JPS6077467A - 電界効果トランジスタの製造方法 - Google Patents
電界効果トランジスタの製造方法Info
- Publication number
- JPS6077467A JPS6077467A JP18448883A JP18448883A JPS6077467A JP S6077467 A JPS6077467 A JP S6077467A JP 18448883 A JP18448883 A JP 18448883A JP 18448883 A JP18448883 A JP 18448883A JP S6077467 A JPS6077467 A JP S6077467A
- Authority
- JP
- Japan
- Prior art keywords
- film
- region
- type
- electrode
- mask
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 230000005669 field effect Effects 0.000 title claims description 9
- 150000002500 ions Chemical class 0.000 claims abstract description 18
- 238000002844 melting Methods 0.000 claims abstract description 12
- 230000008018 melting Effects 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 238000005468 ion implantation Methods 0.000 abstract description 16
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 13
- 239000007772 electrode material Substances 0.000 abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 239000002344 surface layer Substances 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 238000000137 annealing Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66848—Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
- H01L29/66856—Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
- H01L29/66863—Lateral single gate transistors
- H01L29/66878—Processes wherein the final gate is made before the formation, e.g. activation anneal, of the source and drain regions in the active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
(技術分野)
本発明は、化合物半導体を用いた電界効果トランジスタ
の製造方法に関する。
の製造方法に関する。
(従来技術)
従来の化合物半導体電界効果トランジスタ例えは’ G
aAsMESFETにおいては、ダート電極材として高
融点金属を用いたセルファライン構造が知られており、
そこではケ゛−ト電極を形成した後で、所1のn+高濃
度注入層を形成し、その活性化アニールが行われ、その
アニール温度として800℃〜900℃程度までは保証
されている。
aAsMESFETにおいては、ダート電極材として高
融点金属を用いたセルファライン構造が知られており、
そこではケ゛−ト電極を形成した後で、所1のn+高濃
度注入層を形成し、その活性化アニールが行われ、その
アニール温度として800℃〜900℃程度までは保証
されている。
他方、オーミック接触を得るための形成方法については
、AuGe/GaAsとの合金板あるいはAuGe/N
i/Au電極を利用した合金反応が広く行われていて、
その際の合金化温度としては400℃〜450℃程度が
採用されている。
、AuGe/GaAsとの合金板あるいはAuGe/N
i/Au電極を利用した合金反応が広く行われていて、
その際の合金化温度としては400℃〜450℃程度が
採用されている。
しかしながら、オーミック接触を形成する場合その合金
化処理工程において、例えばGaAsとAuGeとの界
面に凸凹が生じ易く、又オーミック電極の表面モホロジ
ー(状態)の悪化などによるボールアップ現象が発生し
易い。よってFETを作製する場合、オーミック電極を
形成した後はオーミック処理温度以上の熱処理は適当で
はない。
化処理工程において、例えばGaAsとAuGeとの界
面に凸凹が生じ易く、又オーミック電極の表面モホロジ
ー(状態)の悪化などによるボールアップ現象が発生し
易い。よってFETを作製する場合、オーミック電極を
形成した後はオーミック処理温度以上の熱処理は適当で
はない。
従ってこのようなオーミック電極材を用いた従来の製造
方法においては、オーミック電極の形成工程の手順が特
定され、例えばGaAsMESFET を一つの構成要
素とする大規模回路を実現する場合、製造工程の自由度
が大幅に制約を受ける欠点があった。
方法においては、オーミック電極の形成工程の手順が特
定され、例えばGaAsMESFET を一つの構成要
素とする大規模回路を実現する場合、製造工程の自由度
が大幅に制約を受ける欠点があった。
(発明の目的)
本発明はゲート電極及びオーミック電極の形成工程の前
後如伺を問わず、アニールを行なえるようにした電解効
果トランジスタの製造方法を提供することにある。
後如伺を問わず、アニールを行なえるようにした電解効
果トランジスタの製造方法を提供することにある。
(発明の構成)
本発明はオーミック電極を形成する工程を含む電界効果
トランジスタの製造方法において、化合物半導体基板上
のオーミック電極形成予定領域にGe膜を形成し、との
Ge膜に高濃度のAsイオンを注入し、しかも前記基板
の前記Ge膜直下の領域に高濃度のn形不純物イオンを
注入する工程と、その後ショットキ接合を形成しうる高
融点金属で前記基板上にショットキ電極とオーミック電
極を同時に形成する工程を含むことを特徴とした電界効
果トランジスタの製造方法である。
トランジスタの製造方法において、化合物半導体基板上
のオーミック電極形成予定領域にGe膜を形成し、との
Ge膜に高濃度のAsイオンを注入し、しかも前記基板
の前記Ge膜直下の領域に高濃度のn形不純物イオンを
注入する工程と、その後ショットキ接合を形成しうる高
融点金属で前記基板上にショットキ電極とオーミック電
極を同時に形成する工程を含むことを特徴とした電界効
果トランジスタの製造方法である。
(実施例)
第1図ないし第1O図は本発明の一実施例の説明図であ
)、図面に沿って説明する。
)、図面に沿って説明する。
まず半絶縁GaAs基板の全面に耐熱オーミック材料で
あるGe膜を被着し、レノストを用いてパターンニング
することによって、第1図に示すように、半絶縁GaA
s基板1のオーミック接触予定表面にGe膜2を被着形
成する。その際、レノストパターン3は次の工程のため
に残しておく。
あるGe膜を被着し、レノストを用いてパターンニング
することによって、第1図に示すように、半絶縁GaA
s基板1のオーミック接触予定表面にGe膜2を被着形
成する。その際、レノストパターン3は次の工程のため
に残しておく。
次にイオン阻止能の高いNi膜を全面に被着し、リフト
オフ法によってそのNi膜を・ぞターノニングすること
によって、第2図に示すように、Ge膜2が被着された
表面以外の表面にN1マスク4を被着形成する。
オフ法によってそのNi膜を・ぞターノニングすること
によって、第2図に示すように、Ge膜2が被着された
表面以外の表面にN1マスク4を被着形成する。
次に第3図に示すように、N1マスク4をマスクとして
n形イオン注入を行い、Ge膜2をn++形イオン注入
Ge膜2′とし、その直下領域をn++形イオン注入領
域5とする。Ge膜2へのイオン注入は、へ8イオンを
用い、イオン注入Ge膜2′の膜厚方向中央でのピーク
イオン濃度が1020/crn8になるようにするのが
よい。直下領域へのイオン注入は、Siイオンを用1/
s N n ” ”形イオン注入領域5のイオン濃度が
5 x 1018/副3程度となるように行うのがよい
O 次にNiマスク4を除去することによって、第4図に示
すように、オーミック接触予定表面にAsイオンが注入
されたGe膜2′が被着形成され、その直下にn++形
イオン注入領域5が形成されたものを作る。
n形イオン注入を行い、Ge膜2をn++形イオン注入
Ge膜2′とし、その直下領域をn++形イオン注入領
域5とする。Ge膜2へのイオン注入は、へ8イオンを
用い、イオン注入Ge膜2′の膜厚方向中央でのピーク
イオン濃度が1020/crn8になるようにするのが
よい。直下領域へのイオン注入は、Siイオンを用1/
s N n ” ”形イオン注入領域5のイオン濃度が
5 x 1018/副3程度となるように行うのがよい
O 次にNiマスク4を除去することによって、第4図に示
すように、オーミック接触予定表面にAsイオンが注入
されたGe膜2′が被着形成され、その直下にn++形
イオン注入領域5が形成されたものを作る。
次に第5図に示すように、レノストノやター76を形成
したのち、これをマスクとして活性領域となる領域を含
む領域にイオン濃度が10”/cm3程度となるように
n形不純物であるSiイオンをイオン注入し、n形イオ
ン注入領域7とする。
したのち、これをマスクとして活性領域となる領域を含
む領域にイオン濃度が10”/cm3程度となるように
n形不純物であるSiイオンをイオン注入し、n形イオ
ン注入領域7とする。
次に前記レノスト・母ターン6を除去したのち第6図に
示すように、GaAsn形活性層との間ショットキ接合
を形成できる高融点金属である、W−At膜8を全面に
被着する。
示すように、GaAsn形活性層との間ショットキ接合
を形成できる高融点金属である、W−At膜8を全面に
被着する。
次にNi膜を全面に被着し、その後ツクターフ二/グす
ることによって、第7図に示すように、ゲート電極を形
成すべき表面とn++形イオン注入Ge膜2′の表面と
を被うNiマスク9を被着形成する。
ることによって、第7図に示すように、ゲート電極を形
成すべき表面とn++形イオン注入Ge膜2′の表面と
を被うNiマスク9を被着形成する。
次に第8図に示すように、前記Niマスク9をマスクと
して、高融点金属でちるW−At膜8をノRターンニン
グし、ダート電極8a及びオーミック電極被覆8bを形
成する。
して、高融点金属でちるW−At膜8をノRターンニン
グし、ダート電極8a及びオーミック電極被覆8bを形
成する。
次に第9図に示すように、GaA6魔5FET 以外の
領域を被うレノスト・ぞターン10を形成したのち、n
++形イオン注入領域5とケ゛−ト電極8aとの間にイ
オン濃度1.018on−6程度でSiイオンをイオン
注入し、n+形イオン注入領域1ノを形成する。
領域を被うレノスト・ぞターン10を形成したのち、n
++形イオン注入領域5とケ゛−ト電極8aとの間にイ
オン濃度1.018on−6程度でSiイオンをイオン
注入し、n+形イオン注入領域1ノを形成する。
次にNiマスク9及びレジストノやターン10を除去し
たのち、第10図に示すように、n++形イオン注入G
e膜2′、n++イオン注入領域5、活性領域用のイオ
ン注入領域7及びn+イオン注入領域11の不純物を活
性化するために5102膜12を全面に被着したのち、
800℃程度の温度で20分間程度のアニールを行う。
たのち、第10図に示すように、n++形イオン注入G
e膜2′、n++イオン注入領域5、活性領域用のイオ
ン注入領域7及びn+イオン注入領域11の不純物を活
性化するために5102膜12を全面に被着したのち、
800℃程度の温度で20分間程度のアニールを行う。
その後、SiO□膜12の所定個所に窓を開けることに
よってGaAsMFJSFETは完成する。
よってGaAsMFJSFETは完成する。
以上説明したように、この実施例では、高融点金属であ
るW−A4膜でケ゛−ト電極を構成し、且つそのW−A
t膜とA8イオンによるn”Ge膜とでオーミック電極
を形成しているため、電極材の被着形成後に活性化アニ
ールを行っても、GaAs/Ge界面、Ge/’N−A
1界面および電極表面状態は良好であシ、従って全ての
領域の活性化を一度に行うことができる。
るW−A4膜でケ゛−ト電極を構成し、且つそのW−A
t膜とA8イオンによるn”Ge膜とでオーミック電極
を形成しているため、電極材の被着形成後に活性化アニ
ールを行っても、GaAs/Ge界面、Ge/’N−A
1界面および電極表面状態は良好であシ、従って全ての
領域の活性化を一度に行うことができる。
また、この実施例では、中間にn+形領領域形成した構
造となっているので、ダート電極直下へのn形不純物の
横方向拡散を考慮することなく、オーミック電極直下の
n++形領域を十分高濃度にでき、従って寄生抵抗を低
減することができる。
造となっているので、ダート電極直下へのn形不純物の
横方向拡散を考慮することなく、オーミック電極直下の
n++形領域を十分高濃度にでき、従って寄生抵抗を低
減することができる。
なおまた、第10図の工程の後、検査した結果、しきい
値が所定の値でなかった場合などにおいては、更に活性
領域7へのイオン注入とアニールを追加して行うことが
できるなどの利点がある。
値が所定の値でなかった場合などにおいては、更に活性
領域7へのイオン注入とアニールを追加して行うことが
できるなどの利点がある。
なお、第4図の構造1では、半絶縁GaAs基板1に、
まず第2図相当のN1マスクを形成し、次いでGe膜2
を全面被着し、その後所定のイオン注入を行い、その後
N1マスク4及びその上のGe膜を除去することによっ
ても作ることができる。
まず第2図相当のN1マスクを形成し、次いでGe膜2
を全面被着し、その後所定のイオン注入を行い、その後
N1マスク4及びその上のGe膜を除去することによっ
ても作ることができる。
また、活性領域7を形成するだめのイオン注入は、例え
ば第2図の工程前で行うなど、比較的随時の手順で行う
ことができる。
ば第2図の工程前で行うなど、比較的随時の手順で行う
ことができる。
また、ゲート電極及びオーミック電極のカバーとして用
いる高融点金属は、素子間配線を兼ねさせることもでき
る。
いる高融点金属は、素子間配線を兼ねさせることもでき
る。
(発明の効果)
本発明は高融点金属によりケ゛−ト電極を形成し、これ
ト同一の工程においてオーミック電極材を前記高融点金
属で覆いあるいは更に前記高融点金属を配線パターンに
利用できるため、オーミック電極の形成手順が特定され
ることなく電界効果トランゾスタを一つの構成要素とす
る大規模回路の製造に利用することができる。
ト同一の工程においてオーミック電極材を前記高融点金
属で覆いあるいは更に前記高融点金属を配線パターンに
利用できるため、オーミック電極の形成手順が特定され
ることなく電界効果トランゾスタを一つの構成要素とす
る大規模回路の製造に利用することができる。
第1図ないし第10図は、本発明の実施例におけるGa
AsMESFETの構造断面図である。 1・・・半絶縁GaAs基板、2・・・Ge膜、2′・
・・n++形イオン注入Ge膜、3・・・レジストパタ
ーン、4・・・Niマスク、5・・・GaAs n”形
イオン注入領域、6・・・レジストパターン、7・・・
GaAs活性領域用イオン注入領域、8 ・W−At膜
、8 a−W−At)f”−ト電極、8b・・・W−A
Aオーミック雷接極被覆9・・・Niマスク、10・・
・レジストパターン、11・・・GaAs n+形イオ
ン注入領域、12・・・S io 2膜特許出願人 沖
電気工業株式会社 第1図 第2図 第5図 第7図
AsMESFETの構造断面図である。 1・・・半絶縁GaAs基板、2・・・Ge膜、2′・
・・n++形イオン注入Ge膜、3・・・レジストパタ
ーン、4・・・Niマスク、5・・・GaAs n”形
イオン注入領域、6・・・レジストパターン、7・・・
GaAs活性領域用イオン注入領域、8 ・W−At膜
、8 a−W−At)f”−ト電極、8b・・・W−A
Aオーミック雷接極被覆9・・・Niマスク、10・・
・レジストパターン、11・・・GaAs n+形イオ
ン注入領域、12・・・S io 2膜特許出願人 沖
電気工業株式会社 第1図 第2図 第5図 第7図
Claims (1)
- オーミック電極を形成する工程を含む電界効果トランジ
スタの製造方法において、化合物半導体基板上のオーミ
ック電極形成予定領域にGe膜を形成し、とのGe膜に
高濃度のAsイオンを注入し、しかも前記基板の前記G
e膜膜下下領域に高濃度のn形不純物イオンを注入する
工程と、その後ショットキ接合を形成しうる高融点金属
で前記基板上にショットキ電極とオーミック電極とを同
時に形成する工程を含むことを特徴とした電界効果トラ
ンジスタの製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18448883A JPS6077467A (ja) | 1983-10-04 | 1983-10-04 | 電界効果トランジスタの製造方法 |
US06/602,578 US4540446A (en) | 1983-09-19 | 1984-04-20 | Method of forming ohmic contact on GaAs by Ge film and implanting impurity ions therethrough |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18448883A JPS6077467A (ja) | 1983-10-04 | 1983-10-04 | 電界効果トランジスタの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6077467A true JPS6077467A (ja) | 1985-05-02 |
JPH028457B2 JPH028457B2 (ja) | 1990-02-23 |
Family
ID=16154048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18448883A Granted JPS6077467A (ja) | 1983-09-19 | 1983-10-04 | 電界効果トランジスタの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6077467A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01158778A (ja) * | 1987-12-15 | 1989-06-21 | Fujitsu Ltd | 半導体装置の製造方法 |
JP2005245968A (ja) * | 2004-03-08 | 2005-09-15 | Tetsuo Tokuda | 寝具用カバー |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5425171A (en) * | 1977-07-27 | 1979-02-24 | Fujitsu Ltd | Manufacture of field effect semiconductor device |
