JPS59219927A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPS59219927A
JPS59219927A JP58093769A JP9376983A JPS59219927A JP S59219927 A JPS59219927 A JP S59219927A JP 58093769 A JP58093769 A JP 58093769A JP 9376983 A JP9376983 A JP 9376983A JP S59219927 A JPS59219927 A JP S59219927A
Authority
JP
Japan
Prior art keywords
electrode
roll
reaction chamber
susceptor
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58093769A
Other languages
Japanese (ja)
Other versions
JPH0547970B2 (en
Inventor
Shinji Nishiura
西浦 真治
Yoshiyuki Uchida
内田 喜之
Kazumi Maruyama
和美 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP58093769A priority Critical patent/JPS59219927A/en
Publication of JPS59219927A publication Critical patent/JPS59219927A/en
Publication of JPH0547970B2 publication Critical patent/JPH0547970B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To remove in a short time a reaction product adhered on mutually facing electrodes in a reaction chamber without opening the reaction chamber by a method wherein two rolls are used respectively as the delivery roll and the wind- up roll of a thin belt to shield the second electrode in electrically insulated condition passing nearby the second electrode on the first electrode side. CONSTITUTION:The titled device is so constructed as to make a thin belt 20 wound on a roll 21 to be wound up by a roll 22 passing between a first electrode 3 to be used both as a susceptor and a facing electrode 4, and the plane of the high polymeric thin belt 20 is formed according to tension between both the rolls thereof. The rolls 21, 22 may be constructed of a metal or an insulator, and made to have the same electric potential with the facing electrode 8. The insulating belt 20 is made to approach the electrode 4 as much as possible to reduce the quantity to be deposited on the facing electrode 4. When a-Si deposited on the thin belt 20 exceeds the prescribed film thickness, the roll 22 is wound to supply the insulating belt of a fresh surface. The deposited a-Si is wound up together in the roll 22 according to winding up thereof. After winding up is finished, by performing plasma etching of the reaction chamber, cleaning is attained without exposing the reaction chamber to the open air.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は基板の支持体を兼ねる第一電極とそれに対向し
て配置される第二電極との間に電圧を印加してグロー放
電を発生させ、反応ガスを分解して基板上に非晶質半導
体あるいは絶縁物などの薄膜を堆積させるプラズマCV
D装置に関する。
[Detailed Description of the Invention] [Technical Field to Which the Invention Pertains] The present invention involves generating a glow discharge by applying a voltage between a first electrode that also serves as a support for a substrate and a second electrode that is placed opposite to the first electrode. plasma CV, which decomposes reactive gases and deposits thin films of amorphous semiconductors or insulators on substrates.
Regarding D device.

〔従来技術とその問題点〕[Prior art and its problems]

非晶質半導体、特に非晶質シリコンを用いる非晶買手導
体太陽電池は、光を直接電気エネルギーに変換する太陽
電池の低コスト比の有力な候補者として研究開発が進め
られている。非晶質シリコン(以下a−8i)太陽電池
は、金属等の導電性基板又は上面に透明導電膜を備えた
ガラス等の透明絶縁性基板上に、例えばp型層−8i層
、ノンドープa−8i層、n型a−8i層をそれぞれ数
百^、数μm、数百数百酸形成ことにより、pin接合
を有するa −S i層を光起電力層として形成したも
のである。これらの各層において、p型層、n型層に光
透過性のよいa−8iC層、又は伝導性の高い微結晶化
a−8i層を用いて効率を用いて効率を向上させる技術
についても周知である。
Amorphous conductor solar cells using amorphous semiconductors, particularly amorphous silicon, are being researched and developed as a promising candidate for the low cost ratio of solar cells that directly convert light into electrical energy. An amorphous silicon (hereinafter referred to as a-8i) solar cell is made of a p-type layer, a non-doped a-8i layer, and a non-doped a-8i layer on a conductive substrate such as metal or a transparent insulating substrate such as glass with a transparent conductive film on the upper surface. The a-Si layer having a pin junction is formed as a photovoltaic layer by forming an 8i layer and an n-type a-8i layer with a thickness of a few hundred^, a few μm, and a few hundred and several hundred layers, respectively. In each of these layers, it is also well known that the efficiency can be improved by using an a-8iC layer with good light transmittance or a microcrystalline a-8i layer with high conductivity as a p-type layer and an n-type layer. It is.

