JPS59188056A - Variable compression ratio engine - Google Patents
Variable compression ratio engineInfo
- Publication number
- JPS59188056A JPS59188056A JP3780483A JP3780483A JPS59188056A JP S59188056 A JPS59188056 A JP S59188056A JP 3780483 A JP3780483 A JP 3780483A JP 3780483 A JP3780483 A JP 3780483A JP S59188056 A JPS59188056 A JP S59188056A
- Authority
- JP
- Japan
- Prior art keywords
- compression ratio
- knocking
- ignition timing
- predetermined amount
- variable compression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D15/00—Varying compression ratio
- F02D15/04—Varying compression ratio by alteration of volume of compression space without changing piston stroke
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Ignition Timing (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【発明の詳細な説明】
ンジンに関するものである・
ガソリンエンジン等の内燃機関にあっては周知のように
、圧縮比を上げると熱効率が良くなる。しかし圧縮比全
余りに高く設定すると、特に充填効率が高くなる高負荷
時にノッキングが生じやすくなる。そこで例えば実開昭
56 − 79639号公報に示されるように、エンジ
ン燃焼室の容積を変える容積可変装置を設け、該容積可
変装置全エンジン運転状態に対応させて、あるいはノン
キング発生の有無に応じて制御し、ノッキングを起こす
ことなく可能な限り高圧縮比で運転できる筆うにした可
変圧縮比エンジンが提案されている。[Detailed Description of the Invention] Regarding Engines As is well known in internal combustion engines such as gasoline engines, increasing the compression ratio improves thermal efficiency. However, if the compression ratio is set too high, knocking is likely to occur, especially at high loads when charging efficiency is high. Therefore, for example, as shown in Japanese Utility Model Application Publication No. 56-79639, a volume variable device that changes the volume of the engine combustion chamber is provided, and the volume variable device is adapted to correspond to all engine operating conditions or depending on the presence or absence of non-king. Variable compression ratio engines have been proposed that can be controlled and operated at as high a compression ratio as possible without knocking.
一方、ノッキング発生時にこれを抑える方法としては点
火時期を遅らせることも有効であシ、例えば、特開昭5
3 − 60430号には、ノッキングが生じた時に点
火時期を自動的に遅らせて、安定な機関状態を保つこと
を目的とする内燃機関用点火装置が提案されている。On the other hand, as a method to suppress knocking when it occurs, it is also effective to delay the ignition timing.
No. 3-60430 proposes an ignition device for an internal combustion engine that aims to maintain a stable engine condition by automatically delaying the ignition timing when knocking occurs.
しかしながら、点火時期を遅らせるということは、点火
時期が膨張行程側に移動することになり、点火・爆発時
の燃焼圧が十分に上昇しない、燃焼が不十分で一部燃料
全そのまま排出してしまう等といりことが起こり、出力
損失が問題になる。これに対し、圧縮比を下げると、や
はり出力損失は起きるが、点火時期を遅らせる場合の損
失に比べて小さいと考えられ、これは実験的にも立証さ
れている。However, delaying the ignition timing means moving the ignition timing toward the expansion stroke side, which means that the combustion pressure at the time of ignition and explosion does not increase sufficiently, and combustion is insufficient and some of the fuel is exhausted as it is. etc., and output loss becomes a problem. On the other hand, if the compression ratio is lowered, a power loss still occurs, but it is thought to be smaller than the loss caused by delaying the ignition timing, and this has been experimentally proven.
ただし、圧縮比を下げるにも限度があり、ある程度を越
えて下げた場合には、その構造上火災伝播距離が長くな
り、燃焼速度が遅くなって、出力損失が増大する。However, there is a limit to lowering the compression ratio, and if the compression ratio is lowered beyond a certain point, the fire propagation distance becomes longer due to the structure, the combustion speed becomes slower, and the output loss increases.
このため、圧縮比はできる限り上げるとともに、7ノキ
ングが発生した時には、圧縮比を下げて抑制するのが望
ましいのであるが、圧縮比を出力損失が比較的小さい範
囲内で所定量下げてもノッキングが完全に抑えることが
できない時は、点火時期を遅らせるようにすれば効果的
なノッキング抑制を行なうことができる。For this reason, it is desirable to raise the compression ratio as much as possible, and when knocking occurs, lower the compression ratio to suppress it. If knocking cannot be completely suppressed, it is possible to effectively suppress knocking by delaying the ignition timing.
本発明は上記の事情に鑑み、ノッキング検出時にはまず
圧縮比全下げてノンキング全抑え、所定量圧縮比を下げ
てもノッキング抑制ができない時には点火時期を遅らせ
るようにに(。In view of the above circumstances, the present invention first lowers the compression ratio completely when knocking is detected to completely suppress non-king, and when knocking cannot be suppressed even after lowering the compression ratio by a predetermined amount, the ignition timing is delayed.
した可変圧縮比エンジンを提供することを目的とするも
のである。The purpose of this invention is to provide a variable compression ratio engine that has a variable compression ratio.
本発明の可変圧縮比エンジンは、ノッキングセンサによ
シノッキングが検出された時に、制御回路からの信号に
基づいて、まず圧縮比可変装置によυ燃焼室容積を大き
くして圧縮比を所定量下げてノッキングを抑制し、圧縮
比を所定量下げてもノッキングが十分に抑制できない時
にのみ、点火装置の点火時期を遅らせるようにしたこと
を特徴とするものである0
本発明によれば、ノンキング発生時にはまず出力損失の
比較的小さい圧縮比全低下させることによるノンキング
抑制を行なうので、ノッキングを効率よく抑制できると
ともに、それでもノンキング抑制が不十分な時は点火時
期を遅らせることができるので、確実にノンキング全抑
制することができる。In the variable compression ratio engine of the present invention, when synknock is detected by the knocking sensor, the compression ratio variable device first increases the volume of the combustion chamber υ based on a signal from the control circuit to increase the compression ratio by a predetermined amount. According to the present invention, the ignition timing of the ignition device is delayed only when knocking cannot be sufficiently suppressed even if the compression ratio is lowered by a predetermined amount. When knocking occurs, knocking is first suppressed by completely lowering the compression ratio with relatively small output loss, so knocking can be suppressed efficiently, and if non-king suppression is still insufficient, the ignition timing can be delayed, ensuring reliable knocking. Non-king can be completely suppressed.
以下、図面によって本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.
第1図は本発明の1実施例による可変圧縮比エンジンを
示す概略図である。ソリンタ1、ピストン2およびシリ
ンダヘッド6により形成される燃焼室3には、シリンダ
ヘッド6において排気弁4が設けられた排気ポート5が
開口し、この排気ポート5は排気マニホールドに設けら
れた排気通路およびマフラ等(図示せず)を介して外気
と連通している。シリンダヘッド6には、前記燃焼室3
に連通する第2シリンダ9が形成され、この第27リン
ダ9内には圧縮比可変ピストン10が摺動自在に収めら
れている。この圧縮比可変ピストン10に連結されたロ
ッド11の端部は、パワーシリンダ12内に摺動自在に
配されたパワーピストン13に連結されている。パワー
シリンダ12において、パワーピストン13によ′シ図
中上下に分割される油室20a、20b(それぞれ上側
油室20a、下側油室20bとする)の各々に2つの油
路14a、14bが連通し、これら油路14 ’a 、
i、 4 bHスグール弁15に接続されている。この
スプール弁15には、オイルサンプ16に貯えられた作
動油が、油圧ポンプ17によって吸入・吐出される吐出
配管18と、オイルサンプ16へ作動油を戻す戻し配管
19とが連通し、スプール弁15によって吐出配管18
および戻し配管19と油路]、 4. a 、 14.
bとが選択的に連通される。FIG. 1 is a schematic diagram illustrating a variable compression ratio engine according to one embodiment of the present invention. An exhaust port 5 in which an exhaust valve 4 is provided in the cylinder head 6 opens into the combustion chamber 3 formed by the solinter 1, the piston 2, and the cylinder head 6, and the exhaust port 5 is connected to an exhaust passage provided in an exhaust manifold. and communicates with the outside air via a muffler or the like (not shown). The cylinder head 6 has the combustion chamber 3
A second cylinder 9 is formed which communicates with the 27th cylinder 9, and a variable compression ratio piston 10 is slidably housed within this 27th cylinder 9. The end of the rod 11 connected to the variable compression ratio piston 10 is connected to a power piston 13 slidably disposed within the power cylinder 12. In the power cylinder 12, two oil passages 14a and 14b are provided in each of oil chambers 20a and 20b (referred to as an upper oil chamber 20a and a lower oil chamber 20b, respectively) which are divided into upper and lower parts in the figure. These oil passages 14'a communicate with each other,
i, 4 bH Connected to Sgur valve 15. The spool valve 15 is connected to a discharge pipe 18 through which the hydraulic oil stored in the oil sump 16 is sucked and discharged by a hydraulic pump 17, and a return pipe 19 that returns the hydraulic oil to the oil sump 16. 15 by discharge pipe 18
and return piping 19 and oil path], 4. a, 14.
b is selectively communicated with.
