23 | Hitachi Ltd | Inside reform type molten carbonate fuel cell system |
JPS6476676A (en) * | 1987-09-16 | 1989-03-22 | Kawasaki Heavy Ind Ltd | Fuel cell power generation |
JPH01315957A (en) * | 1988-03-28 | 1989-12-20 | Fuji Electric Co Ltd | Fuel cell generator |
US6617066B2 (en) * | 2000-01-28 | 2003-09-09 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell power generation system |
JP2004288434A (en) * | 2003-03-20 | 2004-10-14 | Nippon Oil Corp | Hydrogen production apparatus and fuel cell system |
JP2005050812A (en) * | 2003-07-28 | 2005-02-24 | Hewlett-Packard Development Co Lp | Method and system which collect hydrogen from fuel electrode excretion |
JP2008108621A (en) * | 2006-10-26 | 2008-05-08 | Nippon Telegr & Teleph Corp <Ntt> | Fuel cell power generation system and its carbon dioxide recovery method |
JP2008108620A (en) * | 2006-10-26 | 2008-05-08 | Nippon Telegr & Teleph Corp <Ntt> | Fuel cell power generation system and its carbon dioxide recovery method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59203372A (en) * | 1983-05-02 | 1984-11-17 | Hitachi Ltd | Fuel reformer for fuel cell |
JPS59217960A (en) * | 1983-05-26 | 1984-12-08 | Mitsubishi Electric Corp | Generation plant for fuel cell |
-
1985
- 1985-03-25 JP JP60059993A patent/JPH0624132B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59203372A (en) * | 1983-05-02 | 1984-11-17 | Hitachi Ltd | Fuel reformer for fuel cell |
JPS59217960A (en) * | 1983-05-26 | 1984-12-08 | Mitsubishi Electric Corp | Generation plant for fuel cell |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62140375A (en) * | 1985-12-13 | 1987-06-23 | Hitachi Ltd | Inside reform type molten carbonate fuel cell system |
JPS6476676A (en) * | 1987-09-16 | 1989-03-22 | Kawasaki Heavy Ind Ltd | Fuel cell power generation |
JPH01315957A (en) * | 1988-03-28 | 1989-12-20 | Fuji Electric Co Ltd | Fuel cell generator |
US6617066B2 (en) * | 2000-01-28 | 2003-09-09 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell power generation system |
JP2004288434A (en) * | 2003-03-20 | 2004-10-14 | Nippon Oil Corp | Hydrogen production apparatus and fuel cell system |
JP4520100B2 (en) * | 2003-03-20 | 2010-08-04 | 新日本石油株式会社 | Hydrogen production apparatus and fuel cell system |
JP2005050812A (en) * | 2003-07-28 | 2005-02-24 | Hewlett-Packard Development Co Lp | Method and system which collect hydrogen from fuel electrode excretion |
JP2008108621A (en) * | 2006-10-26 | 2008-05-08 | Nippon Telegr & Teleph Corp <Ntt> | Fuel cell power generation system and its carbon dioxide recovery method |
JP2008108620A (en) * | 2006-10-26 | 2008-05-08 | Nippon Telegr & Teleph Corp <Ntt> | Fuel cell power generation system and its carbon dioxide recovery method |
Also Published As
Publication number | Publication date |
---|---|
JPH0624132B2 (en) | 1994-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4657828A (en) | Fuel cell system | |
US6926748B2 (en) | Staged lean combustion for rapid start of a fuel processor | |
JP2001524739A (en) | Cover gas and starting gas supply system for solid oxide fuel cell power plant | |
JPS61218073A (en) | Fuel cell system | |
JPH11191426A (en) | Fuel cell power generating system | |
JPS61233977A (en) | Gas replacement of fuel cell | |
JPH08180895A (en) | Fuel cell generating device | |
JPH0676847A (en) | Starting method for fuel cell and device thereof | |
JPH1064570A (en) | Starting method for phosphoric acid type fuel cell | |
JPS61197402A (en) | Apparatus for reforming fuel for fuel cell | |
JP3377523B2 (en) | Fuel cell system | |
JPH08100184A (en) | Carbon monoxide removing system | |
JP2769556B2 (en) | Fuel cell generator | |
JPH0888016A (en) | Fuel cell power generating equipment | |
JPH10275625A (en) | Fuel cell generator | |
JPH0896822A (en) | Fuel cell power generating system | |
JPH04243538A (en) | Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use | |
JP4049526B2 (en) | Method for starting reformer for fuel cell | |
JP3240783B2 (en) | Internal reforming fuel cell | |
JPH08339815A (en) | Fuel cell power generation device | |
JPH07169474A (en) | Methanol switching type fuel cell system | |
JP2001155747A (en) | Fuel cell system | |
JP4158131B2 (en) | Fuel cell power generator | |
JP3271677B2 (en) | Fuel cell generator | |
JPH10223236A (en) | Fuel cell electricity-generating apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |