JPS6056400B2 - Drive control method for pulse motor for watches - Google Patents
Drive control method for pulse motor for watchesInfo
- Publication number
- JPS6056400B2 JPS6056400B2 JP261376A JP261376A JPS6056400B2 JP S6056400 B2 JPS6056400 B2 JP S6056400B2 JP 261376 A JP261376 A JP 261376A JP 261376 A JP261376 A JP 261376A JP S6056400 B2 JPS6056400 B2 JP S6056400B2
- Authority
- JP
- Japan
- Prior art keywords
- pulse
- drive
- rotor
- rotation
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Control Of Stepping Motors (AREA)
Description
【発明の詳細な説明】
時計用として使用されている定方向回路パルスモータは
永久磁石回転子、固定子、及び駆動コイルからなり、固
定子の磁極間中心より一定角度に静止安定点をもち、パ
ルス巾の短かい交互パルスにより駆動され、−ステップ
づつ回転して次の静止安定点に移動する。[Detailed Description of the Invention] A directional circuit pulse motor used for watches consists of a permanent magnet rotor, a stator, and a drive coil, and has a stationary stable point at a constant angle from the center between the magnetic poles of the stator. It is driven by short alternating pulses and rotates step by step to move to the next stationary stable point.
この静止安定点は回転子磁極と、固定子間の位置エネル
ギーが最小となる点であり、駆動パルスが印加されない
時に永久磁石回転子が安定に停止している永久磁石回転
子の磁極中心位置を示し、固定子の外周、内周形状、固
定子と回転子間のギャップ等により定まり、狭い範囲で
はあるが内周形状例えば切溝の位置等によつて任意の位
置に設定することができる。また、秒針、分針、時針等
の指針の修正に用いられる正逆転可能なパルスモーター
も数種提案されているが、いずれも2個の駆動コイル、
3〜4個の固定子を使用しなければならず体積的に大き
く厚くなり、駆動には4相パルスを必要とし、回路も複
雑となり、実現性に乏しいものてある。また回転方向は
パルス相の印加順序を変えることて制御されるため誤動
作によつて、回転子磁極とパルス相の対応関係がくずれ
ると回転方向が変つてしまうという欠点がある。本発明
は永久磁石回転子、固定子、駆動コイルより構成された
少なくとも1つの静止安定点を有するパルスモーターに
於て、該静止安定点を電磁的に任意の位置に移動させる
ことを目的とする。This stationary stable point is the point where the potential energy between the rotor magnetic poles and the stator is minimum, and it is the magnetic pole center position of the permanent magnet rotor where the permanent magnet rotor is stably stopped when no driving pulse is applied. It is determined by the outer and inner circumferential shapes of the stator, the gap between the stator and the rotor, etc., and can be set at any arbitrary position, albeit within a narrow range, depending on the inner circumferential shape, for example, the position of the kerf. In addition, several types of pulse motors capable of forward and reverse rotation have been proposed, which are used to correct the pointers such as the second hand, minute hand, hour hand, etc., but all of them require two drive coils,
Three to four stators have to be used, which results in a large and thick volume, requires four-phase pulses for driving, and the circuit is complicated, making it difficult to implement. Furthermore, since the direction of rotation is controlled by changing the order in which the pulse phases are applied, there is a drawback that if the correspondence between the rotor magnetic poles and the pulse phases breaks down due to malfunction, the direction of rotation will change. The present invention aims to electromagnetically move the static stable point to an arbitrary position in a pulse motor having at least one static stable point composed of a permanent magnet rotor, a stator, and a drive coil. .
本発明はまた、永久磁石回転子、固定子、駆動コイルよ
り構成された、少なくとも1つの静止安J定点を有する
定方向回転パルスモーターに於て、静止安定点を電磁的
に移動させた後逆転駆動パルスを印加することにより逆
方向回転を可能とすることを目的とする。以下実施例に
ついて説明する。The present invention also provides a directional rotation pulse motor having at least one stationary stable J fixed point, which is composed of a permanent magnet rotor, a stator, and a drive coil, in which the stationary stable point is electromagnetically moved and then reversed. The purpose is to enable rotation in the opposite direction by applying a drive pulse. Examples will be described below.
; 第1図は従来の定方向回転パルスモーターの一実施
例で、101は回転子、102、103は固定子、10
4は駆動コイルで、固定子内周に切溝を設けることによ
り、静止安定点107,108を設定している。FIG. 1 shows an example of a conventional fixed direction rotation pulse motor, in which 101 is a rotor, 102 and 103 are stators, and 10
Reference numeral 4 denotes a drive coil, and stationary stable points 107 and 108 are set by providing grooves on the inner periphery of the stator.
固定子102,103の磁極中心115,116と静止
安定点107,108とのなす角を静止安定角αとする
と、後述する如く、αが小さいときに異なる極性の交互
駆動パルスにより駆動される永久磁石回転子と駆動パル
スの位相が回路上のトラブルによつて正転時と逆になる
と大きな逆方向駆動力を受け逆転する。この異なる極性
の駆動パルスにより逆転する限界の磁極中心115,1
16からの角度を可逆回転角βとすると、時計用モータ
ーとしては、永久磁石回転子と駆動パルスの位相のずれ
によつても常に正方向回転を維持する必要から、静止安
定角αは可逆回転角βより大きく設定してある。一般に
静止安定角αは切溝位置によつて設定できる。例えば第
1図に於て2つの切溝105,106を結ふ直線とほS
゛直交する直線上に回転子の2つの磁極中心N,Sがき
たときが、固定子と回転子磁石の相互の引きトルクT(
θ)が最小となり、静止安定点107,108となる。
従つて2つの切溝を結ふ直線を回転子中心を中心として
幾分回転させ、すなわち切溝105,106がそれぞれ
磁極中心115,116に近づくように切溝105,1
06の位置を決めれば、静止安定角αは可逆回転角βよ
り大きく設定できる。このようにして静止安定角αを可
逆回転角βより大きく設定してある。If the angle formed by the magnetic pole centers 115, 116 of the stators 102, 103 and the static stability points 107, 108 is the static stability angle α, then as will be described later, when α is small, the permanent If the phase of the magnet rotor and the drive pulse becomes reversed from the normal rotation due to a problem in the circuit, a large reverse driving force will be applied and the rotation will reverse. The limit magnetic pole center 115, 1 is reversed by this drive pulse of different polarity.