このa−8i層を形成する装置として第1図に示す容量
結合型グロー放電装置が知られている。容儀結合型グロ
ー放電装置は、大面積太陽電池の製造に適している。ベ
ルジャ1の内部に、ヒータ2を備えた電極3がとりつげ
られておりその下面に対向して電極4が配置されている
。a−別層が形成される基板5は、上部電極3にとりつ
けられており、ヒータ2によって200〜300’Oの
温度に保たれる。ベルジャ1の内部空間はガス導入管6
を介してガス供給ラインに、排気管7を介して排気系に
接続されている。例えばp型a−81層を形成する場合
、シランガスとジポランガスを適当な分量混合し、管6
を通じてベルジャに導入し、排気系とつりあわせて1〜
10Torrに保持する。外部から高周波電源8を用い
て、両対向電極3,4間に高周波電力を印加し、内部の
ガスを分解して、p型a −S i層を基板5の上に堆
積する。ノンドープ層、n型a−8!層の形成において
も同様な形で適当な組成のガスをグロー放電分解して堆
積する。
A capacitively coupled glow discharge device shown in FIG. 1 is known as a device for forming this a-8i layer. Coupled glow discharge devices are suitable for manufacturing large area solar cells. An electrode 3 equipped with a heater 2 is attached to the inside of the bell jar 1, and an electrode 4 is arranged opposite to the lower surface of the electrode 3. a- The substrate 5 on which another layer is formed is attached to the upper electrode 3 and kept at a temperature of 200 to 300'O by the heater 2. The internal space of the bell jar 1 is a gas introduction pipe 6
It is connected to a gas supply line via a gas supply line, and to an exhaust system via an exhaust pipe 7. For example, when forming a p-type A-81 layer, mix appropriate amounts of silane gas and diporane gas,
Introduce it to the bell jar through the system, and balance it with the exhaust system.
Maintain at 10 Torr. Using a high frequency power source 8 from the outside, high frequency power is applied between both opposing electrodes 3 and 4 to decompose the internal gas and deposit a p-type a-Si layer on the substrate 5. Non-doped layer, n-type a-8! In forming the layer, a gas of an appropriate composition is decomposed by glow discharge and deposited in a similar manner.

第2図(a) l (b)に上部電極の拡大図を示す。FIGS. 2(a), 2(b) show enlarged views of the upper electrode.

(a)は基板5を保持した上部電極3を下から見た図で
ある。
(a) is a view of the upper electrode 3 holding the substrate 5 viewed from below.

電極3は支持爪9により(a)および断面図(b)に示
すように、ヒータ2を内蔵した支持体toにとりつけら
れており、電極3は支持体10にはめこまれて、支持爪
9によって支えられるようになっている。
The electrode 3 is attached to the support to which the heater 2 is built in by the support claw 9, as shown in (a) and the cross-sectional view (b). It is supported by

基板5は電極3につくられた穴にはめこまれており、基
板5と電極3の電気的接触、熱的接触を向上させるため
に、基板の上111から金属製の板でおさえられ、固定
されている。基板の表面は電極4に対向し、又電極4に
対して露出している。電極3と電極4の間に高周波電圧
を印加してグロー放電を発生させると、電極3、基板5
さらに対向電極4をはじめとして器壁等にa−8iが付
着する。
The substrate 5 is fitted into a hole made in the electrode 3, and in order to improve electrical contact and thermal contact between the substrate 5 and the electrode 3, a metal plate is held down from above the substrate 111 and fixed. has been done. The surface of the substrate faces the electrode 4 and is exposed to the electrode 4. When a high frequency voltage is applied between the electrode 3 and the electrode 4 to generate a glow discharge, the electrode 3 and the substrate 5
Furthermore, a-8i adheres to the counter electrode 4 and other parts of the vessel wall.