マタ、スプ一ル弁15のスプール15aには、リンク2
1の一端21cが回動自在に連結され、リンク21の他
端2 ]、 aはパワーピストン13のロッド11と反
対側に突出された補助ロッドllaと回動自在に連結さ
れる。The spool 15a of the spool valve 15 has a link 2.
One end 21c of the link 21 is rotatably connected, and the other end 2], a of the link 21 is rotatably connected to an auxiliary rod lla of the power piston 13 that projects on the side opposite to the rod 11.
さらに、リンク21にはパワーピストン13とスプール
15aのストロークに応じて決まる所定の位置2.1.
bに、可変圧縮制御弁22のロッド23が回動自在に連
結されている。Further, the link 21 has a predetermined position 2.1. determined depending on the stroke of the power piston 13 and the spool 15a.
A rod 23 of the variable compression control valve 22 is rotatably connected to b.
スプール弁15、す/り21および可変圧縮制御弁22
は、パワーシリンダ装置の制御のために従来から用いら
れているものであり、可変圧縮制御弁22の変位方向(
図中上下方向)と変位量により、スプール弁]5から、
<ワーンリンダ装置に圧油全送り込んでノζ1ノーピス
トン13の図中上下方向位置を制御するものである。例
えば、可変圧縮制御弁22のロット23を図中下方へ所
定量変位させた場合を考えると、ロッド23の変位によ
ってリンク21はパワーピストン13の補助ロッド]
]、aとの連結点24ai支点として、他端21cが下
方へ押し下げられる。(これは、パワーシリンダ装置の
油室20a 、20bと連通する油路14 a 、 1
4. bがいずれもスプール弁15によって閉じられて
いて、パワーピストン13は静」二保持されるため。)
このため、スプール弁15のスプール]、 5 aも押
し下げられて、吐出配管18と油路]、 4 aが、お
よび戻し配管J9と油路14 bがそれぞれ連通される
。そして、油路14aから上側油室20aに圧油が送ら
れるとともに、油路]、 4 bから戻し配管19を介
して下側油室20bの油が排出される。これにより、パ
ワーピストン13 が下方に押し下げられてこれと連結
する圧縮比可変ピストン10も下方に下げられて圧縮比
が大きくされるとともに、補助ロッドllaも下に下げ
られる。補助ロッドllaが下がると、可変圧縮制御弁
22のロット23は前記所定量の変位を行なった位置で
保持されるため、ロット23との連結点21bi支点と
してリンク21がスプール15a全押し上げる。これに
よって、スプール弁15における配管18.19と油路
14a。Spool valve 15, spool 21 and variable compression control valve 22
is conventionally used for controlling a power cylinder device, and the direction of displacement of the variable compression control valve 22 (
From the spool valve] 5, depending on the vertical direction in the figure) and displacement amount,
<This is to control the vertical position of the ζ1 no piston 13 in the figure by feeding all the pressure oil into the Warn cylinder device. For example, if we consider a case where the rod 23 of the variable compression control valve 22 is displaced by a predetermined amount downward in the figure, the displacement of the rod 23 causes the link 21 to be moved to the auxiliary rod of the power piston 13]
], the other end 21c is pushed down as a fulcrum at the connecting point 24ai with a. (This is the oil passage 14a, 1 communicating with the oil chamber 20a, 20b of the power cylinder device.
4. b are both closed by the spool valve 15, and the power piston 13 is held static. )
Therefore, the spool], 5a of the spool valve 15 is also pushed down, and the discharge pipe 18 and the oil passage], 4a are communicated with each other, and the return pipe J9 and the oil passage 14b are communicated with each other. Pressure oil is sent from the oil passage 14a to the upper oil chamber 20a, and oil in the lower oil chamber 20b is discharged from the oil passage 14b via the return pipe 19. As a result, the power piston 13 is pushed down, and the variable compression ratio piston 10 connected thereto is also pushed down, increasing the compression ratio, and the auxiliary rod lla is also pushed down. When the auxiliary rod lla is lowered, the rod 23 of the variable compression control valve 22 is held at the position where the rod 23 has been displaced by the predetermined amount, so that the link 21 serves as a fulcrum at the connection point 21bi with the rod 23, completely pushing up the spool 15a. Thereby, the piping 18, 19 and the oil passage 14a in the spool valve 15.
