JPH0624132B2 - Fuel cell device - Google Patents

Fuel cell device

Info

Publication number
JPH0624132B2
JPH0624132B2 JP60059993A JP5999385A JPH0624132B2 JP H0624132 B2 JPH0624132 B2 JP H0624132B2 JP 60059993 A JP60059993 A JP 60059993A JP 5999385 A JP5999385 A JP 5999385A JP H0624132 B2 JPH0624132 B2 JP H0624132B2
Authority
JP
Japan
Prior art keywords
hydrogen
gas
fuel cell
fuel
receiver tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60059993A
Other languages
Japanese (ja)
Other versions
JPS61218073A (en
Inventor
虔治 有崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60059993A priority Critical patent/JPH0624132B2/en
Publication of JPS61218073A publication Critical patent/JPS61218073A/en
Publication of JPH0624132B2 publication Critical patent/JPH0624132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は燃料電池装置に係り、特に電池排ガスに含まれ
る水素の再利用に好適な同装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a fuel cell device, and more particularly to the same device suitable for reusing hydrogen contained in a cell exhaust gas.

(従来の技術) 従来、燃料電池では、水素ガスと酸化剤がそれぞれ正極
および負極に供給され、電池反応により電気エネルギー
が取り出されるが、特にリン酸型燃料電池装置において
は、一般に第3図に示すように、燃料電池8への発電用
ガスとしては改質器1で製造されたものが使用され
ている。すなわち、該改質器1は、内側に改質触媒14
を充填した反応管13、外側に燃焼触媒層15を設けた
構成となっており、該燃焼触媒層15で燃料4を燃焼さ
せることにより、反応管13を加熱するようになってい
る。このようにして加熱状態とされた反応管13に原料
ガス、例えば天然ガス(主成分はメタン)とスチームを
それぞれ供給ライン2および3を経て供給すれば、H
とCOの混合ガスからなる改質ガス5が生成される。こ
の改質ガス5は次いでシフトコンバータ6に通され、こ
こで含有COガスはHガスに転換され、得られたH
リッチガスは水素供給ライン7を経て燃料電池8に供給
される。かくして供給されたHガスの一部は発電用に
消費されるが、残部は燃料電池8外に排気されてオフガ
スとなる。通常、上記水素リッチガスH濃度は約80
%であるが、オフガスのそれは約30%である。このよ
うなオフガスは、なお十分な可燃性を有しているので、
従来から水素回収ライン9を経て改質器1に送られ燃料
4として再利用されている。
(Prior Art) Conventionally, in a fuel cell, hydrogen gas and an oxidant are supplied to a positive electrode and a negative electrode, respectively, and electric energy is taken out by a cell reaction. Particularly, in a phosphoric acid fuel cell device, generally, as shown in FIG. As shown, as the H 2 gas for power generation to the fuel cell 8, the one produced by the reformer 1 is used. That is, the reformer 1 has the reforming catalyst 14 inside.
The reaction tube 13 is filled with, and the combustion catalyst layer 15 is provided on the outside, and the combustion catalyst layer 15 burns the fuel 4 to heat the reaction tube 13. When the raw material gas, for example, natural gas (main component is methane) and steam are supplied to the reaction tube 13 thus heated through the supply lines 2 and 3, respectively, H 2
A reformed gas 5 composed of a mixed gas of CO and CO is generated. This reformed gas 5 is then passed through a shift converter 6, where the contained CO gas is converted into H 2 gas and the resulting H 2
The rich gas is supplied to the fuel cell 8 via the hydrogen supply line 7. A part of the H 2 gas thus supplied is consumed for power generation, but the rest is exhausted to the outside of the fuel cell 8 to be an off gas. Usually, the hydrogen rich gas H 2 concentration is about 80.
%, But that of offgas is about 30%. Since such off-gas still has sufficient flammability,
Conventionally, it is sent to the reformer 1 via the hydrogen recovery line 9 and reused as the fuel 4.

また、従来の反応管13の加熱においては、前述のよう
な触媒接触燃焼方式が採用されているが、これは他のバ
ーナ方式等に比べて燃焼空間を著しく小さくできる上、
燃焼反応性が極端によいので、空燃比や燃料発熱量の多
少を問わず完全燃焼が可能となり、かつ低騒音、低NO
の下で無公害燃焼が可能であるためである。しかしな
がら、この燃焼方式によるときは、触媒表面で着火燃焼
を開始する際に燃焼に応じた一定の温度レベルを保持す
る必要があり、そのためスタートアップバーナや起動用
の熱風炉等を設ける必要があり、装置の複雑化が避けら
れないという欠点がある。
Further, in the conventional heating of the reaction tube 13, the catalytic contact combustion method as described above is adopted, but this can significantly reduce the combustion space as compared with other burner methods and the like.
Since the combustion reactivity is extremely good, complete combustion is possible regardless of the air-fuel ratio and the amount of fuel heat generation, and it is low in noise and low in NO.
This is because pollution-free combustion is possible under X. However, when this combustion method is used, it is necessary to maintain a constant temperature level according to the combustion at the time of starting ignition combustion on the catalyst surface, and therefore it is necessary to provide a startup burner, a hot air stove for startup, etc. There is a drawback in that complication of the device is unavoidable.

(発明が解決しようとする問題点) 本発明の目的は、上記した従来技術の欠点をなくし、燃
料電池から排出されるオフガス中の水素を、燃料電池の
発電用原料および触媒接触燃焼方式による改質器加熱源
の起動時燃料として利用できる燃料電池装置を提供する
ことにある。
(Problems to be Solved by the Invention) An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to improve the hydrogen in off-gas discharged from a fuel cell by a raw material for power generation of a fuel cell and a catalytic catalytic combustion method. It is an object of the present invention to provide a fuel cell device that can be used as a fuel at the time of starting a pest heating source.

(問題点を解決するための手段) 上記の目的を達成するため、本発明は、燃焼触媒層に燃
料を供給して燃焼させる触媒接触燃焼方式による加熱下
に炭化水素とスチームによる改質ガス化反応を行う改質
器と、該改質器で生成した水素ガスと酸化剤をそれぞれ
正極および負極に供給して電池反応を行う燃料電池と、
該燃料電池で使用した後の水素含有オフガスを回収して
前記触媒接触燃焼用の燃料として供給するオフガス回収
ラインとを備えた燃料電池装置において、上記オフガス
回収ラインに、順次水素ガスの分離回収器と、回収水素
ガスを昇圧下に貯めるレシーバタンクと、該レシーバタ
ンクの後流から分岐したのち燃料電池の入口側水素供給
ラインに連結される回収水素循環ラインとを設け、さら
に前記レシーバタンク内の圧力が所定値以上のときに余
剰の水素を放出する、該レシーバタンクの後流ないし前
記回収水素循環ラインに設けられた圧力調節弁と、前記
レシーバタンク内の圧力を検出し、該圧力が所定値以上
になったときに前記圧力調節弁を作動させる圧力調節装
置と、前記レシーバタンクからの余剰回収水素ガスを、
スタートアップ時にはオフガス回収ラインを経て改質器
の燃料供給系に、および定常運転時には回収水素循環ラ
インを経て燃料電池にそれぞれ選択的に供給する切換手
段とを設けたことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a reformed gasification by hydrocarbon and steam under heating by a catalytic catalytic combustion system in which a fuel is supplied to a combustion catalyst layer for combustion. A reformer that performs a reaction, and a fuel cell that performs a cell reaction by supplying hydrogen gas and an oxidant generated in the reformer to the positive electrode and the negative electrode, respectively,
In a fuel cell device having an off-gas recovery line for recovering hydrogen-containing off-gas after being used in the fuel cell and supplying it as fuel for the catalytic catalytic combustion, a hydrogen gas separation and recovery device is sequentially provided in the off-gas recovery line. A receiver tank for storing the recovered hydrogen gas under pressure, and a recovered hydrogen circulation line connected to the inlet side hydrogen supply line of the fuel cell after branching from the downstream of the receiver tank, and further in the receiver tank A pressure control valve provided in the downstream of the receiver tank or in the recovered hydrogen circulation line, which releases excess hydrogen when the pressure is equal to or higher than a predetermined value, and the pressure in the receiver tank are detected, and the pressure is predetermined. A pressure control device that operates the pressure control valve when the value is equal to or higher than the value, and excess recovered hydrogen gas from the receiver tank,
A switching means for selectively supplying the fuel to the fuel supply system of the reformer at the time of startup and the fuel cell at the time of steady operation via the recovered hydrogen circulation line is provided.

上記の水素ガス分離回収器は、公知のものを適用するこ
とができるが、特にモレキュラシーブによる物理的吸、
脱着現象を利用したプレッシャ・スイング(PSA)方
式のものが好適である。
The hydrogen gas separation and recovery device described above may be a known one, but in particular physical absorption by molecular sieves,
A pressure swing (PSA) system utilizing a desorption phenomenon is suitable.

本発明において、レシーバタンクの後流側の燃料用水素
回収ラインに、水素を燃焼触媒との接触下で自然着火温
度まで昇温可能とする昇温器を設けることにより、燃焼
触媒層の起動を容易にすることができる。
In the present invention, the fuel hydrogen recovery line on the downstream side of the receiver tank is provided with a temperature raising device capable of raising the temperature of hydrogen to the spontaneous ignition temperature in contact with the combustion catalyst, thereby starting the combustion catalyst layer. Can be easy.

また、回収水素循環ラインが連結された水素供給ライン
に、流量調節計を設け、該流量が所定値になるように、
改質器用原料ガスの供給ラインに設けた調節弁を制御
し、回収水素の循環量に応じて原料ガス量を調節し、そ
の節減を図ることができる。
Further, a flow rate controller is provided in the hydrogen supply line connected to the recovered hydrogen circulation line so that the flow rate becomes a predetermined value.
It is possible to control the control valve provided on the reformer source gas supply line and adjust the source gas amount according to the circulation amount of the recovered hydrogen to achieve the saving.

(実施例) 以下、図面に示す実施例により本発明をさらに詳しく説
明する。
(Examples) Hereinafter, the present invention will be described in more detail with reference to Examples shown in the drawings.

第1図は、本発明の実施例に係る燃料電池装置の系統図
である。この装置は、改質器1、シフトコンバータ6お
よび燃料電池8からなる構成は第3図と同じであるが、
オフガス回収ライン9に前記PSA方式の水素ガス分離
回収器20、コンプレッサ21、レシーバタンク22お
よびバルブ30を順次設け、該レシーバタンク22とバ
ルブ30の間から燃料電池8の入口側水素供給ライン7
に分岐した回収水素循環ライン24と圧力調節弁28を
設け、レシーバタンク22の圧力によって圧力調節弁2
8を制御できるようにした点が異なる。なお、図中、2
3はバルブ30の後流側燃料用水素回収ライン25に設
けられた、水素を燃焼触媒層15との接触下に自然着火
温度まで昇温する電熱ヒータ、26は水素供給ライン7
の流量を測定し、該流量が一定になるように、改質器用
原料ガスの供給ライン2の調節弁27を調整する流量調
節計、29はレシーバタンク22の圧力が一定値を保持
するように回収水素循環ライン24の圧力調節弁28を
調節する圧力調節装置である。
FIG. 1 is a system diagram of a fuel cell device according to an embodiment of the present invention. This device has the same structure as that of FIG. 3 including a reformer 1, a shift converter 6 and a fuel cell 8,
The off-gas recovery line 9 is provided with the PSA type hydrogen gas separation / recovery device 20, the compressor 21, the receiver tank 22 and the valve 30 in order, and the inlet side hydrogen supply line 7 of the fuel cell 8 is provided between the receiver tank 22 and the valve 30.
A recovery hydrogen circulation line 24 and a pressure control valve 28 which are branched off are provided, and the pressure control valve 2 is controlled by the pressure in the receiver tank 22.
8 is different in that it can be controlled. In the figure, 2
3 is an electric heater provided in the hydrogen recovery line 25 for fuel on the downstream side of the valve 30, which heats hydrogen to the spontaneous ignition temperature in contact with the combustion catalyst layer 15, and 26 is the hydrogen supply line 7
Is measured, and the flow controller adjusts the control valve 27 of the reformer raw material gas supply line 2 so that the flow rate becomes constant, and 29 indicates that the pressure in the receiver tank 22 maintains a constant value. It is a pressure control device that controls the pressure control valve 28 of the recovered hydrogen circulation line 24.