このa −S iが基板以外の部に付着すると、膜生成
を重ねるにつれて、この部分からの膜はがれが生じ、グ
ロー放電装置内がよごれ、a−8i膜にピンホールが出
きたり、またa−8+膜の膜質が低下して太陽電池の効
率が低下した。電極3は一回の成長工程終了毎にとり出
し清浄化等の処置をとるので問題ないが、電極4、支持
体10、支持爪9あるいは器壁等は頻繁に付着a−8i
を除去し、また清浄化の作業をする必要がある。その際
、膜成長作業を中断するのみならず、炉の温度を低くす
るために時間を要したり、ふきとり作業、空気ばく露等
炉自体にとって好ましくない条件におかれ、さらに清浄
作業彼も空焼き等の処置をとる必要があり、装置の安定
性、稼動率という点でも問題が多かった。
If this a-S i adheres to a part other than the substrate, as the film continues to be formed, the film will peel off from this part, the inside of the glow discharge device will become dirty, pinholes will appear in the a-8i film, and a- The quality of the 8+ film deteriorated and the efficiency of the solar cell decreased. There is no problem because the electrode 3 is taken out and cleaned after each growth process, but the electrode 4, support 10, support claw 9, or vessel wall often gets stuck.
It is necessary to remove it and carry out cleaning work. In this case, not only does the film growth work have to be interrupted, but it also takes time to lower the temperature of the furnace, and the furnace itself is exposed to unfavorable conditions such as wiping and air exposure. It was necessary to take measures such as burning, and there were many problems in terms of the stability and operation rate of the equipment.

第3図に他の装置の例を示す。この装置は、p型、ノン
ドープ、n型a−8!層を異った反応室で形成し、各層
の成長時において他の層を形成した時の影響を抑えて、
膜の制御性を向」ニさせようというものである。三つの
反応室11 、12 、13の前後に、基板をサセプタ
3に装着するための前室工1と、pin層を形成した基
板を取り出すための後室15があり、各室11〜15は
パルプ16を介して排気系に接続されている。サセプタ
3は第4図に拡大して示したように穴31を有し、その
中に基板5が落し込まれている。この穴31は下から見
ると第2図(a)に示すように配置されている。基板5
を装着したサセプタ3を前室14に図示しない仕切り弁
を開いて入れる。
FIG. 3 shows an example of another device. This device is p-type, non-doped, and n-type a-8! By forming the layers in different reaction chambers and suppressing the effects of forming other layers during the growth of each layer,
The aim is to improve the controllability of the membrane. Before and after the three reaction chambers 11, 12, and 13, there is a front chamber 1 for mounting the substrate on the susceptor 3, and a rear chamber 15 for taking out the substrate on which the pin layer has been formed. It is connected to the exhaust system via the pulp 16. The susceptor 3 has a hole 31, as shown enlarged in FIG. 4, into which the substrate 5 is dropped. The holes 31 are arranged as shown in FIG. 2(a) when viewed from below. Board 5
The susceptor 3 equipped with the susceptor 3 is placed into the front chamber 14 by opening a gate valve (not shown).

サセプタ3の搬入は並んでいる車輪17の上を動かすこ
とによって行なわれる。サセプタ3が前室14の所定の
位置へ達すると仕切り弁を閉じ、バルブ16を介して室
14を排気する。ついでサセプタ3を前室14内で基板
の温度が200〜300’Oになるように加熱する。温
度が200〜300℃で安定した後、前室14と反応室
110間の仕切り弁(図示せず)を開き、サセプタ3を
車輪17の駆動に伴なって室11内に搬入する。所定の
位置に来ると室14 、11の間の仕切り弁を閉じ、反
応室11内にシランとジボランの混含ガスを導入し、1
〜10Torrの状態でサセプタ3と対向電極4との間
に加えられた高周波電界によりグロー放電分解を行ない
、pma −81層をサセプタ3に装着された基板5の
上に堆積させる。所定の膜厚の堆積が終了すると反応室
11を排気し、反応室11 、12間の仕切り弁を開け
てサセプタ3を反応室12へ移動する。以降は同様にし
て各a−8i層が堆積される。室13でn層a−8!が
形成されると、サセプタ3は反応室13と後室150間
の仕切り弁を通じて室15に入れる。ここでサセプタ3
を一定温度、例えば100℃以下に冷却した後、室15
にN2ガスを導入1−て常圧とし、仕切り弁を開いてサ
セプタ3を取り出す。
The susceptor 3 is carried in by moving it on the wheels 17 that are lined up. When the susceptor 3 reaches a predetermined position in the front chamber 14, the gate valve is closed and the chamber 14 is evacuated via the valve 16. Next, the susceptor 3 is heated in the front chamber 14 so that the temperature of the substrate is 200 to 300'O. After the temperature stabilizes at 200 to 300° C., a gate valve (not shown) between the front chamber 14 and the reaction chamber 110 is opened, and the susceptor 3 is carried into the chamber 11 as the wheels 17 are driven. When the predetermined position is reached, the gate valve between the chambers 14 and 11 is closed, and a gas containing a mixture of silane and diborane is introduced into the reaction chamber 11.
Glow discharge decomposition is performed by a high-frequency electric field applied between the susceptor 3 and the counter electrode 4 under a condition of ~10 Torr, and a PMA-81 layer is deposited on the substrate 5 mounted on the susceptor 3. When the deposition of a predetermined film thickness is completed, the reaction chamber 11 is evacuated, the gate valve between the reaction chambers 11 and 12 is opened, and the susceptor 3 is moved to the reaction chamber 12. Thereafter, each a-8i layer is deposited in the same manner. N layer a-8 in room 13! Once formed, the susceptor 3 enters the chamber 15 through the gate valve between the reaction chamber 13 and the rear chamber 150. Here susceptor 3
After cooling to a certain temperature, for example, 100°C or less,
N2 gas is introduced into the tank to bring it to normal pressure, the gate valve is opened, and the susceptor 3 is taken out.