Assuming that the angle from 16 is the reversible rotation angle β, the stationary stability angle α is the reversible rotation because the clock motor must always maintain forward rotation even if there is a phase shift between the permanent magnet rotor and the drive pulse. It is set larger than the angle β. Generally, the static stability angle α can be set by the kerf position. For example, in Fig. 1, the straight line connecting the two grooves 105 and 106 and the
゛When the two magnetic pole centers N and S of the rotor are on perpendicular lines, the mutual pulling torque T(
θ) becomes the minimum, resulting in stationary stable points 107 and 108.
Therefore, the straight line connecting the two kerfs is rotated somewhat around the rotor center, that is, the kerfs 105 and 106 are arranged so that they approach the magnetic pole centers 115 and 116, respectively.
06, the static stability angle α can be set larger than the reversible rotation angle β. In this way, the static stability angle α is set larger than the reversible rotation angle β.
可逆回転角βは設計的要因すなわち相対する固定子磁極
の間隔、固定子内径と永久磁石回転子外径との隙間など
によつて決定される。第2図は本発明によるパルスモー
ターの一実施例て1は正方向回転時を示し、第1図と同
じく201は回転子、202,203は固定子、204
は駆動コイルて固定子内周に切溝を設けることにより、
静止安定点211,212を設定してい.”る。The reversible rotation angle β is determined by design factors, such as the distance between opposing stator magnetic poles, the gap between the stator inner diameter and the permanent magnet rotor outer diameter, and the like. FIG. 2 shows an embodiment of the pulse motor according to the present invention, in which 1 shows the forward rotation, and as in FIG. 1, 201 is a rotor, 202 and 203 are stators, and 204
By providing a cut groove on the inner circumference of the stator using the drive coil,
Stationary stable points 211 and 212 are set. ”ru.
第2図のパルスモーターは第1図の従来の定方向回転モ
ーターとモーター本体は同じであり、この場合も静止安
定角αは可逆回転角βより大に設定して、定常時の永久
磁石回転子と駆動パルスの位相のすれによる逆転を防止
している。このパ・ルスモーターを逆転させるには、静
止安定角αが可逆回転角βより小さくなるように回転子
を幾分回転させるような初期動作を付与した後に逆転用
駆動パルスを印加してやればよい。ここで第2図2の如
く正方向駆動すなわち、駆動コイル204に固定子20
2を弱いS極、固定子203を弱いN極となる様に微少
な励磁電流を流すと、永久磁石回転子は時計方向に弱い
回転力を受け、回転子と固定子との問の引きトルクとつ
り合つた点まで角度γだけ正方向へ移動し第2図2の如
く平衡点218となる。この移動角γ〉α−βであれば
、実質的に静止安定点211が可逆回転位置213を越
えて、正逆両方向回転可能な領域に移動した・ことにな
り、次いで逆転駆動パルスを印加することにより逆回転
が可能となる。第3図は第2図のパルスモーターの正回
転の状態の説明図、第4図は逆回転の状態の説明図を示
す。The pulse motor shown in Figure 2 has the same motor main body as the conventional fixed-direction rotation motor shown in Figure 1, and in this case too, the static stability angle α is set larger than the reversible rotation angle β, and the permanent magnet rotation during steady state. This prevents reversal due to a phase shift between the drive pulse and the drive pulse. In order to reverse this pulse motor, it is sufficient to apply an initial operation to rotate the rotor somewhat so that the static stability angle α becomes smaller than the reversible rotation angle β, and then apply a reverse drive pulse. Here, as shown in FIG.
When a small excitation current is applied so that 203 is a weak south pole and stator 203 is a weak north pole, the permanent magnet rotor receives a weak rotational force in the clockwise direction, and the pulling torque between the rotor and stator increases. It moves in the positive direction by an angle γ until it reaches a point where it is balanced, and an equilibrium point 218 is reached as shown in FIG. If the movement angle γ>α−β, it means that the stationary stable point 211 has substantially moved beyond the reversible rotation position 213 to a region where rotation is possible in both forward and reverse directions, and then a reverse drive pulse is applied. This allows reverse rotation. FIG. 3 is an explanatory diagram of the pulse motor shown in FIG. 2 in a forward rotation state, and FIG. 4 is an explanatory diagram of the reverse rotation state.
第5図は本発明のパルスモーターを用いた水晶時計の主
要構成図て、501は水晶発振回路、502は分周回路
、503は波形変換回路、504は駆動回路、505は
駆動コイル、506はスイッチSである。FIG. 5 is a main configuration diagram of a crystal clock using a pulse motor of the present invention, in which 501 is a crystal oscillation circuit, 502 is a frequency dividing circuit, 503 is a waveform conversion circuit, 504 is a drive circuit, 505 is a drive coil, and 506 is a This is switch S.