このような構成の装置において、燃料電池8からは残存
を大略30%含むオフガスが排出されるが、このガ
スはオフガス回収ライン9を経て先ず水素ガス分離回収
器20に送られる。ここでHガスが回収され、このガ
スは次いでコンプレッサ21で昇圧されたのちレシーバ
タンク22に貯蔵される。貯蔵されたHガスは、適時
抜き出されて電池発電用の原料ガスまたは改質器1の加
熱用燃料として再利用されるが、先ず定常運転時には、
一般に燃料用水素回収ライン25に設けられたバルブ3
0を閉とした上、レシーバタンク22の圧力調節装置2
9と圧力調節弁28の作動下にレシーバタンク22内の
圧力が一定となるように抜き出される。通常、レシーバ
タンク22は、満腹の状態にあり、この時の圧力以上に
なると圧力調節弁28が作動して回収水素循環ライン2
4から回収水素が放出される。この場合、Hガスの抜
き出し量が変動することになるが、これに見合って改質
器1からのHガスの供給量も変化させることにより、
改質器1の原料を節約することができる。このようなH
ガス供給量の制御は、水素供給ライン7の流量調節
計26と原料(メタン)の調節弁27からなる一連の制
御系を基に供給ライン2から改質器1に送られる原料ガ
ス(メタン)の流量を調節することにより行われる。
In the apparatus having such a configuration, the off gas containing approximately 30% of residual H 2 is discharged from the fuel cell 8, and this gas is first sent to the hydrogen gas separation and recovery unit 20 via the off gas recovery line 9. Here, H 2 gas is collected, and this gas is then pressurized by the compressor 21 and then stored in the receiver tank 22. The stored H 2 gas is appropriately extracted and reused as a raw material gas for battery power generation or as a heating fuel for the reformer 1, but first, during steady operation,
Valve 3 generally provided in fuel hydrogen recovery line 25
0 is closed and the pressure adjusting device 2 for the receiver tank 22
The pressure in the receiver tank 22 is withdrawn under the operation of the pressure control valve 9 and the pressure control valve 28. Normally, the receiver tank 22 is full, and when the pressure exceeds the pressure at this time, the pressure control valve 28 operates and the recovered hydrogen circulation line 2
Recovered hydrogen is released from 4. In this case, the withdrawal amount of H 2 gas changes, but by correspondingly changing the supply amount of H 2 gas from the reformer 1,
The raw material of the reformer 1 can be saved. H like this
The control of the 2 gas supply amount is based on a series of control systems consisting of a flow rate controller 26 of the hydrogen supply line 7 and a raw material (methane) control valve 27, based on the raw material gas (methane ) Is adjusted by adjusting the flow rate.