反応室11〜13においては、サセプタ3と対向電極4
0間の距離が最も近く、40〜100酩である。
In the reaction chambers 11 to 13, a susceptor 3 and a counter electrode 4
The distance between 0 and 0 is the closest, which is 40 to 100.

他の距離、例えばサセプタ3と反応室の壁、車輪17と
室壁、車輪17と対向電極4との間の距離はサセプタ3
と対向電極4の距離に比較して大きな距離、例えば1.
5倍の距離を有している。このためサセプタ3と対向′
電極4との間に高周波電界を加えて放電させても電界は
この両極間に集中し、分解したa−8iの大部分が付着
する。サセプタ3は基板5と共に外にとり出されるので
、その際洗浄等の処理を行うことができるが、反応室内
の対向電極4はa−8+が多く堆積することになり、量
が多くなるとはがれてグロー放電時に飛散し、基板上に
とりこまれたりしてピンホール形成または膜質低下の原
因となる。従ってこれまで対向電極への堆積量がある量
を越えると洗浄のために膜生成作業を中断してa−8i
の除去を行い、次いでCF4等のガスを導入し、プラズ
マエツチング等の手段により、反応室内の清浄化を行っ
ていた。しかし当初からプラズマエツチングする試みは
長時間を必要とすると共に、除去された部分にばらつき
が生じ、効率的な清浄作業を行うことができなかった。
Other distances, such as the distance between the susceptor 3 and the wall of the reaction chamber, the distance between the wheel 17 and the chamber wall, and the distance between the wheel 17 and the counter electrode 4,
and the distance between the counter electrode 4 and the counter electrode 4, for example, 1.
It has five times the distance. Therefore, it faces the susceptor 3'
Even if a high-frequency electric field is applied between the electrode 4 and a discharge is caused, the electric field is concentrated between these two electrodes, and most of the decomposed a-8i adheres. Since the susceptor 3 is taken out together with the substrate 5, processing such as cleaning can be performed at that time, but a large amount of a-8+ will accumulate on the counter electrode 4 in the reaction chamber, and if the amount becomes large, it will peel off and glow. It scatters during discharge and gets trapped on the substrate, causing pinhole formation or film quality deterioration. Therefore, until now, when the amount of deposition on the counter electrode exceeds a certain amount, the film formation operation is interrupted for cleaning.
The interior of the reaction chamber was then cleaned by introducing a gas such as CF4 and using means such as plasma etching. However, initial attempts to perform plasma etching required a long time, and the removed portions varied, making it impossible to perform an efficient cleaning operation.

また反応室を開くと反応室の内壁が外気等で汚染される
等の問題があり、また作業が長く中断されるので稼動率
の点からも問題があった。
Furthermore, when the reaction chamber is opened, there are problems such as the inner walls of the reaction chamber being contaminated with outside air, and there are also problems in terms of operating efficiency because the work is interrupted for a long time.

〔発明の目的〕[Purpose of the invention]

本発明は、反応室内の対向電極上に付着した反応生成物
を、反応室を開くことなく、しかも短い時間で除去する
ことのできるプラズマCVD装置を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plasma CVD apparatus that can remove reaction products deposited on a counter electrode in a reaction chamber in a short time without opening the reaction chamber.

