JPS605075A - Manufacture of silicon nitride sintered body - Google Patents
Manufacture of silicon nitride sintered bodyInfo
- Publication number
- JPS605075A JPS605075A JP58111488A JP11148883A JPS605075A JP S605075 A JPS605075 A JP S605075A JP 58111488 A JP58111488 A JP 58111488A JP 11148883 A JP11148883 A JP 11148883A JP S605075 A JPS605075 A JP S605075A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- oxide
- sintering
- sintered body
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、高靭性、高強度を有する窒′化けい素焼給体
の製造法に関する。 ゛
窒化けい素(S i 8N、 ) 焼結体は、高温での
1強度、耐摩耗性等にすぐれ、熱膨張係数も小さく、か
つ化学的にも安定なことや・ら、昨今内燃機関、ガスタ
ービン、ラジアントチューブ、その池の高温用途材料と
して注目されている。窒化けい素粉床はそれ自身では焼
結性に乏しい物質であるので、焼結体の製造には一般に
焼結助剤を配合することが必要であり、これまでにも助
剤の成分組成の工夫により焼結性の促進と、高温強度向
トのこころみか数多くなされており、例えばイツトリウ
ム酸化物(Y2O2)、マグネシア(MgO)、アIレ
ミナ(A#203)などが効果的な助剤として知られて
いる。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silicon nitride burner having high toughness and high strength. Sintered silicon nitride (S i 8N) has excellent strength and wear resistance at high temperatures, has a small coefficient of thermal expansion, and is chemically stable. It is attracting attention as a material for high-temperature applications in gas turbines, radiant tubes, and ponds. Since silicon nitride powder bed itself is a substance with poor sintering properties, it is generally necessary to mix a sintering aid in the production of sintered bodies, and the composition of the aid has so far been studied. Many efforts have been made to promote sinterability and improve high-temperature strength through ingenuity. For example, yttrium oxide (Y2O2), magnesia (MgO), Alemina (A#203), etc. have been used as effective auxiliaries. Are known.
しかるに、一般にセラミックは構成原子の結合が主とし
て共有結合あるいはイオン結合(通常はこれらの結合の
混成)であるため、高弾性率、高強度を有する反面、結
晶構造が複雑で、空間的に隙間の多い構造を有する。こ
のために一般のセラミックは金属と異なシ低温での転位
の移動が不可能で、脆性と呼ばれる挙動を示すのが大き
な欠点となっている。この脆性については、例えば焼結
体内に不均質相を形成せしめれば、外部からの応力によ
るクラックの進展の際に、分散した不均質相によって破
壊エネルギーが吸収されることによ9破壊靭性匝の向上
をみる、との見解もあり、また脆性改善を目的とする助
剤成分組成について種々の検討がなされている。However, in general, the bonds between the constituent atoms of ceramics are mainly covalent bonds or ionic bonds (usually a hybrid of these bonds), so while they have high elastic modulus and high strength, they have a complex crystal structure and are prone to spatial gaps. It has many structures. For this reason, a major drawback of general ceramics is that, unlike metals, dislocations cannot move at low temperatures, and they exhibit a behavior called brittleness. Regarding this brittleness, for example, if a heterogeneous phase is formed within the sintered body, when a crack propagates due to external stress, the fracture energy is absorbed by the dispersed heterogeneous phase, resulting in a decrease in fracture toughness. There is also the view that this will improve the brittleness, and various studies have been conducted on the composition of auxiliary components for the purpose of improving brittleness.
しかしながら、窒化けい素焼給体については、これまで
のところ、靭性について充分な成果をみるに到らず、そ
の破壊靭性値(Klo)は5MN・口)−〇を越えず、
一般に8〜4 M N =m−3/”’程度にとどまっ
ているのが実情である。However, with regard to silicon nitride heat exchangers, sufficient results have not been obtained so far in terms of toughness, and the fracture toughness value (Klo) does not exceed 5 MN.
The reality is that it generally remains at about 8-4 M N =m-3/'''.
