JPS5991032A - Manufacture of high-molecular piezoelectric film - Google Patents

Manufacture of high-molecular piezoelectric film

Info

Publication number
JPS5991032A
JPS5991032A JP20073882A JP20073882A JPS5991032A JP S5991032 A JPS5991032 A JP S5991032A JP 20073882 A JP20073882 A JP 20073882A JP 20073882 A JP20073882 A JP 20073882A JP S5991032 A JPS5991032 A JP S5991032A
Authority
JP
Japan
Prior art keywords
film
stretching
temperature
piezoelectric
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20073882A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yamamoto
和彦 山本
Tetsuo Katsuta
哲男 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP20073882A priority Critical patent/JPS5991032A/en
Publication of JPS5991032A publication Critical patent/JPS5991032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain a uniform film whose piezoelectric modulus is very high, by stretching one part of the one side of a crystalline high-molecular film having a glass transition point of 0 deg.C or below, when the film should be stretched at a temperature in a specified range at the start of the stretching. CONSTITUTION:A polyvinylidene fluoride film 8 is attached to support devices 5, and the inside of a thermostatic chamber 1 is kept at a temperature in the range of (Tg+10)-25 deg.C. Then an end part of the film 8 is heated by a sheathed heater 6 to 80-170 deg.C, and a threaded lever 4 is rotated to effect the stretching. Electrodes are arranged on opposite surfaces of the stretching film, then with a direct current field being applied, the temperature is elevated to a temperature lower than the melting temperature by 10-120 deg.C, and the elevated temperature is kept for a certain period. Thereafter when it is cooled to the room temperature and the direct current field is eliminated, a piezoelectric material can be obtained that has a uniform thickness and a high piezoelectric modulus when it is polarized, and is thin and large in area and easy to be molded.

Description

【発明の詳細な説明】 本発明は、高分子圧電フィルムの製造法に関する。さら
に詳しくtよ、ガラス転移点がOC以下である結晶性高
分子を累月として大きな圧電率を有する11−6分子圧
電フィルムの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a polymeric piezoelectric film. More specifically, the present invention relates to a method for producing an 11-6 molecule piezoelectric film having a large piezoelectric constant using a crystalline polymer having a glass transition point of OC or lower.

圧電f’、l:は、対称中心を持たない結晶体の性質と
して知られてお9、そのエネルギー変換機能を利用して
、圧電体はオーディオ用トランスデユーサ−1医療用ト
ランスデユーザー、超音波トランスデユーサ−1物理計
測用トランスデユーザー、感王素子等に広く応用されて
いる。
Piezoelectricity f', l: is known as a property of a crystalline body that does not have a center of symmetry.9 Utilizing its energy conversion function, piezoelectric materials can be used for audio transducer-1 medical transducer, super Sound wave transducer-1 Widely applied to physical measurement transducers, sensing elements, etc.

現在、一般に実用されている圧電体として、水晶、ロッ
シェル塩、 1)Z’l”などの無機用型材料がある。
Currently, piezoelectric materials in general use include inorganic type materials such as quartz crystal, Rochelle salt, and 1) Z'l''.

(−かI/、これらの月料は、圧電率は高いが、硬くて
しかも脆いので成形加工が難しく、大面積の薄い圧電拐
料を製造することは非常に困雑である。
(- or I/) Although these materials have a high piezoelectric constant, they are hard and brittle, so they are difficult to mold, and it is very difficult to manufacture thin piezoelectric materials with a large area.

一方、ある種の高分子物質、例えば、コラーゲン、セル
ローズ等の天然高分子およびポリーr−メチルーL−グ
ルタメートなどで代表される高分子物質の延伸フィルム
は圧電性を示す。
On the other hand, stretched films of certain polymeric substances, such as natural polymers such as collagen and cellulose, and polymeric substances typified by polyr-methyl-L-glutamate, exhibit piezoelectricity.

また、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリ
アクリルニトリル、ポリカーボネート等の合成高分子フ
ィルムを延伸したときに直流電界を印加し、その状態の
まま冷却すると、圧電性を示すことが明らかにされてい
る。特に、上記合成高分子の中で、ポリフッ化ビニリデ
ンのIIL伸フィルムが最も大きな圧電率を示すことが
知られている。
In addition, it has been revealed that when synthetic polymer films such as polyvinylidene fluoride, polyvinyl fluoride, polyacrylonitrile, and polycarbonate are stretched and a DC electric field is applied to them and then cooled in that state, they exhibit piezoelectricity. . In particular, it is known that among the above synthetic polymers, IIL stretched film of polyvinylidene fluoride exhibits the largest piezoelectric constant.

しかし、上記ポリフッ化ビニリデンの延伸フィルムの圧
電率d%+は、5.0X10−’ CgS、elslu
程度であるので、実用上、制約があった。
However, the piezoelectric constant d%+ of the stretched film of polyvinylidene fluoride is 5.0X10-' CgS, elslu
However, in practice, there were restrictions.

ポリフッ化ビニリデンを延伸する場合、出来る限り低い
福1度、例えば、室温以下の温度で延伸を行なった方が
、[E電率の高いフィルJ・を得られるこJ二が経験的
に知られている。しかし、低湿で111伸【1.て均一
なフィルムを得ることは困難でオ)る。すなわち、低温
になると、高分子物′e(の弾性率が大きくなり、高張
力で延伸しなけれ4丁ならないので、フィルムの破断や
フィルムの厚みが不均一になるなどの結果を招き、圧電
フイルノ、としては、好ましくない表面状態となる。
When stretching polyvinylidene fluoride, it is empirically known that it is better to stretch at the lowest temperature possible, for example, at room temperature or below, to obtain a film with a high electrical conductivity. ing. However, it increased by 111 due to low humidity [1. It is difficult to obtain a uniform film. In other words, at low temperatures, the elastic modulus of the polymer 'e' increases and it has to be stretched at high tension, resulting in film breakage and non-uniform film thickness. , results in an unfavorable surface condition.

本発明者らは、ガラス転移点(以下Tgと称す)がOC
以下の結晶性高分子からなるフィルムをぐvg−NOC
)〜5℃の温度範囲で延伸するにあたって、延伸開始時
にフィルムの片端の一部を特定範囲の温度で加熱して延
伸することにより、極めて大きな圧電率を持つ均一なフ
ィルムが得られることを見出し、本発明を完成した。
The present inventors have discovered that the glass transition point (hereinafter referred to as Tg) is OC
Vg-NOC is a film made of the following crystalline polymer.
) It was discovered that a uniform film with an extremely high piezoelectric constant could be obtained by heating a part of one end of the film at a temperature within a specific range at the start of stretching when stretching in a temperature range of ~5°C. , completed the invention.

本発明は、大きな圧電率を示す高分子圧電月料の製造法
を提供するもので、その要旨は、TgがOC以下の結晶
性高分子からなるフィルムを(1″g + 10 U 
)〜5Cの温度範囲で延伸するにあたって、延伸開始時
にフィルム片端の一部を該フィルムの融点より10 C
−100t?低い温度で加熱して延伸することを特徴と
する高分子圧電フイルノ、の3(14造法にある。
The present invention provides a method for producing a polymer piezoelectric material exhibiting a large piezoelectric constant.
) to 5C, a part of one end of the film is heated at a temperature of 10C below the melting point of the film at the start of stretching.
-100t? No. 3 (14) of the polymer piezoelectric film, which is characterized by heating and stretching at a low temperature.

本発明に用いられるTgがOC以下の結晶性高分子は、
好ましくけポリフッ化ビニリデン系樹脂である。ポリフ
ッ化ビニリデン系樹脂はビニリデンフルオライド(以下
VDFと略す。)のホモポリマーおよびVDFを主成分
とし、これと共重合可能な他の一種類以上のモノマーと
の共重合体等を挙げることができる。さらに、上記ポリ
マーは乳化重合、懸濁重合、溶液重合等のいずれの方法
しこよって重合されたものでもよい。
The crystalline polymer with Tg below OC used in the present invention is
Preferred is polyvinylidene fluoride resin. Polyvinylidene fluoride resins include homopolymers of vinylidene fluoride (hereinafter abbreviated as VDF) and copolymers containing VDF as a main component and one or more other monomers that can be copolymerized with this. . Further, the above polymer may be polymerized by any method such as emulsion polymerization, suspension polymerization, solution polymerization, etc.