〔発明の要点〕[Key points of the invention]

基板の支持体を兼ねる第一電極に対向配置された第二電
極の両側に、二つのロールを備え、そのロールがそれぞ
れ第二電極の第−電極側の近傍を通って第二電極を電気
的に絶縁された状態で遮蔽する薄帯の送り出しロールお
よび巻き取りロールであることによって上記の目的を達
成する。
Two rolls are provided on both sides of a second electrode placed opposite to a first electrode that also serves as a support for the substrate, and each of the rolls passes near the second electrode side of the second electrode to electrically connect the second electrode. The above object is achieved by having a ribbon delivery roll and take-up roll that are insulated and shielded from each other.

〔発明の実施例〕[Embodiments of the invention]

第5図に本発明の第一の実施例を示す。サセプタを兼ね
る第一電極3と対向電極40間を通って、ロール21に
巻かれている、例えばテフロン、ポリイミド、ポリアミ
ドイミド、ポリビスマレインイミド等の高分子フィルム
からなる薄帯側がロール22に巻きとられるように構成
したものである。この両ロール間の張力により高分子薄
帯20の平面が形成される。電極3と電極4の距離が4
0〜100關のとき薄帯20と対向電極4との距離を3
0朋以内とした。第5図は第4図のような装置において
は紙面と垂直の方向における断面図である。従って、サ
セプタ3は第5図の紙面に垂直方向に移動する。
FIG. 5 shows a first embodiment of the present invention. A thin strip made of a polymer film such as Teflon, polyimide, polyamideimide, polybismaleimide, etc., which is wound around a roll 21, passes between the first electrode 3, which also serves as a susceptor, and the counter electrode 40, and is wound around a roll 22. It is designed so that it can be taken. A flat surface of the polymer ribbon 20 is formed by the tension between the two rolls. The distance between electrode 3 and electrode 4 is 4
When the angle is 0 to 100, the distance between the ribbon 20 and the counter electrode 4 is 3
It was set to within 0. FIG. 5 is a sectional view of the apparatus shown in FIG. 4 in a direction perpendicular to the plane of the paper. Therefore, the susceptor 3 moves in a direction perpendicular to the paper plane of FIG.

ロー/l’2L、22は、金属又は絶縁体のいずれに構
成してもよく対向電極8と同電位になるようにした。
Low/l'2L, 22 may be made of either metal or an insulator, and is made to have the same potential as the counter electrode 8.

反応室内で1〜10Torrのガス雰囲気で高周波電源
8を用いて電圧印加を行い、グロー放電分解した。
A voltage was applied using a high frequency power source 8 in a gas atmosphere of 1 to 10 Torr in the reaction chamber to perform glow discharge decomposition.

a−81はサセプタとサセプタに搭載された基板さらに
対向電極4及び絶縁帯加重に形成された。対向電極4と
薄帯側の距離が小さいので対向電極4の面上に堆積され
た量は、薄帯側の上に堆積された量に比較すると少ない
量であった。対向電極4上に堆積される量を減らすため
に絶縁帯加をできるだけ電極4に近付ける必要がある。
A-81 was formed on the susceptor, the substrate mounted on the susceptor, the counter electrode 4, and the insulating band weight. Since the distance between the counter electrode 4 and the ribbon side was small, the amount deposited on the surface of the counter electrode 4 was small compared to the amount deposited on the ribbon side. In order to reduce the amount deposited on the counter electrode 4, it is necessary to place the insulating layer as close to the electrode 4 as possible.

薄帯刈上に堆積したa−8+が所定の膜厚を越えた時ロ
ール22を巻いて新鮮な表面の絶縁帯を供給した。この
巻きとりによって堆積したa−8iは一諸にロール22
内に巻き込まれる。薄帯20のロール長さ方向の幅は電
極4の幅より大きいことが望ましく、5cIn以上大き
くすることにより対向電極4に付着するa−8iO量を
減少させることができた。ロール22による巻き取りの
後、CF4等のガスな用いて反応室のプラズマエツチン
グを行うことにより、反応室を外気にさらすことなくク
リーニングを行うことができた。
When the a-8+ deposited on the ribbon exceeded a predetermined film thickness, the roll 22 was wound to supply a fresh surface insulation strip. The a-8i deposited by this winding is all rolled into the roll 22.
Caught inside. It is desirable that the width of the ribbon 20 in the roll length direction is larger than the width of the electrode 4, and by increasing the width by 5 cIn or more, the amount of a-8iO adhering to the counter electrode 4 could be reduced. After winding up with the roll 22, the reaction chamber was plasma etched using a gas such as CF4, thereby making it possible to clean the reaction chamber without exposing it to the outside air.