本発明は北記に鑑み、窒化けい素焼給体の破壊靭性値を
改善し、かつ強度を高めるためになされたものである。The present invention has been made in view of the above, in order to improve the fracture toughness value and increase the strength of a silicon nitride heat exchanger body.
本発明の窒化けい素焼給体の製造法は、窒化けい素粉末
に、焼結助剤として、5〜28重量係重量土類酸化物と
、7〜30重量妬のジルコニウム酸化物または部分安定
化ジルコニウム酸化物とが複合的に配合された混合物を
成形、焼結するものである。また、本発明の製造法にお
いては、焼結助剤として、北記各助剤とともに、所望に
よりタングステン炭化物(wc)2〜20重量係重量合
される。The method for producing a silicon nitride sintering body of the present invention includes silicon nitride powder, a sintering aid containing a heavy earth oxide of 5 to 28% by weight, and a zirconium oxide or a partially stabilized 7 to 30% by weight zirconium oxide. A mixture containing zirconium oxide is molded and sintered. In addition, in the production method of the present invention, tungsten carbide (wc) is optionally added in a weight ratio of 2 to 20% as a sintering aid together with each of the above mentioned aids.
焼結助剤として配合される希土類酸化物は、焼結の促進
、焼結体の強度的上等の役目を有する。The rare earth oxide blended as a sintering aid has the role of promoting sintering and improving the strength of the sintered body.
この効果を十分なものとするために、少くとも5重量部
の配合を要する。好ましくは、7係以とである。希土類
酸化物としては、イツトリウム酸化物やランタニド系列
希土類酸化物群に属する酸化物を任意に選択して使用し
てよいが、焼結促進効果、および強度等の機械的諸性質
の点から、イツトリウム酸化物(Y2O2)、−yンタ
ン酸化物(La203)、ネオジム酸化物(Nc120
3)、またはプラセオジム酸化物(Pr601、)、あ
るいはこれらの任意の2種もしくは3種の組合せになる
混合物が好ましく使用される。In order to obtain this effect sufficiently, at least 5 parts by weight is required. Preferably, it is 7 or more. As the rare earth oxide, yttrium oxide or an oxide belonging to the lanthanide series rare earth oxide group may be arbitrarily selected and used, but from the viewpoint of sintering promotion effect and mechanical properties such as strength, oxide (Y2O2), -ytane oxide (La203), neodymium oxide (Nc120
3), praseodymium oxide (Pr601, ), or a mixture of any two or three of these are preferably used.
上記希土類酸化物と複合使用されるジルコニウム酸化物
(Z r 02 )または部分安定化ジルコニウム酸化
物は、焼結促進のほか、焼結体の破壊靭性値の向北をも
たらす。この効果を十分に発揮させるために、少くとも
7重量部を必要とし、更に好ましくは9重量部以上配合
される。−)ルコニウム酸化物と部分安定化ジルコニウ
ム酸化物とは、破壊靭性値の改善および焼結促進の点か
らは同効物質とみなすことができる。両者は複合的に使
用してもよい。Zirconium oxide (Z r 02 ) or partially stabilized zirconium oxide used in combination with the rare earth oxide not only promotes sintering but also improves the fracture toughness of the sintered body. In order to fully exhibit this effect, at least 7 parts by weight is required, more preferably 9 parts by weight or more. -) Ruconium oxide and partially stabilized zirconium oxide can be considered to be equivalent substances in terms of improving fracture toughness and promoting sintering. Both may be used in combination.
また、タングステン炭化物は焼結性の向北、靭性改善等
のために所望に応じて配合されるものであり、そのため
の配合量は2重量部以上であることを要する。Further, tungsten carbide is blended as desired for improving sinterability, improving toughness, etc., and the blending amount for this purpose needs to be 2 parts by weight or more.