フッ化ビニリデンと共重合可能々モノマーとしてt」、
フッ化ビニル、四フッ化エチレン、三フッ什エヂレン、
三フッ化塩化エチレン、六フッ化フロピレン、パーフロ
ロビニルエーテル。
t as a monomer copolymerizable with vinylidene fluoride,
Vinyl fluoride, tetrafluoroethylene, trifluoroethylene,
Ethylene trifluoride chloride, fluoropyrene hexafluoride, perfluorovinyl ether.

ヘギザフルオ「1イソブデン猪が挙げられるが、これら
に限定されるものではない。
Examples include, but are not limited to, Hegiza Fluo "1 Isobutene Boar".

例えば、上111ポリフッ化ビニリデン系樹脂を、溶簡
法、溶解法等の方法によって、適当な厚み(例えば3(
)〜200ハ1)(で製膜する3、この溶融法とは1甲
仕+ trttに′1゛ダイ、あるいηよインフレーシ
ョンダイを++XJ、伺←l−cフイルノ、を成形する
か、−または、加熱プ1/スを用いてフィルムを成形−
する方法である。“ネた、溶解法とは、当該樹脂を良溶
媒(例えば、ジメチルホルムアミド、ジメチルスルホキ
シド等の極性溶媒)l/こ溶解させて、キャスティング
に」:り製膜する方法である。
For example, the above 111 polyvinylidene fluoride resin is heated to an appropriate thickness (for example, 3(
) ~ 200ha 1) (3) This melting method is to form a film with a '1゛ die for 1A type + trtt, or an inflation die for η + + -Alternatively, forming a film using a heating press-
This is the way to do it. The "dissolution method" is a method in which the resin is dissolved in a good solvent (for example, a polar solvent such as dimethylformamide or dimethyl sulfoxide) to form a film by casting.

次いでヒ記膜を(Tg +−1(l U)〜Z5 Uの
温度範囲で怜)延伸[7、配向■型(B型)結晶を含む
フイルノ、を作るが、その場合、従来の方法によると、
フィルム欠陥部分から切れたり、不均一な厚みのフィル
ムしか作成でき々い。(Tg + 10 r未満の湿度
での延伸は無理であり、フィルムは破断して1〜まう。
The film was then stretched (at a temperature range of Tg +-1 (l U) to Z5 U) [7. A film containing oriented type (B-type) crystals was prepared by conventional methods. and,
The film may break at defective areas, or a film with uneven thickness can only be created. (Stretching at a humidity lower than Tg + 10 r is impossible, and the film breaks and rolls from 1 to 1.

) 本発明では、延伸開始時にフィルムの片端の一部を加熱
し、延伸開始点を定める。それにより、均一でかつ圧電
率が極めて高い圧電フィルムを作製できる。本発明にお
けるフィルムの片端の一部とは、第2図における斜線部
分Mであって、巾aは通常フィルム支持具間5010%
以内である。10チをこえるとフィルムの厚さの均一性
が損われるということで問題になる場合がある。
) In the present invention, at the start of stretching, a part of one end of the film is heated to determine the stretching start point. Thereby, a piezoelectric film that is uniform and has an extremely high piezoelectric constant can be produced. The part of one end of the film in the present invention is the hatched part M in FIG. 2, and the width a is usually 5010% between the film supports.
Within If the thickness exceeds 10 inches, the uniformity of the film thickness may be impaired, which may pose a problem.