第6図は波形変換回路、駆動回路の一実施例てあり、第
7図は各部の波形図、第8図は正転時の回転角に対する
トルク曲線で、P1は駆動力、T1は回転子と固定子間
の引力による保持力を示す。Figure 6 shows an example of a waveform conversion circuit and a drive circuit, Figure 7 is a waveform diagram of each part, and Figure 8 is a torque curve versus rotation angle during forward rotation, where P1 is the driving force and T1 is the rotor. and the holding force due to the attractive force between the stator.
第9図は逆転時の回転角に対するトルク曲線でP2は駆
動力、P3,P4は、静止安定点を移動させるための弱
い励磁電流による引きトルクT2は保持力を示す。電子
時計に用いられるパルスモーターの運動方程式は、近似
的にここに
で表わせる。FIG. 9 shows a torque curve with respect to the rotation angle during reverse rotation, where P2 indicates the driving force, and P3 and P4 indicate the pulling torque T2, which is caused by a weak excitation current for moving the stationary stable point, and the holding force. The equation of motion of the pulse motor used in electronic watches can be approximately expressed here.
但しJ:回転子の慣性モーメント
μ:流体抵抗係数
A(θ):トルク係数又は電気機械結合係数T(0)
:固定子と回転子磁石相互の引きトルク(保持力)θ:
回転角
1(t):駆動電流
L:駆動コイルのインダクタンス
E:印加電圧
P:駆動トルク
α:Tの固定子スリット巾中心に対する初期位相角でα
は正転時、−αは逆転時を示す。However, J: Moment of inertia of the rotor μ: Fluid resistance coefficient A (θ): Torque coefficient or electromechanical coupling coefficient T (0)
: Mutual pulling torque (holding force) between stator and rotor magnets θ:
Rotation angle 1 (t): Drive current L: Drive coil inductance E: Applied voltage P: Drive torque α: Initial phase angle of T with respect to the center of stator slit width α
indicates the time of forward rotation, and -α indicates the time of reverse rotation.
ρ(θ):負荷 てある。ρ(θ): Load There is.
第2図のパルスモーターに於て、正転の場合、第2図1
の状態て回転子201は静止安定角αで静止安定点21
1,212に静止している。In the pulse motor shown in Fig. 2, in the case of normal rotation, Fig. 2 1
In the state, the rotor 201 is at the static stable point 21 at the static stable angle
It is stationary at 1,212.
静止安定点211は第8図の正転時のトルク曲線のRに
対応している。第(1)式でみるように、負荷ρ(θ)
が零てあれはモータの回転子に実質的に作用する駆動ト
ルクは駆動電流に基づく発生駆動トルクPと、引きトル
クT(θ)との差又は和のトルクである。The stationary stable point 211 corresponds to R of the torque curve during normal rotation in FIG. As seen in equation (1), the load ρ(θ)
If the current is zero, the drive torque that actually acts on the rotor of the motor is the difference or sum of the drive torque P generated based on the drive current and the pull torque T(θ).
第8図の正転時の回転角に対するトルク曲線図の駆動ト
ルク曲線P1で示すように、静止安定点211が磁極間
中心215に近づく程、言いかえると、静止安定角αが
小さい程、初期駆動力QRは大きくなる。従つて、静止
安定角αが小さい時に回路上のトラブルによつて正転時
とは逆極性の駆動パルスが駆動コイルに印加され、例え
ば第1図の状態で固定子103がS極、102がN極と
なるように駆動コイルが励磁されると、駆動トルクは回
転子101を反時計方向へ回転させようとする力となり
、初期駆動力QRが大であるから、引きトルクT1に打
勝つて逆転してしまう。静止安定角αが大きいときは初
期駆動力QRは小さくなり、しかも反時計方向の回転角
に対して駆動力は急激に減少するため、引きトルクT1
の方が大きくなり、これに打勝つて逆転することはでき
ない。時計用ステップモータは逆転する限界の可逆回転
角βより大きく静止安定角を設定してあり、正常の使用
状態で逆転することを防止している。このパルスモータ
ーを時針、分針、秒針の修正をするために逆転させるに
は何等かの手段によつて逆転駆動パルス印加時に静止安
定角αを可逆回転角βより小さく設定してやればよい。
第9図の逆転時の駆動トルク曲線図で示すように、第2
図2の駆動コイル204に正方向駆動となるように微少
な励磁電流を流すと回転子は弱い正方向回転力を受け、
この駆動トルクP3と引きトルクT2のつり合つた平衡
点218(グラフ上のV点)で静止する。この移動角度
γ〉α−βてあれば、実質的に静止安定点211が可逆
回転位置213を越えて、正逆両方向回転可能な領域に
移動したことになり、次いで逆転駆動パルスを印加する
ことにより逆転が可能となる。即ち、回転子が前記■点
にある時に弱励磁したパルスと逆極性の駆動パルスを印
加すると初期駆動力U■が大であるから逆転が可能とな
る。As shown by the driving torque curve P1 in the torque curve diagram for the rotation angle during normal rotation in FIG. The driving force QR increases. Therefore, when the static stability angle α is small, a drive pulse with a polarity opposite to that during normal rotation is applied to the drive coil due to a trouble in the circuit, and for example, in the state shown in FIG. When the drive coil is excited to become the N pole, the drive torque becomes a force that tries to rotate the rotor 101 counterclockwise, and since the initial drive force QR is large, it is necessary to overcome the pulling torque T1. It's reversed. When the static stability angle α is large, the initial driving force QR is small, and the driving force rapidly decreases with respect to the counterclockwise rotation angle, so the pulling torque T1
will become larger, and it will be impossible to overcome this and reverse the situation. The step motor for a watch has a static stability angle set to be larger than the reversible rotation angle β, which is the limit for reversing, to prevent it from reversing under normal usage conditions. In order to reverse this pulse motor in order to correct the hour hand, minute hand, and second hand, it is sufficient to set the static stability angle α to be smaller than the reversible rotation angle β by some means when applying the reverse drive pulse.