US4188710A (en) * | 1978-08-11 | 1980-02-19 | The United States Of America As Represented By The Secretary Of The Navy | Ohmic contacts for group III-V n-type semiconductors using epitaxial germanium films |
JPS5698877A (en) * | 1980-01-08 | 1981-08-08 | Mitsubishi Electric Corp | Gaas field effect transistor |
-
1983
- 1983-10-04 JP JP18448883A patent/JPS6077467A/ja active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5425171A (en) * | 1977-07-27 | 1979-02-24 | Fujitsu Ltd | Manufacture of field effect semiconductor device |
US4188710A (en) * | 1978-08-11 | 1980-02-19 | The United States Of America As Represented By The Secretary Of The Navy | Ohmic contacts for group III-V n-type semiconductors using epitaxial germanium films |
JPS5698877A (en) * | 1980-01-08 | 1981-08-08 | Mitsubishi Electric Corp | Gaas field effect transistor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01158778A (ja) * | 1987-12-15 | 1989-06-21 | Fujitsu Ltd | 半導体装置の製造方法 |
JP2005245968A (ja) * | 2004-03-08 | 2005-09-15 | Tetsuo Tokuda | 寝具用カバー |
Also Published As
Publication number | Publication date |
---|---|
JPH028457B2 (ja) | 1990-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4540446A (en) | Method of forming ohmic contact on GaAs by Ge film and implanting impurity ions therethrough | |
JPS6077467A (ja) | 電界効果トランジスタの製造方法 | |
JPH046089B2 (ja) | ||
JPS6167272A (ja) | 電界効果トランジスタの製造方法 | |
JPS6160591B2 (ja) | ||
JPS6318348B2 (ja) | ||
JPS594083A (ja) | 半導体装置の製造方法 | |
JPS6169176A (ja) | 半導体装置の製造方法 | |
JPH04359468A (ja) | 化合物半導体装置及びその製造方法 | |
JPS6142963A (ja) | 半導体装置の製造方法 | |
US3400308A (en) | Metallic contacts for semiconductor devices | |
JPS6396914A (ja) | 半導体装置の製造方法 | |
JPH0226790B2 (ja) | ||
JPH04352333A (ja) | 半導体装置の製造方法 | |
JPS59191384A (ja) | 半導体装置の製造方法 | |
JPS6258154B2 (ja) | ||
JPS6342177A (ja) | 半導体素子の製造方法 | |
JPS6323368A (ja) | 半導体装置の製造方法 | |
JPS6187378A (ja) | 化合物半導体装置の製造方法 | |
JPS6050966A (ja) | 電界効果トランジスタの製造方法 | |
JPH0434821B2 (ja) | ||
JPH0439772B2 (ja) | ||
JPS6037169A (ja) | Mosfetの製造方法 | |
JPS59161075A (ja) | 半導体素子の製造方法 | |
JPH0480929A (ja) | 化合物半導体装置の製造方法 |