一方、改質器1のスタートアップ時には、バルブ30を
開にして燃料用水素回収ライン25へHガスを案内す
るとともに、これを電熱ヒータ23で接触着火温度まで
加熱し、しかる後に改質器1の燃焼触媒層15へ供給す
る。この場合、Hガスの接触着火温度は第2図(Pd
系燃焼触媒存在下での各種燃料の着火温度比較図)から
も明らかなように高々50℃と極めて低いので、電熱ヒ
ータ23による加熱温度は精々50〜100℃程度の低
温でよい。このような温度に昇温されたHガスは燃焼
触媒層15に導入されると直ちに着火して十分な温度に
達し、通常の燃料ガス4への切り替えが容易になる。な
お、上記スタートアップ時に消費されたHガスは、定
常運転時に水素ガス分離回収器20で補充される。
On the other hand, at the start-up of the reformer 1, the valve 30 is opened to guide the H 2 gas to the fuel hydrogen recovery line 25, and the electric heater 23 heats the H 2 gas to the contact ignition temperature. To the combustion catalyst layer 15. In this case, the contact ignition temperature of H 2 gas is shown in FIG.
As is clear from the comparison of ignition temperatures of various fuels in the presence of the system combustion catalyst), the temperature is extremely low at 50 ° C. at most, and therefore the heating temperature by the electric heater 23 may be as low as about 50 to 100 ° C. The H 2 gas heated to such a temperature is ignited as soon as it is introduced into the combustion catalyst layer 15, reaches a sufficient temperature, and the switching to the normal fuel gas 4 is facilitated. The H 2 gas consumed at the time of startup is replenished by the hydrogen gas separation / recovery device 20 during steady operation.

水素ガス分離回収器20として、モレキュラシーブ型の
ものを採用すれば、二塔切替式のものとなるので脈動を
発生するが、レシーバタンク22はこれを沈静化するバ
ッファータンクとしての役目も合わせ有する。
If a molecular sieve type hydrogen gas separator 20 is adopted as the hydrogen gas separator / collector 20, it will be a double-column switching type, so that pulsation will occur, but the receiver tank 22 also has a role as a buffer tank for calming this.