As shown in the drive torque curve diagram at the time of reverse rotation in Fig. 9, the second
When a small excitation current is passed through the drive coil 204 in FIG. 2 to drive in the forward direction, the rotor receives a weak forward rotational force.
It comes to rest at an equilibrium point 218 (point V on the graph) where the driving torque P3 and the pulling torque T2 are balanced. If the movement angle γ>α−β, the stationary stable point 211 has substantially moved beyond the reversible rotation position 213 to a region where rotation is possible in both forward and reverse directions, and then a reversal drive pulse is applied. This makes reversal possible. That is, when the rotor is at the point (2), if a driving pulse with a polarity opposite to the weakly excited pulse is applied, the initial driving force U (2) is large, so that reverse rotation is possible.
この時引きトルク曲線T2の大きさはV″1,■である
がこれも補助的に逆回転力となる。即ち、発生駆動トル
クと引きトルクの和が初期駆動トルクとなり確実に逆転
が可能となる。第2図で安定点218,219を固定子
202側に設定したのは逆転時のモータ駆動トルクを向
上するためである。正常回転時は駆動コイル204には
極性の異なる交互パルスφ1,φ2が第6図に示す回路
で印加される。第6図において、波形変換回路503は
FF6Ol,6O7,6O2,6O8,6lO、NAN
Dゲート603,604,605,606、0Rゲート
609,613,614、ANDゲート611,612
及びスイッチS5O6て構成され、駆動回路は、P−0
hM0Sトランジスター615,616,617,61
8、N−ChMOSトランジスター619,620で構
成されており、P一JchMOSトランジスター617
と、N−ChMOSトランジスター618は比較的高い
出力抵抗値に設定してある。At this time, the magnitude of the pull torque curve T2 is V''1,■, which also becomes an auxiliary reverse rotation force.In other words, the sum of the generated drive torque and the pull torque becomes the initial drive torque, which ensures that reverse rotation is possible. The reason why the stable points 218 and 219 in FIG. φ2 is applied by the circuit shown in FIG. 6. In FIG.
D gates 603, 604, 605, 606, 0R gates 609, 613, 614, AND gates 611, 612
and switch S5O6, and the drive circuit is P-0
hM0S transistor 615, 616, 617, 61
8. Consists of N-ChMOS transistors 619, 620, and P-JchMOS transistor 617.
The N-ChMOS transistor 618 is set to a relatively high output resistance value.
505は駆動コイルてある。505 is a drive coil.
定常時はスイッチSは電源の高電位側に接地されており
、FF6lO出力はO(5なつており、φ0,?弓はA
NDゲート611,612を通過し得ないため、駆動回
路にはIl,b2のみが印加されている。最初にφ1パ
ルスが駆動コイル204に印加され固定子202がS極
、203がN極に励磁され、回転子201のN極は固定
子203のN極で反発、203のS極て吸引、回転子の
S極は203のN極で吸引、202のS極て反発され、
正方向(時計方向)に回転力を受け第3図1の如くに回
転する。回転子は保持力T(θ)=0の位置307、第
8図のx点まで静止位置から約90置一般には1ステッ
プの回転角度の半分まで回転させれは、それ以後はT(
0)が正となり、保持力によつて次の安定点312、第
8図のZ点に引込まれる。駆動パルス巾の下限は回転子
がx点に到達する以前に切れても回転子が負の保持力に
打勝つてX点に到達しうるだけの運動エネルギーを与え
ることができれば回転は可能であるが、負荷トルクの影
響を考えて設定するのがよい。パルス巾の上限を考えて
みると、駆動力P1と保持力T1の和が零の位置Wに達
するが、ここで駆動パルスが切れても、T1が正である
から回転子は正方向回転力を受け次の安定点Zに向おう
とするため特に長さの制限はないが消費電流を少なくす
るため16ミ1Jsec以下が適当である。回転子は第
3図2の如く180
子のN極が静止安定点312、第8図のZ点に達してあ
る程度減衰振動して停止する。During normal operation, the switch S is grounded to the high potential side of the power supply, and the FF6lO output is O(5), and the φ0,? bow is A.
Since it cannot pass through the ND gates 611 and 612, only Il and b2 are applied to the drive circuit. First, a φ1 pulse is applied to the drive coil 204, which excites the stator 202 to the S pole and the stator 203 to the N pole.The N pole of the rotor 201 is repelled by the N pole of the stator 203, and the S pole of 203 is attracted and rotates. The south pole of the child is attracted by the north pole of 203, and is repelled by the south pole of 202,
It receives rotational force in the forward direction (clockwise) and rotates as shown in FIG. 31. The rotor is rotated approximately 90 degrees from the rest position until the holding force T (θ) = 0 at position 307, point x in Figure 8, which is generally half the rotation angle of one step.
0) becomes positive and is pulled into the next stable point 312, point Z in FIG. 8, by the holding force. Even if the lower limit of the drive pulse width is cut off before the rotor reaches point x, rotation is still possible as long as the rotor can overcome the negative holding force and provide enough kinetic energy to reach point x. However, it is best to set this by considering the influence of load torque. Considering the upper limit of the pulse width, the sum of the driving force P1 and the holding force T1 reaches a position W where it is zero, but even if the driving pulse is cut off at this point, since T1 is positive, the rotor will exert a forward rotational force. There is no particular restriction on the length since the current is received and the current is directed toward the next stable point Z, but in order to reduce current consumption, a length of 16 mm or less is appropriate. As shown in FIG. 3, the N pole of the rotor 180 reaches the stationary stable point 312, point Z in FIG.