上記加熱温度は該フィルムの融点より 10 tl”〜
100C低い温度が好ましく、該フィルムの融点−10
0r:未満では効果が少なく、融点−10Uをこえる払
フィルムが融解して切れてしまうので好ましくない。加
熱時間には特に制限はない。
The above heating temperature is 10 tl" or higher than the melting point of the film.
Temperatures 100C lower are preferred, with the melting point of the film -10
If it is less than 0r, the effect will be small and the wiper film with a melting point exceeding -10U will melt and break, which is not preferable. There are no particular restrictions on the heating time.

また、延伸倍率によって、配向■型(B型)結晶の量が
変化して圧電率にも影響を及ぼすので、延伸倍率は大き
い方が好ましい。特に延伸倍率とし”C,3焙り上が好
ましい。延伸速度は、通常I I−+m / +n、 
in −5(it) w/++t in 、 fjf 
&しくはlQmm/ m i n 〜10ft 7m 
i n であイ)。
Furthermore, the amount of oriented ■-type (B-type) crystals changes depending on the stretching ratio, which affects the piezoelectric constant, so the larger the stretching ratio is, the better. In particular, the stretching ratio is preferably "C, 3".The stretching speed is usually I-+m/+n,
in −5(it) w/++t in , fjf
& or lQmm/min ~10ft 7m
i n deai).

第1図に本11′i明の製法に用いる装置の一例を示す
FIG. 1 shows an example of the apparatus used in the manufacturing method described in this article.

図中、1は恒温槽、2は延伸装置である。この装置2は
、軸受3に支持された螺子性4と、該(′「4に螺合し
ているフィルム支持具5と、シ・−スヒータ6とそれに
供給する電流を調整するためのスライダック7と交流電
源とからなる。
In the figure, 1 is a constant temperature bath, and 2 is a stretching device. This device 2 consists of a screw 4 supported by a bearing 3, a film support 5 screwed onto the screw 4, a sheath heater 6, and a slider 7 for adjusting the current supplied thereto. and an AC power source.

まず、延伸装置1イ2のフィルム支持具5にポリフッ化
ビニリデンフィルム8を取付け、恒温槽l内を(Tg 
−1−to c )〜25’Cの温度範囲に保持する。
First, the polyvinylidene fluoride film 8 is attached to the film support 5 of the stretching device 1-2, and the inside of the constant temperature bath 1 (Tg
-1-toc) to 25'C.

次いでシースヒータ6によってフィルム8の末端部分を
80′G−170℃に加熱し、延伸開始点を定め、螺子
4″r 4を回転すると、フィルム支持71.5はUい
に遠ざかる方向に移動し、フィルム8は矢印方向に延伸
される。
Next, the end portion of the film 8 is heated to 80'G-170°C by the sheath heater 6 to determine the stretching start point, and when the screw 4''r4 is rotated, the film support 71.5 moves in the direction away from the U. Film 8 is stretched in the direction of the arrow.

なお、フ・イルムを加熱する方法は、シースヒーターに
:用いる方法に限らす、温風(熱風)を吹きつけて加熱
する方法でも良い。
Note that the method of heating the film is limited to the method using a sheath heater, and may also be a method of heating by blowing warm air (hot air).

上記方法によって作製した延伸フィルムの表・裏画面に
金属膜を担持せしめ、市、極を形成する。フィルム両面
への電極形成は、真空蒸着。
Metal films are supported on the front and back surfaces of the stretched film produced by the above method to form cities and poles. Electrodes are formed on both sides of the film by vacuum evaporation.

化学メッキ、金属塗膜、導電ペースト、金属箔。Chemical plating, metal coating, conductive paste, metal foil.

金属板の接着などの種々の方法によって行われる。This can be done by various methods such as bonding metal plates.

延伸フィルムの上記電極に室温で直流電界を印加し、そ
のままの状態でフィルムを融解温度より10 C〜12
0C低い温度にまで昇温し、その温度を一定時間保った
A DC electric field is applied to the electrodes of the stretched film at room temperature, and the film is heated to 10 to 12 degrees below the melting temperature.
The temperature was raised to 0C and maintained at that temperature for a certain period of time.