玉記各焼結助剤は、配合割合の増加とともに、それぞれ
の添加効果も増大するが、あまり多く配合しても、配合
量の割に効果の増加が少くなり、加えて混合物中の窒化
けい素粉末の相対的割合の低下に伴い窒化けい素焼給体
としての特徴が弱められる。このため、希土類酸化物は
288重量部ジルコニウム酸化物または部分安定化ジル
コニウム酸化物は300重量部またタングステン炭化物
は20重量幅をそれぞれ北限とすべきであり、通常希土
類酸化物は200重量部で、ジルコニウム酸化物または
部分安定化ジルコニウム酸化物は200重量部で、タン
グステン炭化物は12重量LIbまでの配合によシ好結
果を得ることができる。As the blending ratio of each of the sintering aids increases, the effect of each addition increases, but even if too much is blended, the increase in effect will be small compared to the blending amount, and in addition, the effect of silicon nitride in the mixture will increase. As the relative proportion of the base powder decreases, its characteristics as a silicon nitride heat-generating body are weakened. Therefore, the northern limit of rare earth oxide should be 288 parts by weight, zirconium oxide or partially stabilized zirconium oxide should be 300 parts by weight, and tungsten carbide should have a range of 20 parts by weight. Good results can be obtained by incorporating 200 parts by weight of zirconium oxide or partially stabilized zirconium oxide and up to 12 parts by weight LIb of tungsten carbide.
主原料である窒化けい素粉末には、その結晶構造にα型
とβ型とがあり、周知のように焼結体強度の点から、焼
結体内粒界層の結晶化助長のためにはα型が有利であり
、好ましくはα化率約90係以北の粉末が使用される。Silicon nitride powder, the main raw material, has an α-type and a β-type crystal structure, and as is well known, from the viewpoint of sintered body strength, it is necessary to promote crystallization of the grain boundary layer within the sintered body. The α type is advantageous, and preferably powders with a gelatinization rate of about 90 or higher are used.
本発明によれば、窒化けい素粉末に前記各助剤を所要量
配合し、なお必要ならば適当な成形助剤を混和した混合
物を、常法に従って成形、焼結することにより目的とす
る焼結体を得る。「成形、焼結する」と言うのは、適用
されるプロセスにより、例えば、ホットプレス法や、熱
間静水圧焼結法(II I P法)のように、成形と焼
結とが一工程で実施される場合や、常圧焼結法のように
成形と焼結とが各別の工程として実施される場合を含む
意味である。いづれのプロセスにおいても通常の条件で
行なわれ、例えばホットプレス法では、所要の形状の型
内に混合物を充填し、適当な加圧力(例えば200〜4
00#r〆−)および焼結温度(例えば1600〜18
50°C)にて焼結を達成する。また常圧焼結法では、
適当な成形助剤を適量(例えば、メチルセルロース。0
1〜2.01.混和した混合物を適宜の成形法、例えば
−軸プレス、ラバープレス、射出成形、その他の方法で
所明形状に成形したのち、窒素ガスなどの不活性雰囲気
下、適当な焼結温度・雰囲気圧力(例えば、1600〜
1850°C,1〜l Ok(j I’/crd )に
て焼結を完了する。According to the present invention, the desired sintering process is achieved by blending silicon nitride powder with the required amounts of each of the above-mentioned auxiliary agents and, if necessary, adding an appropriate molding auxiliary agent. Obtain a body. "Forming and sintering" means that shaping and sintering are done in one step, depending on the process being applied, for example, hot press method or hot isostatic pressure sintering method (II I P method). This includes cases where molding and sintering are carried out as separate steps, as in the case of pressureless sintering. Both processes are carried out under normal conditions; for example, in the hot press method, the mixture is filled into a mold of the desired shape, and an appropriate pressure is applied (for example, 200 to 400 ml).
00#r〆-) and sintering temperature (e.g. 1600-18
Sintering is achieved at 50°C). In addition, in the pressureless sintering method,
Appropriate amount of a suitable molding aid (e.g. methylcellulose.0
1-2.01. The mixed mixture is molded into a desired shape by an appropriate molding method, such as -shaft press, rubber press, injection molding, or other method, and then sintered at an appropriate sintering temperature and atmospheric pressure under an inert atmosphere such as nitrogen gas. For example, 1600~
Sintering is completed at 1850°C and 1~1 Ok (j I'/crd).
次に本発明の実施例について説明する。Next, examples of the present invention will be described.