14bとの連絡が称々に閉じられてゆき、この連絡が完
全に閉じられた時にパワーシリンダ13はその位置で停
止保持される。14b is gradually closed, and when this communication is completely closed, the power cylinder 13 is held stationary at that position.
このように、可変圧縮制御弁22のロッド23全上下さ
せることにより、パワーシリンダ13の図中上下方向位
置を制御でき、その結果圧縮比可変ピストン10i上下
させて圧縮比を制御できるのである。すなわち、圧縮比
可変ピストン10の第27リンダ9内ト下位置が変えら
れると、燃焼室3容積が変えられ、一定のストロークで
往復運動するピストン2によって圧縮される混合気の圧
縮比が変えられる。この場合、可変圧縮制御弁22のロ
ッド23が上方に変位すれば圧縮比が小さくなり、下方
に変位すれば圧縮比が大きくなるa
この可変圧縮制御弁22のロッド23のストロ〜りは、
制御回路24からの制御信号に基ついて、例えば電磁手
段等により制御される。この制御回路24には、スロッ
トル弁の開度全検出すること等によりエンジン負荷を検
出する負荷センサ25がらの出力信号と、エンジン回転
数を検出する回転センサ26からの出力信号と、燃焼室
3に臨む位置に設けられノンキング発生全検出するノッ
クセンサ7からの出力信号と、前記パワーシリンダ]3
−に連結するロッド11の位置を検知して圧縮比を検出
する圧縮比センサ28からの出力信号と最適値全算出す
るための情報を記憶した記憶回路27からの出力信号と
が入力されていて、これらの入力信号に基づいて可変圧
縮制御弁22全駆動させる信号および点火時期を調整さ
せる信号を、可変圧縮制御弁22と、点火プラグ8およ
び点火コイル(図示せず)等からなる点火装置にそれぞ
れ出力する。In this way, by moving the rod 23 of the variable compression control valve 22 up and down, the position of the power cylinder 13 in the vertical direction in the figure can be controlled, and as a result, the compression ratio can be controlled by moving the variable compression ratio piston 10i up and down. That is, when the lower position of the variable compression ratio piston 10 in the 27th cylinder 9 is changed, the volume of the combustion chamber 3 is changed, and the compression ratio of the air-fuel mixture compressed by the piston 2 that reciprocates with a constant stroke is changed. . In this case, if the rod 23 of the variable compression control valve 22 is displaced upward, the compression ratio decreases, and if it is displaced downward, the compression ratio increases.a The stroke of the rod 23 of the variable compression control valve 22 is as follows.
Based on a control signal from the control circuit 24, it is controlled by, for example, electromagnetic means. This control circuit 24 receives an output signal from a load sensor 25 that detects the engine load by detecting the full opening of the throttle valve, an output signal from a rotation sensor 26 that detects the engine rotation speed, and an output signal from the combustion chamber 3. output signal from the knock sensor 7, which is installed in a position facing the engine and detects all occurrences of non-king, and the power cylinder] 3
An output signal from a compression ratio sensor 28 that detects the compression ratio by detecting the position of the rod 11 connected to - and an output signal from a memory circuit 27 that stores information for calculating all optimum values are input. Based on these input signals, a signal for fully driving the variable compression control valve 22 and a signal for adjusting the ignition timing are sent to an ignition system consisting of the variable compression control valve 22, a spark plug 8, an ignition coil (not shown), etc. Output each.
第2図に、上記制御回路24における制御のフローチャ
ート’に示し、この図に基づいて圧縮比制御および点火
時期制御全説明する。FIG. 2 shows a flowchart of the control in the control circuit 24, and the compression ratio control and ignition timing control will be fully explained based on this diagram.
ステップS1からスタートするフロー(はステップS2
において、ノックセンサ7からの信号に基づいて、ノッ
キングの有無を判定する。ノッキングが発生していない
と判定された時はステップS6に進んで点火時期が最適
点火時期に対して進んでいるが、遅れているかを判定す
る。この判定は、あらかじめ記憶回路27に記憶された
エンジン負荷(L)とエンジン回転数(、rpm)で決
定される最適進角Igo(L 、 rpm )と判定時
の実際の進角”glとを比較して行なわれ、Ig1≧I
go(L 、 rpm)のときはステップS7に進み、
Igl< Igo(L。The flow starts from step S1 (is step S2
Based on the signal from the knock sensor 7, the presence or absence of knocking is determined. When it is determined that knocking has not occurred, the process proceeds to step S6, where it is determined whether the ignition timing is advanced or delayed relative to the optimum ignition timing. This determination is performed by comparing the optimum advance angle Igo (L, rpm) determined based on the engine load (L) and engine speed (, rpm) stored in advance in the memory circuit 27 and the actual advance angle "gl" at the time of determination. Ig1≧I
go (L, rpm), proceed to step S7,
Igl<Igo(L.