第6図は第二の実施例で、ロー# 21 、22をサセ
プタ3に対して対向電極40反対側に配置したものであ
る。これは方向変換ロール23.24を用いて図のよう
に構成される。この構成によって清浄な帯加が巻いであ
るロール21に付着するa−8lを低減することができ
、ロール22による巻きとりの際にa−8+付着の少な
い絶縁帯加を形成することができた。
FIG. 6 shows a second embodiment, in which rows #21 and #22 are arranged on the opposite side of the counter electrode 40 with respect to the susceptor 3. This is constructed as shown using deflection rolls 23,24. With this configuration, it was possible to reduce the amount of a-8l adhering to the roll 21 where the clean band was wound, and it was possible to form an insulating band with less adhesion of a-8+ during winding by the roll 22. .

第7図は第三の実施例で、反応室1B内にサセプタ3と
対向電極4を図のように構成し、絶縁帯加の巻きとりロ
ール22を排気系につながる排気口7内に設置したもの
である。このため巻きとりのためa−8+膜が少々とび
ちっても反応室18内を汚染することがなくなった。
FIG. 7 shows a third embodiment, in which a susceptor 3 and a counter electrode 4 are configured as shown in the figure in a reaction chamber 1B, and an insulated take-up roll 22 is installed in an exhaust port 7 connected to an exhaust system. It is something. Therefore, even if the a-8+ film was slightly splashed due to winding, the inside of the reaction chamber 18 was not contaminated.

第8図は第四の実施例で、第三の実施例では二つの方向
変換ロール2.L 、 25を通る毎に多少a−8+が
はがれるので方向変換ロールを減らし、さらにロール2
4′と巻きとりロール22を共に、排気ロア内に設置し
たものである。また、新しい絶縁帯を巻いであるロール
21についても引き出し穴27を除き4体をカバー26
でおおい、カバー26をロール21と共に電極4と同電
位に保持した。このため新しく引ぎ出される絶縁帯20
にa−8iが付着しているということがなくなった。
FIG. 8 shows a fourth embodiment, in which two direction changing rolls 2. Since a-8+ is peeled off a little each time it passes through L and 25, reduce the direction change roll and further roll 2.
4' and the take-up roll 22 are both installed in the exhaust lower. Also, regarding the roll 21 wrapped with a new insulating band, four bodies are covered with the cover 26, excluding the pull-out hole 27.
The cover 26 and the roll 21 were held at the same potential as the electrode 4. For this reason, the newly drawn insulation band 20
There is no longer any case that A-8i is attached to the surface.

以上いずれの場合も、サセプタ3と対向電極4の距離を
最低とし、対向電極4と同電位である各ロール等はサセ
プタ又は室壁から十分距離を離して(サセプタ3と対向
電極40間の1.5倍以上)構成された。
In any of the above cases, the distance between the susceptor 3 and the counter electrode 4 is kept at a minimum, and each roll, etc. that has the same potential as the counter electrode 4 is kept at a sufficient distance from the susceptor or the chamber wall (the distance between the susceptor 3 and the counter electrode 40 is .5 times or more).

第9図は第五の実施例で、サセプタ3を搬送する車輪1
7が存在する、場合のサセプタ3と対向電極4、さらに
ロール等の関係を示し、車輪17と対向電極4、ロール
n、24等との距離を、すべてサセプタ3と対向電極4
との間の距離1.5倍以上とした。
FIG. 9 shows a fifth embodiment, in which the wheels 1 for transporting the susceptor 3
7 exists, the relationship between the susceptor 3 and the counter electrode 4, as well as the rolls, etc., and the distances between the wheel 17 and the counter electrode 4, roll n, 24, etc.
The distance between the

第10図は方向変換ロール%、29を対向電極4に固定
して形成したものである。この場合も絶縁帯加が対向電
極4に密着しないようにロール測、29の位置を構成す
ることが望ましい。
In FIG. 10, a direction changing roll %29 is fixed to the counter electrode 4. In this case as well, it is desirable to configure the position of the roll gauge 29 so that the insulating band does not come into close contact with the counter electrode 4.