実施例
〔A〕 ホラ1−プレス法
窒化けい素粉末(α化率95係、平均粒径0.6μ77
1)に焼結助剤を配合し、ホットプレス法により、加圧
力400 k(if/cd、 温度18oo°cに1時
間保持して焼結体(40mm×20+++mX 6mm
)を得た。Example [A] Hora 1-press method silicon nitride powder (gelatinization rate 95, average particle size 0.6μ77
A sintering aid was added to 1), and a sintered body (40mm x 20+++m x 6mm
) was obtained.
〔B〕 常圧焼結法
窒化けい素粉末(α化率95qb、平均粒径O6μ71
1)に焼結助剤、および成形助剤として0.54メチル
セルロース水溶液を配合(窒化けい素粉末30gに対し
て10CC)、混合し、−軸プレス法にて円板体を成形
したのち、常圧焼結法により、窒素カス雰囲% (圧力
り、:13 kgr贋) 中、1750°Cに2時間保
持して円板状焼結体(直径50 wn X厚さ6 vn
m )を得た。[B] Pressure-sintered silicon nitride powder (gelatinization rate 95qb, average particle size O6μ71
A sintering aid and a 0.54 methyl cellulose aqueous solution as a forming aid are added to 1) (10 CC for 30 g of silicon nitride powder), mixed, and after being molded into a disk body using a -axial press method, By the pressure sintering method, a disk-shaped sintered body (diameter 50 wn
m) was obtained.
上記各焼結法により得られた焼結体のそれぞれについて
破壊靭性値(K□。)および曲げ強度を測定した。破壊
靭性値の測定はKnoop−Indentation−
8trcogtb 法に準処した。曲げ強度試験は、3
mm×8 mmX 40 mmの試片を使用し、3点曲
げ法(スパン距離30+++m)にて行った。The fracture toughness value (K□.) and bending strength of each of the sintered bodies obtained by the above-mentioned sintering methods were measured. The fracture toughness value is measured using Knoop-Indentation-
8trcogtb method. The bending strength test is 3
The bending was performed using a three-point bending method (span distance 30+++ m) using a specimen measuring mm x 8 mm x 40 mm.
焼結助剤の配合および試験結果を第1表に示す。The formulation of the sintering aid and the test results are shown in Table 1.
表中、「製法」欄の「A」はホットプレス法、rBJは
常圧焼結法を意味する。賦香(1)〜(8)は発明例、
(101)、(102)は従来の一般的助剤配合による
比較例である。In the table, "A" in the "manufacturing method" column means a hot press method, and rBJ means a pressureless sintering method. Incense (1) to (8) are invention examples,
(101) and (102) are comparative examples using conventional general additive formulations.
表に示されるように、本発明により得られる焼結体は、
成形・焼結法のいかんにかかわらず、従来の水準を大き
く越える高破壊靭性値を存し、かつ強度についても同じ
成形・焼結法による従来材にまさっている。As shown in the table, the sintered body obtained by the present invention is
Regardless of the molding and sintering method, it has a high fracture toughness value that far exceeds conventional standards, and its strength also exceeds that of conventional materials made using the same molding and sintering methods.
以北のように、本発明により得られる窒化けい素焼給体
は、従来材に著しくまさる高破壊靭性値、高強度を有す
るので、各種構造部材、工具などに好適で、従来材では
得られぬ安定した面」久性を保証することができる。As previously mentioned, the silicon nitride heat exchanger obtained by the present invention has high fracture toughness and high strength that are significantly superior to conventional materials, making it suitable for various structural members, tools, etc. Stable surface can guarantee durability.
代理人 弁理士 宮崎新八部Agent: Patent attorney Shinhachibe Miyazaki
Claims (2)
量係重量上類酸化物と7〜30重量係のジルコニウム酸
化物および/または部分安定化ジルコニウム酸化物が配
合された混合物を成形、焼結することを特徴とする高靭
性・高強度窒化けい素焼給体の製造法。(1) A mixture in which a silicon nitride powder bed is blended with a 5-28 weight class upper class oxide and a 7-30 weight class zirconium oxide and/or partially stabilized zirconium oxide as a sintering aid. A method for producing a high-toughness, high-strength silicon nitride heat exchanger body, which is characterized by molding and sintering.