、rpm)のときはステップS8に進む。なお、記憶回
路27に記憶される最適進角丁g。(L。, rpm), the process advances to step S8. Note that the optimum advance angle g is stored in the storage circuit 27. (L.
rpm)は、第3図に示すように負荷および回転数をい
くつかの範囲に区切って、いくつかの領域(a、b、c
、・・・h、・・)を作り、この領域毎での進角の最適
値を設定して記憶させたものである。このため、例えば
負荷が41で回転数がrlのときは、その値で決まる点
p1が位置する領域すにおける記憶値がその時の進角の
最適値である。rpm) is divided into several ranges (a, b, c) by dividing the load and rotation speed into several ranges as shown in Figure 3.
, . Therefore, for example, when the load is 41 and the rotational speed is rl, the stored value in the area where the point p1 determined by that value is located is the optimum value of the advance angle at that time.
ステップS6においてIg1≧■go(L、rpm)と
判定された時は、点火時期遅れがなくノッキングも発生
していないので、圧縮比をノッキング発生域近くまで上
げて熱効率ができる限り良い所で使用するのが望ましい
。このため、ステップS7に進んで、現時点での圧縮比
を所定量ΔE大きくした最終圧縮比Ei決めてステップ
S9に進む。この場合、点火進角工g1はそのまま最終
進角として保持されてステップS9に進む。When it is determined in step S6 that Ig1≧■go (L, rpm), there is no ignition timing delay and knocking has not occurred, so the compression ratio is increased to near the knocking generation range and used in a place where the thermal efficiency is as high as possible. It is desirable to do so. Therefore, the process proceeds to step S7, where the final compression ratio Ei is determined by increasing the current compression ratio by a predetermined amount ΔE, and the process proceeds to step S9. In this case, the ignition advance angle g1 is maintained as the final advance angle and the process proceeds to step S9.
ステップS6においてIgl< Ig、 (L、rpm
)と判定された時は、ノッキング発生がないのに点火
時期が最適時期より遅れているため、点火時期を進めて
点火時期遅れによる出力ロスを少なくするのが望ましい
。このため、ステップS8に進んで、現時点での進角全
所定量ΔIg大きくした(進1せた)最終進角Ig。In step S6, Igl<Ig, (L, rpm
), the ignition timing is delayed from the optimum timing even though there is no knocking, so it is desirable to advance the ignition timing to reduce the output loss due to the ignition timing delay. Therefore, the process proceeds to step S8, and the final advance angle Ig is increased (increased by 1) by a predetermined amount ΔIg.
を決めてステップS9に進む。この場合、圧縮比Eはそ
のまま最終圧縮比として保持きれてステップS9に進む
。is determined and the process proceeds to step S9. In this case, the compression ratio E can be maintained as the final compression ratio and the process proceeds to step S9.
ステップS2においてノッキングが発生していると判定
された時は、ステップS3に進んで現時点での圧縮比E
と、エンジン回転数に応じて決まる最小圧縮比Eo (
rpm ) とを比較する。最小圧縮比、Eo (r
pm ’)は出力損失全所定鍛以下に抑えることのでき
る範囲内での圧縮比の最小値全示し、表に示すように所
定の各回転領域ごとに設定され、記憶回路27にあらか
じめ記憶されている。When it is determined in step S2 that knocking has occurred, the process advances to step S3 and the current compression ratio E
and the minimum compression ratio Eo (
rpm). The minimum compression ratio, Eo (r
pm') indicates the minimum value of the compression ratio within the range in which the total output loss can be suppressed to less than the predetermined value, and is set for each predetermined rotation range as shown in the table, and is stored in advance in the memory circuit 27. There is.