これは運動方程式(1)の左辺の第2項の係数μ(流体
抵抗係数)が比較的小さいためであるが、μをある程度
大きくすれば臨界制動も可能である。第3図2の状態で
φ2パルスが駆動コイルに印加されると、固定子302
はN極、303はS極に励磁され、回転子301のN極
は固定子302のN極て反発303のS極て吸引、回転
子301のS極は固定子302のN極て吸引、303の
S,極で反発され、正方向回転力を受け1800回転し
、第2図1の状態にもどる。This is because the coefficient μ (fluid resistance coefficient) of the second term on the left side of the equation of motion (1) is relatively small, but if μ is increased to a certain extent, critical braking is also possible. When the φ2 pulse is applied to the drive coil in the state shown in FIG. 3, the stator 302
is excited to the north pole, 303 is excited to the south pole, the north pole of the rotor 301 is repelled by the north pole of the stator 302, and the south pole of the rotor 303 is attracted, the south pole of the rotor 301 is attracted to the north pole of the stator 302, It is repelled by the S pole of 303, receives a forward rotational force, rotates 1800 times, and returns to the state shown in FIG. 2.
以後交互パルスにより同じ状態をくり返して正方向に回
転を続ける。Thereafter, the same state is repeated by alternating pulses to continue rotating in the forward direction.
次に駆動回路についてみると第6図においてり.ユーズ
等の外部操作部材に連動したスイッチS5O6は電源の
高電位側に接地されており、FF6O8の出力端子aは
常にOであり、NANDゲート604,605の出力端
子D,eは1であるため、入力信号φ1,φ2はNAN
Dゲート603,606を介して駆動回路504に印加
される。Next, looking at the drive circuit, it is shown in Figure 6. The switch S5O6, which is linked to an external operating member such as a user, is grounded to the high potential side of the power supply, the output terminal a of FF6O8 is always O, and the output terminals D and e of the NAND gates 604 and 605 are 1. , input signals φ1 and φ2 are NAN
It is applied to the drive circuit 504 via the D gates 603 and 606.
信号が印加されないときは、駆動回路のMOsトランジ
スタのゲート入力は1となつており、N−ChMOSト
ランジスタ619,620がオンとなつており、駆動コ
イル505の両端621,622は零レベルである。い
まb1が印加されると、P一ChMOSトランジスタ6
15がオン、i1はまた0Rゲート613を介してP−
ChMOSトランジスタ617、N−ChMOSトラン
ジスタ619の共通人力ゲートに印加されて、トランジ
スタ(以後Trとする)617→オンTr6l9→オフ
とする。但しTr6l7、Tr6l.,8の出力抵抗は
高めに、少なくとも駆動コイルの直流抵抗以上に設定し
てあるため、駆動電流は主に、Tr6l5→621→駆
動コイル→622→Tr62Oの径路を流れる。B2が
印加されたときも同様にして、Tr6l6、618がオ
ン、Tr62Oがオフとなり、駆動電流は主に、Tr6
l6→622→駆動lコイル→621の径路を流れる。
駆動コイルには2相交互パルス電流が流れて、パルスモ
ーターは正方向に回転している。逆回転の例として、第
2図1の状態を考えると、これはパルスφ2の印加によ
り第3図2の状態から1ステップ回転して静止している
状態である。When no signal is applied, the gate input of the MOs transistor of the drive circuit is 1, the N-ChMOS transistors 619 and 620 are on, and both ends 621 and 622 of the drive coil 505 are at zero level. When b1 is applied now, P1ChMOS transistor 6
15 is on, i1 is also connected to P- through the 0R gate 613.
It is applied to the common manual gates of the ChMOS transistor 617 and the N-ChMOS transistor 619, turning the transistor (hereinafter referred to as Tr) 617→on Tr6l9→off. However, Tr6l7, Tr6l. , 8 are set to be high, at least higher than the DC resistance of the drive coil, the drive current mainly flows through the path of Tr6l5→621→drive coil→622→Tr62O. Similarly, when B2 is applied, Tr6l6 and 618 are turned on and Tr62O is turned off, and the drive current is mainly driven by Tr6.
It flows through the path 16→622→drive l coil→621.
A two-phase alternating pulse current flows through the drive coil, and the pulse motor rotates in the forward direction. As an example of reverse rotation, consider the state shown in FIG. 2 1. This is a state in which the motor rotates by one step from the state shown in FIG. 3 2 due to the application of pulse φ2 and remains stationary.
このとき第7図のt=ちでスイッチS5O6に連動した
りユーズ等の外部操作部材を操作して、スイッチSを低
電位側にたおせばS=0となり、FF6O8の出力端子
a=1となる。FF6O7の出力端子bはt=t1以前
に印加されたφ2パルス701のNANDゲート606
出力端子gの出力了2によつてb=1となつているため
NANDゲート604の出力端子d=0となり、次のφ
1パルス702はNANDゲート603によつて阻止さ
れる。一方、FF6lO出力h=1となり、φ0,I0
はANDゲート611,612を通過可能となり、0R
ゲート613,614を介して駆動回路に印加される。At this time, if t in Fig. 7 is linked to switch S5O6 or by operating an external operating member such as a user, and the switch S is set to the low potential side, S = 0, and the output terminal a of FF6O8 becomes 1. . The output terminal b of FF6O7 is the NAND gate 606 of the φ2 pulse 701 applied before t=t1.
Since b=1 due to the output 2 of the output terminal g, the output terminal d of the NAND gate 604 becomes 0, and the next φ
1 pulse 702 is blocked by NAND gate 603. On the other hand, FF6lO output h=1, φ0, I0
can pass through AND gates 611 and 612, and 0R
It is applied to the drive circuit via gates 613 and 614.