次に直流電界を印加したま寸、室温まで冷却したのち、
該直流電界を取り除き、分極を行なって圧電フィルムを
作成した。上記の昇温速度には特に制限はない。分極時
の最高温度の保持時間は5分間以上であればよく、通常
は加分〜1時間である。
Next, after applying a DC electric field and cooling to room temperature,
The DC electric field was removed and polarization was performed to create a piezoelectric film. There is no particular limit to the above temperature increase rate. The maximum temperature during polarization may be maintained for 5 minutes or more, and is usually an additional hour to 1 hour.

また、印加電圧は該樹脂フィルムの絶縁破壊電圧以下で
あり、通常は100〜1500 kv /cmである。
Further, the applied voltage is lower than the dielectric breakdown voltage of the resin film, and is usually 100 to 1500 kv/cm.

本発明の製法による高分子圧電フィルムは、杓−・々1
9みと、高い用型率を持ち、しかも薄く” 、iT++
 f+’tの太きい、成形加工の容易な圧電旧料を提(
J(することができる。
The polymer piezoelectric film produced by the manufacturing method of the present invention is
9mm, has a high usage rate, and is thin”, iT++
We provide a piezoelectric material with a large f+'t that is easy to mold (
J (can.

実がli V;111 ′1゛ダイイ;1き40 mm押出成形機を用いて、ポ
リフッ化ビニリデン(ツルペイ社製ンーレフ1.010
 )(tA!It点170℃ガラス転移点−40C)を
250Cで厚さ約100μmのフィルムに成形したのち
、延伸温度を室温25Cとして、延伸開始時に9Orに
加熱したシースヒータをフィルム末端の一部に3秒程度
押し当て延伸開始点を定めた。次いで、シースヒータを
Il’l/り除き、第1図に示すような装置を用いて、
延伸倍率4.5倍に一軸廷伸した。延伸速度は5〜m/
m、i nであった〇延伸したフィルムの表・裏に金を
真空蒸着E7て電極を形成し、室温25Cにおいて、1
000kv/cmの直流電界を印加した状態で昇温し、
80Cで30分間保持1〜たのち、室8まで冷却]また
。そののち、直流電界を取り除き、エレクトレット化を
施こし高分子圧電フィルムを得た。
Using a 40 mm extruder, polyvinylidene fluoride (manufactured by Tsurupei Co., Ltd. NRE 1.010
) (tA!It point 170℃ glass transition point -40C) was formed into a film with a thickness of about 100 μm at 250C, the stretching temperature was set to room temperature 25C, and a sheath heater heated to 9 Or at the beginning of stretching was attached to a part of the end of the film. The stretching start point was determined by pressing for about 3 seconds. Next, the sheath heater was removed, and using an apparatus as shown in FIG.
It was uniaxially stretched to a stretching ratio of 4.5 times. The stretching speed is 5~m/
m, in.〇Gold was vacuum deposited on the front and back sides of the stretched film to form electrodes, and at room temperature of 25C, 1
Raising the temperature while applying a DC electric field of 000 kv/cm,
Hold at 80C for 30 minutes 1~ then cool to room 8] Again. Thereafter, the DC electric field was removed and electret formation was performed to obtain a polymer piezoelectric film.

実施例2 延伸開始時にシースヒータ温度を120Cとする他は全
て実施例1と同様にして高分子田型フィルムを得た。
Example 2 A polymer field-shaped film was obtained in the same manner as in Example 1 except that the sheath heater temperature was set to 120C at the start of stretching.

実施例3 延伸開始時にシースヒータ温度を160Cとする他は全
て、実施例1と同様にして高分子圧電フィルムを111
だ。
Example 3 A polymer piezoelectric film was heated to 111C in the same manner as in Example 1, except that the sheath heater temperature was set to 160C at the start of stretching.
is.

比較例1 実施例1のシースヒータ温度を600とし、他は全て実
施例1と同様にして高分子圧電フィルムを得た。
Comparative Example 1 A polymer piezoelectric film was obtained in the same manner as in Example 1 except that the sheath heater temperature was set to 600.