表
ステップS3において、E≦Eo (rp+η)と判定
された時は、現時点での圧縮比Eが既に最小圧縮比Eo
(rpm )であるかもしくはそれ以下であるので圧
縮比をさらに下げるのは、出力ロスが大きくなりすぎる
ので、望ましくない。そこで、ステップS4に進んで、
ノンキング抑制のため現時点の点火進角全所定量ΔIg
小さくした(遅らせた)最終進角Ig1全1全決ととも
に圧縮比Eはその一11最終圧縮比として保持してステ
ップS9に進む。In table step S3, when it is determined that E≦Eo (rp+η), the current compression ratio E is already the minimum compression ratio Eo.
(rpm) or less, further lowering the compression ratio is not desirable because the output loss will become too large. Therefore, proceed to step S4,
To suppress non-king, the current ignition advance angle is the total predetermined amount ΔIg
With the reduced (delayed) final advance angle Ig1, the compression ratio E is held as the 111 final compression ratio and the process proceeds to step S9.
ステップS3におイテ、E>Eo(rpm)と判定され
た時は、圧縮比は最小圧縮比Eo(rpm )まで下げ
ることができるので、ノッキング抑制のためには点火時
期はそのままにして圧縮比を下げるのが出力損失の点か
ら望ましい。そこで、ステップS5に進み、現時点の圧
縮比全所定量ΔE小さくした最終圧縮比Eを決めるとと
もに、点火進角Ig、はその1寸最終進角として保持し
てステップS9に進む0
以上のように、各条件に応じてステップS4゜85、S
7もしくはS8において、最終進角Ig および最終圧
縮比Eが決められた後ステップS9に進む。ステップS
9においては、最終圧縮比Eが得られるように、第1図
に示したように可変圧縮制御弁22に信号全出力して圧
縮比可変ピストン10の位置を制御する。次に、ステッ
プSIOに進み、回転数と負荷に基づいて予め設定され
た基本点火タイミング■t(L、 rpm)に上記最
終進角Igを加えて得られる最終点火タイミングITを
決めた後、ステップSllに進んで、点火時期をI T
とする制御信号を点火プラグ8に出力する。なお、基本
点火タイミングエt(L、rpm )は、第4図に示す
ように負荷および回転数をいくつかの範囲に区切って、
いくつがの領域(a′、b′、C′、・・・・・11′
、・・・・・・)を作り、この領域毎での基本点火タイ
ミングIt(L、 rpm )を記憶回路27に予め記
憶させたものである。If it is determined in step S3 that E>Eo (rpm), the compression ratio can be lowered to the minimum compression ratio Eo (rpm), so in order to suppress knocking, the ignition timing remains unchanged and the compression ratio It is desirable to lower this from the viewpoint of output loss. Therefore, the process proceeds to step S5, where the final compression ratio E is determined by reducing the current compression ratio by a predetermined amount ΔE, and the ignition advance angle Ig is maintained as the final advance angle by 1 inch, and the process proceeds to step S9. , Steps S4゜85, S according to each condition.
After the final advance angle Ig and final compression ratio E are determined in step S7 or S8, the process proceeds to step S9. Step S
At step 9, a full signal is output to the variable compression control valve 22 to control the position of the variable compression ratio piston 10, as shown in FIG. 1, so that the final compression ratio E is obtained. Next, proceed to step SIO, and after determining the final ignition timing IT obtained by adding the final advance angle Ig to the basic ignition timing t (L, rpm) set in advance based on the rotation speed and load, step Go to Sll and set the ignition timing
A control signal is output to the spark plug 8. The basic ignition timing t(L, rpm) is determined by dividing the load and rotation speed into several ranges as shown in Fig. 4.
How many areas (a', b', C',...11'
, . . .), and the basic ignition timing It(L, rpm) for each region is stored in advance in the storage circuit 27.
この後、ステップ11からステップ2に戻り、同一のフ
ローをi保返す。なお、このフローは吸気、圧縮、爆発
、排気からなる1サイクル毎に1回行なわれ、各サイク
ル毎最適効率となるように制御される。Thereafter, the process returns from step 11 to step 2, and the same flow is repeated again. Note that this flow is performed once for each cycle consisting of intake, compression, explosion, and exhaust, and is controlled to achieve the optimum efficiency for each cycle.
このように、第2図のフローによって制御すれば、ノッ
キングのない時は、まず点火時期を最適にした後圧縮比
をできる限り(ノッキング発生の直前まで)上げて熱効
率を良くするとともに、ノッキング発生時にはまず圧縮
比を最小圧縮比まで下げ、それでもノッキングを抑えら
れない時は点火時期を遅らせてノッキングを抑えること
ができる。In this way, by controlling according to the flow shown in Figure 2, when there is no knocking, first optimize the ignition timing, then increase the compression ratio as much as possible (to just before knocking occurs) to improve thermal efficiency and prevent knocking from occurring. Sometimes, the compression ratio is first lowered to the minimum compression ratio, and if knocking cannot be suppressed even then, knocking can be suppressed by delaying the ignition timing.