φoがTr6l7,6l9の共通ゲートに印加されると
、Tr6l7→オンTr6l9→オフとなり、第7図7
04の如く微少電圧が駆動コイルに印加され、第2図1
の固定子203はN極、202はS極に微弱に励磁され
る。回転子は正方向にいく分回転し、第9図の弱い励磁
電流による引きトルクP3と、保持力T2の和が0の位
置V(VO■=■■2)第2図2の218で平衡して静
止安定する。一方FF6O7の他の出力端子C=0とな
つているためN,ANDゲートの605の出力端子e=
1であり、φ2はNANDゲート606を通過して出力
端子gにはB2パルス703が現れる。When φo is applied to the common gate of Tr6l7 and Tr6l9, Tr6l7 → on Tr6l9 → off, and as shown in FIG.
04, a minute voltage is applied to the drive coil, and as shown in FIG.
The stator 203 is slightly excited to the north pole, and the stator 202 is slightly excited to the south pole. The rotor rotates somewhat in the positive direction and is balanced at position V (VO■=■■2) at 218 in Figure 2, where the sum of the pulling torque P3 due to the weak excitation current in Figure 9 and the holding force T2 is 0 (VO■ = ■■2). to become stationary and stable. On the other hand, since the other output terminal C of FF6O7 is 0, the output terminal e of 605 of the N, AND gate is
1, φ2 passes through the NAND gate 606, and a B2 pulse 703 appears at the output terminal g.
このB2によつて、FF6O8の出力端子a=0にリセ
ットされ、以後φ1は通過可能となる。したがつて第2
図2の状態でI2パルスが駆動回路に印加され第4図1
の如く固定子403がS極、固定子402がN極となり
回転子401のN極は固定子402のN極により反発、
固定子403のS極により吸引、回転子401のS極は
固定子402のN極により吸引、固定子403のS極に
より反発され、左方向(反時計方向)回転力を受け、逆
転する。This B2 resets the output terminal a of FF6O8 to 0, and from then on, φ1 can pass through. Therefore, the second
In the state shown in FIG. 2, the I2 pulse is applied to the drive circuit, and as shown in FIG.
As shown, the stator 403 becomes the S pole and the stator 402 becomes the N pole, and the N pole of the rotor 401 is repelled by the N pole of the stator 402.
The S pole of the rotor 401 is attracted by the S pole of the stator 403, the S pole of the rotor 401 is attracted by the N pole of the stator 402, is repelled by the S pole of the stator 403, receives a leftward (counterclockwise) rotational force, and is reversed.
駆動力は第4図1の410、第9図のY″点で零となる
が、この点では回転子は負の保持力に打勝つ充分な運動
エネルギーをもつているため、容易にY″点から、保持
力T=0の点x″に到達し、回転子自身の運動エネルギ
ーと正の保持力とによつて次の安定点に向う。The driving force becomes zero at point 410 in Fig. 4 1 and Y'' in Fig. 9, but at this point the rotor has sufficient kinetic energy to overcome the negative holding force, so it easily becomes Y''. From this point, the rotor reaches the point x'' where the holding force T=0, and moves towards the next stable point due to the rotor's own kinetic energy and the positive holding force.
駆動パルスのパルス巾の下限は正転時と同様にして設定
できるが、上限の方は第9図において、駆動力P2と保
持力T2の和が零の位置W″(W″1W″=W″W″2
)はT2の負の領域であるから駆動パルス巾が充分広い
とパルス印加中に回転子はW″点附近にもどり、パルス
が切れると最初の安定点211、■点にもどつてしまう
可能性があるため、あまり広いパルス巾のパルスは適当
ではない。この場合も16ミリSec以下が適当である
。駆動パルスφ2703が切れたとき、回転子はx″点
を越えているが門。が駆動回路のTr6l8、Tr62
Oの共通ゲートに印加されて、Tr6l8→オン、Tr
62O→オフとなり、第7図706の如く微少電圧が駆
動コイルに印加され、第4図2の如く、固定子402は
N極、固定子403はS極に微弱に励磁されているため
、この励磁電流による引きトルクP4と保持力T2の和
が0の位置V″(V″1■″=■″V″2)、第4図2
の419で平衡して静止安定する。この状態でI,パル
スが駆動コイルに印加されると、固定子403はN極、
固定子402はS極に励磁され、回転子401のN極は
固定子402のS極で吸引、403のN極て反発、回転
子401のS極は固定子402のS極て反発、403の
N極て吸引され逆方向回転力を受′月800回転し、第
2図2の状態にもどる。以後交互パルスにより同じ状態
をくり返して逆方向に回転を続ける。正回転→逆回転に
はφ2をもう一度駆動コイルに印加する例を示したがス
イッチS接地直前に印加されたパルス相のパルスをもう
一度印加すれば回転方向を容易に変えることができる。The lower limit of the pulse width of the drive pulse can be set in the same way as for normal rotation, but the upper limit is set at the position W''(W''1W''=W ″W″2
) is the negative region of T2, so if the driving pulse width is sufficiently wide, the rotor will return to around point W'' during pulse application, and when the pulse is cut off, there is a possibility that it will return to the initial stable point 211, point ■. Therefore, it is not appropriate to use a pulse with a pulse width that is too wide. In this case as well, a pulse width of 16 milliseconds or less is appropriate. When the drive pulse φ2703 is cut off, the rotor has exceeded the x'' point. are Tr6l8 and Tr62 of the drive circuit
applied to the common gate of O, Tr6l8→on, Tr
62O→OFF, a minute voltage is applied to the drive coil as shown in FIG. 7 706, and as shown in FIG. Position V″ where the sum of pulling torque P4 due to excitation current and holding force T2 is 0 (V″1■″=■″V″2), Fig. 4 2
At 419, it reaches equilibrium and becomes stable. When the I pulse is applied to the drive coil in this state, the stator 403 becomes the N pole,
The stator 402 is excited to the south pole, the north pole of the rotor 401 is attracted by the south pole of the stator 402, the north pole of 403 is repelled, the south pole of the rotor 401 is repelled by the south pole of the stator 402, 403 The N pole is attracted and receives a rotational force in the opposite direction, rotating 800 times and returning to the state shown in FIG. 2. Thereafter, the same state is repeated by alternating pulses and rotation continues in the opposite direction. An example has been shown in which φ2 is applied once again to the drive coil for forward rotation → reverse rotation, but the direction of rotation can be easily changed by applying once again the pulse of the pulse phase that was applied just before the switch S was grounded.