比較例2 実施例1のシースヒータ温度を180Cとし、他QJ5
全て実施例1と同様に一軸延伸を行ったが、フィルムが
融解(7て切れてしま′つた。
Comparative Example 2 The sheath heater temperature of Example 1 was 180C, and other QJ5
Although uniaxial stretching was carried out in the same manner as in Example 1, the film melted (7) and broke.

比較例3 実Mli例1と同様に作成したフィルムを、室g1にて
延伸倍率4.5倍に一軸延伸した。さらに実施例1と同
様の条件でエレクトレット化して、高分子圧電フィルム
を得た。
Comparative Example 3 A film prepared in the same manner as in Actual Mli Example 1 was uniaxially stretched at a stretching ratio of 4.5 times in chamber g1. Furthermore, it was made into an electret under the same conditions as in Example 1 to obtain a polymer piezoelectric film.

実施例 実施例1の延伸温度をOC1シースヒータ温度を120
 t:X延伸倍率を3.5倍とした他は全て実施例1と
同様にして高分子圧電フィルムを得た。
Example Stretching temperature of Example 1: OC1 Sheath heater temperature: 120
A polymer piezoelectric film was obtained in the same manner as in Example 1 except that the t:X stretching ratio was 3.5 times.

比較例4 比較例3の延伸温度をOC1延伸倍率を3.5倍とした
他は全て比較例3と同様にした。
Comparative Example 4 Everything was the same as in Comparative Example 3, except that the stretching temperature and OC1 stretching ratio were changed to 3.5 times.

この場合、実施例4と比較しで、延伸フィルムの収率が
格段に悪くなり、実施例4を100 とした時30ぐら
いに落ちる。これは、破断するものが多くなるためであ
る。
In this case, compared to Example 4, the yield of the stretched film was much worse, falling to about 30 when Example 4 was taken as 100. This is because more things break.

実施例5 実施例1の延伸温度を−30r: 、 シースヒータ温
度を120c、延伸倍率を3倍とした他は、全て実施例
1と同様にして高分子フィルムを得た。
Example 5 A polymer film was obtained in the same manner as in Example 1 except that the stretching temperature in Example 1 was -30r, the sheath heater temperature was 120c, and the stretching ratio was 3 times.

比較例5 比較例3の延伸温度を一30c1延伸倍率を3倍とした
他は、全て比較例3と同様にして高分子圧電フィルムを
得た。
Comparative Example 5 A polymer piezoelectric film was obtained in the same manner as in Comparative Example 3 except that the stretching temperature in Comparative Example 3 was changed to -30c1 and the stretching ratio was changed to 3 times.

この場合、延伸フィルムの収率はさらに悪くなり、実施
例5での収率を1(10とした時、10程度に落ちる。
In this case, the yield of the stretched film becomes even worse, dropping to about 10 when the yield in Example 5 is set to 1 (10).

また、延伸出来たとしても、均一な厚みのフィルムが得
られないが、一応エレクトレット化して、フィルムラ得
fc。
Furthermore, even if it were possible to stretch it, it would not be possible to obtain a film with a uniform thickness, but it could be made into an electret to obtain a film fc.

比較例6 比較例3の延伸温度を一45C1延伸倍率を318とし
て延伸を行ったが、フィルムは全で破断した。
Comparative Example 6 Stretching was carried out using the stretching temperature of Comparative Example 3 as -45C1 and the stretching ratio as 318, but the film was completely broken.

比り)v例7 比較例3の延伸温度を40υとした他は、全て止す1ツ
例3と同様にして高分子圧電フイルノ・を得た。
Comparison) Example 7 A polymer piezoelectric film was obtained in the same manner as in Example 3, except that the stretching temperature in Comparative Example 3 was changed to 40υ.