以上説明したように、本発明によればノッキング発生し
た場合、まず圧縮比を所定限度内において下限(最小圧
縮比)まで下げ、出力ロスを比較的増大させることな(
効率良くノッキング抑制を行なうことができるとともに
、それでも抑制できない場合には点火時期を遅らせて確
実にノッキングを抑制することができる。As explained above, according to the present invention, when knocking occurs, the compression ratio is first lowered to the lower limit (minimum compression ratio) within a predetermined limit, and the output loss is not relatively increased.
Knocking can be efficiently suppressed, and if knocking still cannot be suppressed, the ignition timing can be delayed to reliably suppress knocking.
第1図は本発明の1実施例を示す概略図、第2図は本発
明の制御例を示すフローチャート、
第3図は本発明の実施例における最適進角を設定するグ
ラフ、
第4図は本発明の実施例における基本点火タイミングを
設定するグラフである。Fig. 1 is a schematic diagram showing one embodiment of the present invention, Fig. 2 is a flowchart showing a control example of the present invention, Fig. 3 is a graph for setting the optimum advance angle in the embodiment of the present invention, and Fig. 4 is a It is a graph for setting basic ignition timing in an example of the present invention.
Claims (1)
う点火装置と、ノッキング発生の有無を検出するノッキ
ングセンサと、このノッキングセンサによシノツキング
が検出された時前記圧縮比可変装置により圧縮比を設定
量低下させてノンキングの抑制を行なうとともにこのノ
ッキング防止が不十分な時に前記点火装置に点火時期を
遅らせるように前記圧縮比可変装置および前記点火装置
を制御する制御回路とを有する可変圧縮比エンジン。a compression ratio variable device for changing the volume of the combustion chamber; an ignition device for igniting; a knocking sensor for detecting the presence or absence of knocking; A variable compression ratio engine comprising: a variable compression ratio device and a control circuit that controls the ignition device to suppress non-knocking by lowering a set amount, and to cause the ignition device to delay ignition timing when the knocking prevention is insufficient. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3780483A JPS59188056A (en) | 1983-03-08 | 1983-03-08 | Variable compression ratio engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3780483A JPS59188056A (en) | 1983-03-08 | 1983-03-08 | Variable compression ratio engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59188056A true JPS59188056A (en) | 1984-10-25 |
JPH0559273B2 JPH0559273B2 (en) | 1993-08-30 |
Family
ID=12507695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3780483A Granted JPS59188056A (en) | 1983-03-08 | 1983-03-08 | Variable compression ratio engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59188056A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61192541U (en) * | 1985-05-24 | 1986-11-29 | ||
JPS61202664U (en) * | 1985-06-10 | 1986-12-19 | ||
US6672270B2 (en) * | 2002-05-31 | 2004-01-06 | Rollin A. Armer | Fuel efficient valve mechanism for internal combustion engines |
JP2004521216A (en) * | 2000-11-29 | 2004-07-15 | ケネス・ダブリュー・コーワンズ | Variable compression ratio air supply variable efficiency engine (VCRC engine) |
EP1519019A1 (en) * | 2003-09-16 | 2005-03-30 | Nissan Motor Company, Limited | Control apparatus and method for internal combustion engine with variable compression ratio mechanism |
EP2312143A3 (en) * | 2009-10-19 | 2014-01-22 | Mitsubishi Electric Corporation | Control apparatus for internal combustion engine |
JP2014088880A (en) * | 2014-02-13 | 2014-05-15 | Nissan Motor Co Ltd | Knocking control device of spark ignition type internal combustion engine |
KR20190091351A (en) * | 2016-12-14 | 2019-08-05 | 헤드만 에릭슨 페이턴트 에이비 | Method for providing variable compression ratio of internal combustion engine and actuator used in the method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53132604A (en) * | 1977-04-23 | 1978-11-18 | Ichirou Hidaki | 44cycle spark ignition internal combustion engine scavenging the residual gas |
JPS5679639U (en) * | 1979-11-22 | 1981-06-27 |
-
1983
- 1983-03-08 JP JP3780483A patent/JPS59188056A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53132604A (en) * | 1977-04-23 | 1978-11-18 | Ichirou Hidaki | 44cycle spark ignition internal combustion engine scavenging the residual gas |
JPS5679639U (en) * | 1979-11-22 | 1981-06-27 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0426671Y2 (en) * | 1985-05-24 | 1992-06-26 | ||