以上の実施例では薄帯20に高分子フィルムを用いてい
るが、高分子フィルムの代りに導体箔を用いても同じ効
果を得た。ただしこの場合、導体箔およびそれを支持す
るロールなどの導体部分は、第一電極および対向電極か
ら絶縁状態にしておくことが必要であった。
In the above embodiments, a polymer film is used for the ribbon 20, but the same effect could be obtained by using a conductive foil instead of the polymer film. However, in this case, it was necessary to keep the conductor parts such as the conductor foil and the roll supporting it insulated from the first electrode and the counter electrode.

〔発明の効果〕〔Effect of the invention〕

本発明はプラズマCVD装置のグロー放電発生のための
二つの電極のうち、基板を支持しない対向電極の表面を
、その電極に絶縁されその電極の近傍を通る薄帯により
覆い、その薄帯は送り出しロールから出て巻き取りロー
ルに巻き取られるようにしたものである。これによりa
−8iのような反応生成物を対向電極でなく薄帯上に付
着させ、薄帯を巻き取ることにより反応生成物を反応室
を開くことなく迅速に除去することができ、反応室内を
外気にさらすことなくクリーニングすることが可能とな
った。この結果、特に太陽電池に用いるa−8!膜の形
成を安定して行うことができ、太陽電池の特性、製造歩
留りの向上、あるいはプラズマCVD装置の稼動率の向
上が達成されるので、本発明の効果は極めて大である。
The present invention covers the surface of the opposing electrode, which does not support the substrate, of the two electrodes for generating glow discharge in a plasma CVD apparatus, with a thin strip that is insulated from the electrode and passes near the electrode, and the thin strip is sent out. It emerges from the roll and is wound onto a take-up roll. This allows a
By depositing the reaction products such as -8i on the thin strip instead of the counter electrode and winding up the thin strip, the reaction products can be quickly removed without opening the reaction chamber, and the reaction chamber can be vented to the outside air. It is now possible to clean without exposing it. As a result, a-8! used especially for solar cells! The effects of the present invention are extremely significant, since the film can be formed stably, and the characteristics of solar cells and production yields can be improved, or the operating rate of plasma CVD equipment can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のプラズマCVD装置の断面図、第2図(
a) I (b)はサセプタおよびヒータ部を示し、(
a)は平面図、(b)は断面図、第3図は別の従来のプ
ラズマCVD装置の断面図、第4図はその要部拡大図、
第5図は本発明の一実施例の断m1図、第6図ないし第
10図はそれぞれ異なる実・流側の断面図である。 3・・・サセプター  対向電極、18・・・反応室、
加・・・薄帯、21・・・送り出しロール、22・・・
巻き取りロール。 第6図 第7図 第8図 第9図 第10図
Figure 1 is a cross-sectional view of a conventional plasma CVD apparatus, and Figure 2 (
a) I (b) shows the susceptor and heater part, (
a) is a plan view, (b) is a sectional view, FIG. 3 is a sectional view of another conventional plasma CVD apparatus, and FIG. 4 is an enlarged view of the main parts thereof,
FIG. 5 is a cross-sectional view of one embodiment of the present invention, and FIGS. 6 to 10 are different cross-sectional views of the actual and flow sides. 3... Susceptor counter electrode, 18... Reaction chamber,
Add...Thin strip, 21...Feeding roll, 22...
Take-up roll. Figure 6 Figure 7 Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 1)基板の支持体を兼ねる第一電極とそれに対向して配
置される第二電極との間に電圧に、印加してグロー放電
を発生させて反応ガスを分解するものにおいて、第二電
極の両側に二つのロールを備え、該ロールがそれぞれ第
二電極の第一電極側の近傍を通って第二電極を電気的に
絶縁された状態で遮蔽する薄帯の送り出しロールおよび
巻き取りロールであることを%徴とするプラズマCVD
装置。
1) In a device that decomposes a reactive gas by applying a voltage between a first electrode that also serves as a support for the substrate and a second electrode placed opposite to it to generate a glow discharge, the second electrode A ribbon delivery roll and a take-up roll comprising two rolls on both sides, each of which passes near the first electrode side of the second electrode and shields the second electrode in an electrically insulated state. Plasma CVD with
Device.
JP58093769A 1983-05-27 1983-05-27 Plasma cvd device Granted JPS59219927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093769A JPS59219927A (en) 1983-05-27 1983-05-27 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093769A JPS59219927A (en) 1983-05-27 1983-05-27 Plasma cvd device