(発明の効果) 本発明によれば、燃料電池のオフガス回収ラインに、H
ガスの分離回収器と回収Hガスを昇圧下に貯蔵する
レシーバタンクと回収Hガスを改質器または燃料電池
に供給する切替えバルブとを設け、レシーバタンクに貯
められた回収Hガスを定常運転時には燃料電池の発電
用原料ガスとして、またスタートアップ時には改質器の
加熱開始用燃料として再利用することが可能となり、こ
れにより改質器発生Hガスの低減が図れるとともに、
起動時に回収Hガスを50〜100℃程度の低温に加
熱するだけで燃焼触媒層内で着火することができ、スタ
ートアップバーナや起動用の熱風炉等を設置する必要が
なく、改質器の運転経費の低減と起動設備の簡素化を図
ることができる。
(Effects of the Invention) According to the present invention, H
2 gas receiver tank and the recovery H 2 gas to the separation and recovery unit and the recovery H 2 gas is stored under boosting provided a switching valve for supplying the reformer or fuel cell, recovering H 2 gas, which is accumulated in the receiver tank Can be reused as a raw material gas for power generation of the fuel cell at the time of steady operation and as a fuel for starting heating of the reformer at the time of start-up, which can reduce the H 2 gas generated by the reformer, and
At startup, the recovered H 2 gas can be ignited in the combustion catalyst layer only by heating it to a low temperature of about 50 to 100 ° C., and there is no need to install a start-up burner or a hot-air stove for start-up, and the reformer It is possible to reduce operating costs and simplify starting equipment.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の実施例に係る燃料電池装置の系統
図、第2図は、各種燃料の接触着火温度を比較して示す
図、第3図は、従来の燃料電池装置の系統図である。 1……改質器、2……原料ガス供給ライン、3……スチ
ーム供給ライン、4……燃料、5……改質ガス、6……
シフトコンバータ、7……水素供給ライン、8……燃料
電池、9……水素回収ライン、13……反応管、14…
…改質触媒、15……燃焼触媒層、20……水素ガス分
離回収器、21……コンプレッサ、22……レシーバタ
ンク、23……電熱ヒータ、24……回収水素循環ライ
ン、25……燃料用水素回収ライン、26……流量調節
計、27、28……圧力調節弁、29……圧力調節装
置、30……バルブ。
FIG. 1 is a system diagram of a fuel cell device according to an embodiment of the present invention, FIG. 2 is a diagram showing a comparison of contact ignition temperatures of various fuels, and FIG. 3 is a system diagram of a conventional fuel cell device. Is. 1 ... Reformer, 2 ... Raw material gas supply line, 3 ... Steam supply line, 4 ... Fuel, 5 ... Reformed gas, 6 ...
Shift converter, 7 ... Hydrogen supply line, 8 ... Fuel cell, 9 ... Hydrogen recovery line, 13 ... Reaction tube, 14 ...
... reforming catalyst, 15 ... combustion catalyst layer, 20 ... hydrogen gas separation and recovery device, 21 ... compressor, 22 ... receiver tank, 23 ... electrothermal heater, 24 ... recovered hydrogen circulation line, 25 ... fuel Hydrogen recovery line, 26 ... Flow controller, 27, 28 ... Pressure adjusting valve, 29 ... Pressure adjusting device, 30 ... Valve.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】燃焼触媒層に燃料を供給して燃焼させる触
媒接触燃焼方式による加熱下に炭化水素とスチームによ
る改質ガス化反応を行う改質器と、該改質器で生成した
水素ガスと酸化剤をそれぞれ正極および負極に供給して
電池反応を行う燃料電池と、該燃料電池で使用した後の
水素含有オフガスを回収して前記触媒接触燃焼用の燃料
として供給するオフガス回収ラインとを備えた燃料電池
装置において、上記オフガス回収ラインに、順次水素ガ
スの分離回収器と、回収水素ガスを昇圧下に貯留するレ
シーバタンクと、該レシーバタンクの後流から分岐した
のち燃料電池の入口側水素供給ラインに連結される回収
水素循環ラインとを設け、さらに前記レシーバタンク内
の圧力が所定値以上のときに余剰の水素を放出する、該
レシーバタンクの後流ないし前記回収水素循環ラインに
設けられた圧力調節弁と、前記レシーバタンク内の圧力
を検出し、該圧力が所定値以上になったときに前記圧力
調節弁を作動させる圧力調節装置と、前記レシーバタン
クからの余剰回収水素ガスを、スタートアップ時にはオ
フガス回収ラインを経て改質器の燃料供給系に、および
定常運転時には回収水素循環ラインを経て燃料電池にそ
れぞれ選択的に供給する切換手段とを設けたことを特徴
とする燃料電池装置。
1. A reformer for performing a reforming gasification reaction by a hydrocarbon and steam under heating by a catalytic catalytic combustion system in which a fuel is supplied to a combustion catalyst layer for combustion, and hydrogen gas produced by the reformer. A fuel cell for supplying a positive electrode and a negative electrode to the positive electrode and the negative electrode to cause a cell reaction, and an off-gas recovery line for recovering the hydrogen-containing off-gas after use in the fuel cell and supplying it as the fuel for catalytic catalytic combustion. In the provided fuel cell device, in the off-gas recovery line, a hydrogen gas separation / recovery device, a receiver tank for storing recovered hydrogen gas under pressure, and a fuel cell inlet side after branching from the downstream of the receiver tank A recovered hydrogen circulation line connected to a hydrogen supply line is provided, and excess hydrogen is released when the pressure in the receiver tank is equal to or higher than a predetermined value. A pressure control valve provided in the flow or the recovered hydrogen circulation line, a pressure control device that detects the pressure in the receiver tank and operates the pressure control valve when the pressure exceeds a predetermined value, A switching means is provided to selectively supply excess recovered hydrogen gas from the receiver tank to the fuel supply system of the reformer via the off-gas recovery line at startup and to the fuel cell via the recovered hydrogen circulation line during steady operation. A fuel cell device characterized by the above.
【請求項2】特許請求の範囲第1項において、上記水素
供給ラインに流量調節計を設け、水素流量が所定値にな
るように、改質器に供給する原料量を調節する手段を設
けたことを特徴とする燃料電池装置。
2. The hydrogen supply line according to claim 1, wherein the hydrogen supply line is provided with a flow rate controller, and means for adjusting the amount of raw material supplied to the reformer is provided so that the hydrogen flow rate becomes a predetermined value. A fuel cell device characterized by the above.
JP60059993A 1985-03-25 1985-03-25 Fuel cell device Expired - Lifetime JPH0624132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60059993A JPH0624132B2 (en) 1985-03-25 1985-03-25 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60059993A JPH0624132B2 (en) 1985-03-25 1985-03-25 Fuel cell device