JPS61192541U (en) * | 1985-05-24 | 1986-11-29 | ||
JPS61202664U (en) * | 1985-06-10 | 1986-12-19 | ||
JPH0415964Y2 (en) * | 1985-06-10 | 1992-04-09 | ||
JP2008180235A (en) * | 2000-11-29 | 2008-08-07 | Kenneth W Cowans | High efficiency engine with variable compression ratio and charge |
JP2004521216A (en) * | 2000-11-29 | 2004-07-15 | ケネス・ダブリュー・コーワンズ | Variable compression ratio air supply variable efficiency engine (VCRC engine) |
US6672270B2 (en) * | 2002-05-31 | 2004-01-06 | Rollin A. Armer | Fuel efficient valve mechanism for internal combustion engines |
EP1519019A1 (en) * | 2003-09-16 | 2005-03-30 | Nissan Motor Company, Limited | Control apparatus and method for internal combustion engine with variable compression ratio mechanism |
US7165517B2 (en) | 2003-09-16 | 2007-01-23 | Nissan Motor Co., Ltd. | Control apparatus and method for internal combustion engine with variable compression ratio mechanism |
EP2312143A3 (en) * | 2009-10-19 | 2014-01-22 | Mitsubishi Electric Corporation | Control apparatus for internal combustion engine |
JP2014088880A (en) * | 2014-02-13 | 2014-05-15 | Nissan Motor Co Ltd | Knocking control device of spark ignition type internal combustion engine |
KR20190091351A (en) * | 2016-12-14 | 2019-08-05 | 헤드만 에릭슨 페이턴트 에이비 | Method for providing variable compression ratio of internal combustion engine and actuator used in the method |
CN110199098A (en) * | 2016-12-14 | 2019-09-03 | 海德曼爱立信专利公司 | For providing the method and actuator of variable compression ratio in internal combustion engine |
CN110199098B (en) * | 2016-12-14 | 2021-07-06 | 海德曼爱立信专利公司 | Method and actuator for providing a variable compression ratio in an internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JPH0559273B2 (en) | 1993-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4345307B2 (en) | Control device for internal combustion engine with variable compression ratio mechanism | |
US6817349B2 (en) | Control system and method and engine control unit for compression ignition internal combustion engine | |
US6612294B2 (en) | Auto-ignition of gasoline engine by varying exhaust gas retaining duration | |
US7461633B2 (en) | Method of controlling the combustion phase of an internal-combustion engine, notably a gasoline type direct-injection supercharged engine | |
JP3931549B2 (en) | Valve timing control device for internal combustion engine | |
US6505603B1 (en) | Fuel injection method for an internal combustion engine | |
US20060169246A1 (en) | Method of controlling premix compression self-igniting internal combustion engine | |
US20090299610A1 (en) | Control apparatus of spark ignition internal combustion engine | |
US8544318B2 (en) | Abnormal combustion detection method for internal-combustion engines | |
US5033417A (en) | Method for operating a spark-ignition internal combustion engine of a vehicle and a spark-ignition internal combustion engine of a vehicle operating according to this method | |
EP2314862A1 (en) | Method of controlling knocking in an internal combustion engines equipped with a device for controlling the opening of inlet valves | |
JPS59188056A (en) | Variable compression ratio engine | |
US11236684B1 (en) | Two-stroke engine with supercharger | |
JP2004060551A (en) | Control device of internal combustion engine | |
US20210310456A1 (en) | Control device for engine | |
US5230315A (en) | Otto-cycle engine | |
JP6848412B2 (en) | Internal combustion engine control device | |
JP2014224470A (en) | Control device of internal combustion engine | |
JPH11236832A (en) | Knocking preventive device for internal combustion engine | |
JPH11190236A (en) | Device for suppressing knocking of four cycle engine | |
JP6658266B2 (en) | Control device for internal combustion engine | |
US4194473A (en) | Four-cycle spark ignition internal combustion engine | |
JP4357685B2 (en) | Direct injection engine controller | |
JPH03213631A (en) | Variable compression ratio engine | |
KR100501360B1 (en) | Smoke decreasing device of diesel automobile and method to decrease it |