実施例では、定常駆動では定方向回転のパルスモーター
の静止安定点を電磁的に正回転方向(時計方向)に角度
γだけ移動させて逆方向回転を可能としたが、逆に反時
計方向に静止安定点を移動させて、正回転時のパルスモ
ーターの出力トルクを向上させることもできる。In the example, in steady drive, the stationary stable point of the pulse motor rotating in a fixed direction was electromagnetically moved by an angle γ in the forward rotation direction (clockwise) to enable rotation in the reverse direction. It is also possible to improve the output torque of the pulse motor during forward rotation by moving the stationary stable point.
また、正方向回転時と逆方向回転時に異なる電磁的静止
安定点を設定することもできる。さらに静止安定角度を
β以下に設定して正逆回転可能とした場合、逆転時に静
止安定点を移動することによりパルスモーターの逆転時
の出力トルクを増大させることができる。It is also possible to set different electromagnetic static stable points during forward rotation and reverse rotation. Further, when the static stability angle is set to be less than β to enable forward and reverse rotation, the output torque of the pulse motor during reverse rotation can be increased by moving the static stability point during reverse rotation.
逆転時に微少電流を励磁のため流すためいく分消費電流
が増加するが使用頻度は少ないため問題はない。また、
逆転時にも最大効率が得られるように設定することが可
能である。静止安定角の移動は保時力の変曲点、したが
つて1ステップの約半分程度可能であり、電気角で±9
0テの移動ができる。Since a small current is passed for excitation during reverse rotation, the current consumption increases somewhat, but this is not a problem since it is used infrequently. Also,
It is possible to set it so that maximum efficiency can be obtained even during reverse rotation. The static stability angle can be moved at the inflection point of the time-keeping force, so it is possible to move about half of one step, and it is ±9 in electrical angle.
Can move 0te.
本願の如く構成すれば、パルスモーターの静止安定点を
最大効率の位置に移動することがてきる。If configured as in the present application, the stationary stable point of the pulse motor can be moved to the position of maximum efficiency.
また、従来の定方向回転パルスモーターを静止安定点を
移動させることにより、逆回転も可能とすることができ
る。Further, by moving the stationary stable point of a conventional fixed direction rotation pulse motor, reverse rotation can be made possible.
さらに、静止安定角αを、両回転領域βより大としてお
けば、パルス相と回転子磁極との対応関係が誤動作によ
つてくずれても逆回転し如めることは防止てき、機械的
な逆転防止機構を必要としない正逆パルスモーターを構
成できる。Furthermore, by setting the static stability angle α to be larger than both rotational regions β, it is possible to prevent reverse rotation even if the correspondence between the pulse phase and the rotor magnetic poles is broken due to malfunction, and mechanical It is possible to configure a forward/reverse pulse motor that does not require a reverse rotation prevention mechanism.
さらに定常駆動時より高い周波数の早修正駆動パルスを
駆動コイルに印加することにより、時針、分針、秒針等
の指針の早修正することが可能であり、早修正駆動パル
スの発生スイッチを外部操作部材と連動させて、りユー
ズのない腕時計を構成することがてきる。Furthermore, by applying quick correction drive pulses with a higher frequency than during steady drive to the drive coil, it is possible to make quick corrections of the hour hand, minute hand, second hand, etc. In conjunction with this, it is possible to construct a wristwatch that does not need to be used.
さらに時針、分針、秒針等の位置の記憶回路を設け、修
正時に記憶回路の示す数値の数の早修正駆動パルスを駆
動コイルに印加すれば瞬時に設定値に指針を修正するこ
とも可能である。Furthermore, by providing a memory circuit for the positions of the hour hand, minute hand, second hand, etc., and applying as many quick-correction drive pulses as the number indicated by the memory circuit to the drive coil during correction, it is possible to instantly correct the hands to the set value. .
″図面の簡単な説明
第1図は、従来のパルスモーター、第2図は本発明によ
るパルスモーターの一実施例、第3図は本発明によるパ
ルスモーターの正回転の状態の説明図、第4図は同じく
逆回転の状態の説明図、第5図は本発明によるパルスモ
ーターを使用した水晶時計の主要構成図、第6図は波形
変換回路、駆動回路の一実施例、第7図は波形図、第8
図は正転時のトルク曲線、第9図は逆転時のトルク曲線
を示す。``Brief Description of the Drawings Figure 1 shows a conventional pulse motor, Figure 2 shows an embodiment of the pulse motor according to the present invention, Figure 3 is an explanatory diagram of the pulse motor according to the present invention in a forward rotation state, and Figure 4 shows an example of the pulse motor according to the present invention. The figure is also an explanatory diagram of the state of reverse rotation, Figure 5 is a main configuration diagram of a crystal clock using a pulse motor according to the present invention, Figure 6 is an example of a waveform conversion circuit and drive circuit, and Figure 7 is a waveform Figure, 8th
The figure shows the torque curve during normal rotation, and FIG. 9 shows the torque curve during reverse rotation.