Publications (2)

Publication Number Publication Date
JPS61218073A JPS61218073A (en) 1986-09-27
JPH0624132B2 true JPH0624132B2 (en) 1994-03-30

Family

ID=13129199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60059993A Expired - Lifetime JPH0624132B2 (en) 1985-03-25 1985-03-25 Fuel cell device

Country Status (1)

Country Link
JP (1) JPH0624132B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510982B2 (en) * 1985-12-13 1996-06-26 株式会社日立製作所 Method of starting internal reforming molten carbonate fuel system
JPS6476676A (en) * 1987-09-16 1989-03-22 Kawasaki Heavy Ind Ltd Fuel cell power generation
JPH01315957A (en) * 1988-03-28 1989-12-20 Fuji Electric Co Ltd Fuel cell generator
JP4809965B2 (en) * 2000-01-28 2011-11-09 本田技研工業株式会社 Hydrogen supply system for hydrogen fueled devices and electric vehicles
JP4520100B2 (en) * 2003-03-20 2010-08-04 新日本石油株式会社 Hydrogen production apparatus and fuel cell system
US20050026007A1 (en) * 2003-07-28 2005-02-03 Herman Gregory S. Method and system for collection of hydrogen from anode effluents
JP2008108620A (en) * 2006-10-26 2008-05-08 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system and its carbon dioxide recovery method
JP2008108621A (en) * 2006-10-26 2008-05-08 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system and its carbon dioxide recovery method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203372A (en) * 1983-05-02 1984-11-17 Hitachi Ltd Fuel reformer for fuel cell
JPS59217960A (en) * 1983-05-26 1984-12-08 Mitsubishi Electric Corp Generation plant for fuel cell

Also Published As

Publication number Publication date
JPS61218073A (en) 1986-09-27

Similar Documents

Publication Publication Date Title
CN101427410B (en) Fuel cell system
JP2008143779A (en) Hydrogen formation apparatus, method of operating hydrogen formation apparatus, fuel cell system and method for operating fuel cell system
JPH0624132B2 (en) Fuel cell device
JPS61233977A (en) Gas replacement of fuel cell
JPH07230819A (en) Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer
JPH1064570A (en) Starting method for phosphoric acid type fuel cell
JPH11154529A (en) Stopping method of phosphoric acid type fuel cell and phosphoric acid type fuel cell
JP2000348749A (en) Starting method of fuel cell power generation plant
JPH0676847A (en) Starting method for fuel cell and device thereof
JPH08100184A (en) Carbon monoxide removing system
JPS61197402A (en) Apparatus for reforming fuel for fuel cell
JP4172740B2 (en) Hydrogen generator and operation method thereof
JPH08339815A (en) Fuel cell power generation device
JP4049526B2 (en) Method for starting reformer for fuel cell
JP2003128401A (en) Apparatus for generating hydrogen and it&#39;s operating method
JP2002053307A (en) Device for generating hydrogen
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
US20010053466A1 (en) Fuel cell system
JPH0547399A (en) Temperature control method and device for reforming device of fuel cell power generating system
JP3331569B2 (en) Fuel cell generator
JPH07169474A (en) Methanol switching type fuel cell system
JP4961769B2 (en) Fuel cell system
JP2001155747A (en) Fuel cell system
JPS6188460A (en) Method of starting fuel cell power generation system
JP3271677B2 (en) Fuel cell generator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term