耳!土、実施例1〜5、比較例1〜7によって111’
、)わた1・16分子川重重フィルムのm雷1率d31
と、フーfルノ、の厚力・およびぞのバラツキを測定し
た結果に表−1に示1゜
ear! soil, 111' according to Examples 1 to 5 and Comparative Examples 1 to 7
,) cotton 1.16 molecules Kawa Shigeju film's m lightning 1 rate d31
Table 1 shows the results of measuring the thickness and thickness variations of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の高分子圧型、フィルムの製造法に用
いる装置の一例を示1〜、第2図は延伸装置2の一部の
拡大概略図である。 1・・・・・・恒温4W’i、2・・・・・・延伸装置
、6・・・・・・シースヒータ、8・・・・・・フィル
ム。
FIG. 1 shows an example of an apparatus 1 to 1 used in the method for producing a polymeric pressure film of the present invention, and FIG. 2 is an enlarged schematic diagram of a part of a stretching apparatus 2. As shown in FIG. 1... Constant temperature 4W'i, 2... Stretching device, 6... Sheath heater, 8... Film.

Claims (1)

【特許請求の範囲】[Claims] ガラス転移点がOC以下である結晶性高分子からなるフ
ィルムを(ガラ2転移点+1(ltl?)〜5Cの温度
範囲で延伸するにあたって、延伸開始時にフィルムの片
端の一部を該フィルムの融点よりHl tr −100
U低い温度で加熱して延伸することを特徴とする高分子
圧電フィルムの製造法。
When stretching a film made of a crystalline polymer with a glass transition point of OC or lower at a temperature range of 1 (ltl?) to 5C, one end of the film is stretched at the melting point of the film at the start of stretching. From Hl tr -100
U. A method for producing a polymer piezoelectric film, which comprises heating and stretching at a low temperature.
JP20073882A 1982-11-16 1982-11-16 Manufacture of high-molecular piezoelectric film Pending JPS5991032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20073882A JPS5991032A (en) 1982-11-16 1982-11-16 Manufacture of high-molecular piezoelectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20073882A JPS5991032A (en) 1982-11-16 1982-11-16 Manufacture of high-molecular piezoelectric film

Publications (1)

Publication Number Publication Date
JPS5991032A true JPS5991032A (en) 1984-05-25

Family

ID=16429345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20073882A Pending JPS5991032A (en) 1982-11-16 1982-11-16 Manufacture of high-molecular piezoelectric film

Country Status (1)

Country Link
JP (1) JPS5991032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248445A (en) * 2008-04-07 2009-10-29 Murata Mfg Co Ltd Manufacturing apparatus and process for resin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248445A (en) * 2008-04-07 2009-10-29 Murata Mfg Co Ltd Manufacturing apparatus and process for resin film

Similar Documents

Publication Publication Date Title
US4560737A (en) Piezoelectric polymeric material
US4375042A (en) Temperature gradient method of nonuniformly poling a body of polymeric piezoelectric material and novel flexure elements produced thereby
JP3074404B2 (en) Polymer piezoelectric material
JP6061467B2 (en) Near-zero retardation film
US4863648A (en) Process for making polarized material
GB2149204A (en) Method of producing polymeric electret elements
JPS5991032A (en) Manufacture of high-molecular piezoelectric film
US4656234A (en) Dielectric film for capacitor and process for producing same
TWI759589B (en) shaped body
JPS5938239A (en) Production of high-molecular piezoelectric film
JPS6142879B2 (en)
JP3309452B2 (en) Method for producing retardation film
TW202027108A (en) Electret sheet and piezoelectric sensor
KR100774303B1 (en) Electret for high temperature, process for preparing the same, and microphone comprising the electret
JPS5889881A (en) Manufacture of macromolecular piezoelectric film
JPS60217674A (en) Manufacture of high-molecular piezoelectric body having excellent heat resistance
JPS6055034A (en) Production of polymer electret element
JP3547853B2 (en) Aromatic polyether sulfone film, process for producing the same, and solution composition for producing the same
JP2004160819A (en) Manufacturing method for optical film
JPS635890B2 (en)
JPS58186984A (en) Manufacture of high molecular piezoelectric film and device thereof
JPS61102791A (en) Manufacture of macromolecular piezoelectric body, excellent in thermal stability
JPS60111483A (en) Piezoelectric high molecular material
JPS5963784A (en) Manufacture of high molecular piezoelectric film
JP2004122510A (en) Method for producing polyparaphenylene terephthalamide film