101,201,301,401・・・・・・回転子、
102,202,302,402,103,203,3
03,403・・・・・固定子、104,204,30
4,404・・・・・・コイル、503・・・・・・波
形変換回路、504・・・・・・駆動回路、506・・
・・スイッチS。101, 201, 301, 401... rotor,
102, 202, 302, 402, 103, 203, 3
03,403...Stator, 104,204,30
4,404... Coil, 503... Waveform conversion circuit, 504... Drive circuit, 506...
...Switch S.
Claims (1)
コイルよりなり、対向する前記一対の固定子の磁極間中
心と前記永久磁石回転子の磁極中心とは所定角をもつて
停止し、駆動コイルへの極性の異なる交互パルスを印加
することにより1パルス1歩進するパルスモータにおい
て、前記駆動コイルに該永久磁石回転子を異なる極性の
駆動パルスで逆転する限界の静止安定角まで正転方向に
移動させる位の大きさの微少の平均励磁電流を流すパル
ス供給回路を有し、該パルス供給回路からの出力パルス
を印加することにより前記永久磁石回転子を電磁的に正
転方向に移動した後、逆転駆動パルスを印加することに
より逆回転を可能としたことを特徴とする時計用パルス
モータの駆動制御方法。1 Consisting of a two-pole permanent magnet rotor, a pair of stators, and one drive coil, the centers of the magnetic poles of the pair of opposing stators and the center of the magnetic poles of the permanent magnet rotor stop at a predetermined angle. In a pulse motor that advances one step per pulse by applying alternating pulses of different polarity to the drive coil, the permanent magnet rotor is applied to the drive coil until it reaches the limit static stability angle where the permanent magnet rotor is reversed by the drive pulses of different polarity. The permanent magnet rotor is electromagnetically moved in the forward rotation direction by applying output pulses from the pulse supply circuit, and has a pulse supply circuit that sends a minute average excitation current that is large enough to move the permanent magnet rotor in the forward rotation direction. 1. A method for controlling the drive of a pulse motor for a watch, characterized in that, after the motor has moved, reverse rotation is enabled by applying a reverse drive pulse.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP261376A JPS6056400B2 (en) | 1976-01-12 | 1976-01-12 | Drive control method for pulse motor for watches |
US05/697,364 US4055785A (en) | 1976-01-12 | 1976-06-18 | Stepping motor for electronic timepiece |
GB26090/76A GB1561584A (en) | 1976-01-12 | 1976-06-23 | Stepping motor for electronic timepiece |
DE2628583A DE2628583C3 (en) | 1976-01-12 | 1976-06-25 | Stepper motor, especially for driving an electric clock |
CH878276A CH621231B (en) | 1976-01-12 | 1976-07-08 | STEPPER MOTOR. |
HK345/82A HK34582A (en) | 1976-01-12 | 1982-07-29 | Stepping motor for electronic timepiece |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP261376A JPS6056400B2 (en) | 1976-01-12 | 1976-01-12 | Drive control method for pulse motor for watches |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5286108A JPS5286108A (en) | 1977-07-18 |
JPS6056400B2 true JPS6056400B2 (en) | 1985-12-10 |
Family
ID=11534237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP261376A Expired JPS6056400B2 (en) | 1976-01-12 | 1976-01-12 | Drive control method for pulse motor for watches |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6056400B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0345697B2 (en) * | 1985-05-30 | 1991-07-11 | Nhk Spring Co Ltd |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPP696198A0 (en) * | 1998-11-06 | 1998-12-03 | Brits, Ludwig | A rotary electrical converter and controller therefor |
-
1976
- 1976-01-12 JP JP261376A patent/JPS6056400B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0345697B2 (en) * | 1985-05-30 | 1991-07-11 | Nhk Spring Co Ltd |
Also Published As
Publication number | Publication date |
---|---|
JPS5286108A (en) | 1977-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4048548A (en) | Stepping motor | |
CN106452233B (en) | Motor driving device and electronic timepiece | |
US4103191A (en) | Step motor | |
JPS6243148B2 (en) | ||
US4055785A (en) | Stepping motor for electronic timepiece | |
JPS6024680B2 (en) | Clock step motor drive circuit | |
US6731093B1 (en) | 2-step bi-directional stepping motor | |
JPS6056400B2 (en) | Drive control method for pulse motor for watches | |
JP2018057076A (en) | Stepping motor, rotation detection device, and electronic clock | |
US4227135A (en) | Step motor driving circuit | |
US4167848A (en) | Driving device for an electric timepiece | |
JPS631022B2 (en) | ||
JPS605915B2 (en) | Electric clock drive device | |
JP4723137B2 (en) | Step motor for clock | |
US4471284A (en) | Reversible stepping motor | |
JP2571501B2 (en) | Driving method of watch step motor | |
JPH10108450A (en) | Energy-converting apparatus, stepping motor, clocking apparatus, power generation apparatus and electronic apparatus | |
JPS5837791B2 (en) | Rotary displacement drive device | |
JPS58195497A (en) | Step motor | |
JPS62130378A (en) | Driving method for reverse rotation of stepping motor for electronic timepiece | |
JPS6120819B2 (en) | ||
JPS6118151B2 (en) | ||
JPS6110958A (en) | Normal/reverse rotatable motor | |
JPS607480B2 (en) | Pulse motor operation detection circuit | |
JPS581751B2 (en) | electronic watch |