Publications (2)

Publication Number Publication Date
JPS59219927A true JPS59219927A (en) 1984-12-11
JPH0547970B2 JPH0547970B2 (en) 1993-07-20

Family

ID=14091630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093769A Granted JPS59219927A (en) 1983-05-27 1983-05-27 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPS59219927A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246814A (en) * 1987-04-02 1988-10-13 Matsushita Electric Ind Co Ltd Thin film formation apparatus
WO2004087991A1 (en) * 2003-03-31 2004-10-14 Konica Minolta Holdings, Inc. Thin film forming apparatus and method for forming thin film
JP2008057020A (en) * 2006-09-01 2008-03-13 Ulvac Japan Ltd Winding type plasma cvd system
US20130084409A1 (en) * 2010-07-09 2013-04-04 Vito Nv Method and Device for Atmospheric Pressure Plasma Treatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678416A (en) * 1979-11-29 1981-06-27 Sumitomo Electric Ind Ltd Preparation of thin film
JPS5681923A (en) * 1979-12-06 1981-07-04 Sumitomo Electric Ind Ltd Manufacture of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678416A (en) * 1979-11-29 1981-06-27 Sumitomo Electric Ind Ltd Preparation of thin film
JPS5681923A (en) * 1979-12-06 1981-07-04 Sumitomo Electric Ind Ltd Manufacture of thin film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246814A (en) * 1987-04-02 1988-10-13 Matsushita Electric Ind Co Ltd Thin film formation apparatus
WO2004087991A1 (en) * 2003-03-31 2004-10-14 Konica Minolta Holdings, Inc. Thin film forming apparatus and method for forming thin film
US7647887B2 (en) 2003-03-31 2010-01-19 Konica Minolta Holdings, Inc. Thin film forming apparatus
JP2008057020A (en) * 2006-09-01 2008-03-13 Ulvac Japan Ltd Winding type plasma cvd system
US20130084409A1 (en) * 2010-07-09 2013-04-04 Vito Nv Method and Device for Atmospheric Pressure Plasma Treatment
US9255330B2 (en) * 2010-07-09 2016-02-09 Vito Nv Method and device for atmospheric pressure plasma treatment

Also Published As

Publication number Publication date
JPH0547970B2 (en) 1993-07-20

Similar Documents

Publication Publication Date Title
US5714010A (en) Process for continuously forming a large area functional deposited film by a microwave PCVD method and an apparatus suitable for practicing the same
US5397395A (en) Method of continuously forming a large area functional deposited film by microwave PCVD and apparatus for the same
US4585537A (en) Process for producing continuous insulated metallic substrate
US4995341A (en) Microwave plasma CVD apparatus for the formation of a large-area functional deposited film
US5567476A (en) Multi-step chemical vapor deposition method for thin film transistors
US5487786A (en) Plasma chemical vapor deposition device capable of suppressing generation of polysilane powder
US6470823B2 (en) Apparatus and method for forming a deposited film by a means of plasma CVD
JP3249356B2 (en) Plasma chemical vapor deposition equipment
JPH0576172B2 (en)
JPS59219927A (en) Plasma cvd device
US5945353A (en) Plasma processing method
JP3310875B2 (en) Plasma CVD equipment
JP2001007367A (en) Method and device for manufacturing film solar cell
US6632284B2 (en) Apparatus and method for forming deposited film
JPS59219928A (en) Plasma cvd device
JPH06232429A (en) Photovoltaic element, and method and equipment for forming same
JP2562686B2 (en) Plasma processing device
JP3080515B2 (en) Roll-to-roll type microwave plasma CVD equipment
JP3546095B2 (en) Plasma CVD equipment
JPH07330488A (en) Plasma cvd apparatus
JPS63274125A (en) High frequency application electrode structure
JPH11152577A (en) Formation of deposited coating and device therefor
JPH06120144A (en) Plasma cvd equipment and formation of functional deposition film using same
JP2000104174A (en) Production of semiconductor layer, production of photovoltaic element and production device for semiconductor layer
JPH11150281A (en) Continuous manufacturing device for photoelectric conversion element