酸化物またはプラセオジム酸化物の1種または2種以北
の混合物である北記第(1)項に記載の窒化けい素焼給
体の製造法。(2) The method for producing a silicon nitride burner according to item (1) above, wherein the rare earth oxide is one or a mixture of two or more of yttrium oxide, lanthanum oxide, or praseodymium oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58111488A JPS605075A (en) | 1983-06-21 | 1983-06-21 | Manufacture of silicon nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58111488A JPS605075A (en) | 1983-06-21 | 1983-06-21 | Manufacture of silicon nitride sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS605075A true JPS605075A (en) | 1985-01-11 |
JPS6359992B2 JPS6359992B2 (en) | 1988-11-22 |
Family
ID=14562536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58111488A Granted JPS605075A (en) | 1983-06-21 | 1983-06-21 | Manufacture of silicon nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS605075A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5547276A (en) * | 1978-05-31 | 1980-04-03 | Ford Motor Co | Si3n4 compounded material for cutting tool and its manufacture |
JPS5771871A (en) * | 1980-10-20 | 1982-05-04 | Sumitomo Electric Industries | Tenacious ceramic tool material and manufacture |
JPS5820783A (en) * | 1981-07-28 | 1983-02-07 | 日本化学陶業株式会社 | Manufacture of silicon nitride sintered body |
-
1983
- 1983-06-21 JP JP58111488A patent/JPS605075A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5547276A (en) * | 1978-05-31 | 1980-04-03 | Ford Motor Co | Si3n4 compounded material for cutting tool and its manufacture |
JPS5771871A (en) * | 1980-10-20 | 1982-05-04 | Sumitomo Electric Industries | Tenacious ceramic tool material and manufacture |
JPS5820783A (en) * | 1981-07-28 | 1983-02-07 | 日本化学陶業株式会社 | Manufacture of silicon nitride sintered body |
Also Published As
Publication number | Publication date |
---|---|
JPS6359992B2 (en) | 1988-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5823345B2 (en) | Method for manufacturing ceramic sintered bodies | |
JPH0222175A (en) | Production and sintering of reaction bonded silicon nitride composite material containing silicon carbide whisker or silicon nitride powder | |
JPS6077174A (en) | Manufacture of silicon nitride sintered body | |
JPS605075A (en) | Manufacture of silicon nitride sintered body | |
JPS605077A (en) | Manufacture of silicon nitride sintered body | |
JP2534213B2 (en) | Method for producing silicon nitride based sintered body | |
JPS605076A (en) | Manufacture of silicon nitride sintered body | |
JPS6054979A (en) | Manufacture of silicon nitride sintered body | |
JPS5935869B2 (en) | Manufacturing method of silicon nitride sintered body | |
JP3445345B2 (en) | High heat-resistant water sialon-based sintered body | |
JPH03141161A (en) | Composite sintered compact | |
JPS605078A (en) | Manufacture of silicon nitride sintered body | |
JP3271123B2 (en) | Method for producing composite of silicon nitride and boron nitride | |
JPS5935867B2 (en) | Manufacturing method of silicon nitride sintered body | |
JPS59146980A (en) | Manufacture of silicon nitride sintered body | |
JP2947718B2 (en) | Method for producing silicon nitride based sintered body | |
JPS63147867A (en) | Manufacture of silicon nitride sintered body | |
JPS5935868B2 (en) | Manufacturing method of silicon nitride sintered body | |
JPH04238868A (en) | Production of silicon nitride-silicon carbide compounded sintered material | |
JPH04132668A (en) | Ceramic sintered compact and production thereof | |
JPS59199584A (en) | Silicon nitride base sintered body | |
JPS62128969A (en) | Silicon nitride base sintered body | |
JPS62187169A (en) | Silicon nitride base sintered body and manufacture | |
JPH0575716B2 (en) | ||
JPS61186265A (en) | Silicon nitride sintered body and manufacture |