JPS5864470A - Compression type refrigerator - Google Patents

Compression type refrigerator

Info

Publication number
JPS5864470A
JPS5864470A JP16381581A JP16381581A JPS5864470A JP S5864470 A JPS5864470 A JP S5864470A JP 16381581 A JP16381581 A JP 16381581A JP 16381581 A JP16381581 A JP 16381581A JP S5864470 A JPS5864470 A JP S5864470A
Authority
JP
Japan
Prior art keywords
solution
heat
generator
refrigerant vapor
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16381581A
Other languages
Japanese (ja)
Other versions
JPH0355738B2 (en
Inventor
後藤 藤太郎
中嶋 義弘
一郎 藤原
野村 功
清 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP16381581A priority Critical patent/JPS5864470A/en
Publication of JPS5864470A publication Critical patent/JPS5864470A/en
Publication of JPH0355738B2 publication Critical patent/JPH0355738B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は圧縮戊の成績係数を向上し得て、しかも容量制
御を比較的簡単に行うことができる1i−縮式冷凍装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a 1i-compression type refrigeration system that can improve the coefficient of performance of a compression type refrigeration system and can perform capacity control relatively easily.

フロン冷媒などの凝縮性ガス冷媒を熱媒体として用いて
なる圧縮式冷凍装置は原理的な解明か終り、さらに実用
上の基本技術的な問題もこつ0ても“\ 改善され尽したの感があり、能力、効率などθ)点番こ
関して現状から飛躍した改良は到底望むべくもないとこ
ろまできている。
Compression refrigeration equipment that uses condensable gas refrigerants such as fluorocarbon refrigerants as a heat medium has not been completely solved in principle, and even though there are no basic technical problems in practical use, there is a feeling that all improvements have been made. However, we have reached the point where we cannot hope for any dramatic improvement from the current situation in terms of capacity, efficiency, etc.

たソ、この種の冷凍装置に共通して言える点は、容量制
御を行うのにアンロード機構を用いたり、モータの回転
数、を制御したりするのが極く一般的であるため、比較
的複雑な装置となってコスト高につながる問題があり、
また、機械面での改良をはかる以外【こ成績係数を向上
させることは新しい冷媒の開発が進んでいない点などか
ら現在のところ不可能であるなどが指摘されているが、
改善策が全く見当らないま\で現状に甘んじているのが
実態であると言える。
What is common to this type of refrigeration equipment is that it is extremely common to use an unloading mechanism to control the capacity or to control the motor rotation speed. There is a problem that it becomes a complicated device and leads to high cost.
In addition, it has been pointed out that it is currently impossible to improve the coefficient of performance other than through mechanical improvements due to the lack of progress in the development of new refrigerants.
The reality is that we are complacent with the current situation, with no improvement measures in sight.

か\る実状に鑑みて、本発明は従来の圧縮式冷凍装置と
は形態の異る新規な冷凍装置を開発すべき鋭意検討の結
果、成績係数のさらに向上をはかることができ、かつ容
量制御も比較的簡単に行える冷凍装置をここに提供する
番こ至ったものであって、特に吸収剤に冷媒蒸気を反応
させて得られる溶液を器体内において低温熱の導入によ
り加熱せしめて、前記溶液から冷媒蒸気を発生させる発
生器、この発生した冷媒蒸気を圧縮昇圧する圧縮機、こ
の圧縮昇圧された高圧冷媒蒸気と前記発生器から返送さ
れた濃溶液とを器体内において反応させ、濃溶液に前記
高圧冷媒蒸気を吸収せしめると共に、この吸収シこよっ
て発生した反応熱を外部tこ取出させる吸収器、該吸収
器から前記発生器に稀溶液を送るために絞り弁あるいは
ポンプを介設して有する稀溶液回路、発生器から吸収器
に濃溶液を送るためにポンプを介設して有する濃溶液回
路、前記両溶液回路に関連せしめて稀溶液と濃溶液の間
での熱交換可能1こ設けた熱交換器からなり、発生器で
の蒸発熱を冷熱源蟲こ、吸収器での吸収反応熱ケ温熱源
に夫々利用可能となしたことを特徴とする。
In view of these circumstances, the present invention was developed as a result of intensive studies to develop a new type of refrigeration system that is different from conventional compression type refrigeration systems. It is now our turn to provide a refrigeration system that can be used relatively easily, and in particular, a solution obtained by reacting an absorbent with refrigerant vapor is heated by introducing low-temperature heat into the vessel to cool the solution. A generator that generates refrigerant vapor from the air, a compressor that compresses and boosts the pressure of the generated refrigerant vapor, and a reactor that reacts the compressed and boosted high-pressure refrigerant vapor with the concentrated solution returned from the generator to form a concentrated solution. An absorber that absorbs the high-pressure refrigerant vapor and extracts the reaction heat generated by this absorption to the outside, and a throttle valve or a pump is provided to send a dilute solution from the absorber to the generator. A dilute solution circuit having a dilute solution circuit, a concentrated solution circuit having a pump interposed therein for sending the concentrated solution from the generator to the absorber, and a circuit capable of heat exchange between the dilute solution and the concentrated solution in connection with both of the solution circuits. It is characterized in that the heat of evaporation in the generator can be used as a cold heat source, and the absorption reaction heat in the absorber can be used as a heat source.

また、本発明における第2番目の発明は、IjII記構
成に加えて、濃溶液回路における前記熱交換器流入前の
低温濃溶液を必要時に流通し得る凝嘱用コイルならびに
前記稀溶液回路における熱交換器流入前の高温稀溶液を
必要時に流通し得る蒸発用コイルが器体内に熱交換的に
設けられてなる溶液濃度調節器を圧縮機の吐出口と吸収
器の流入口とを接続する冷媒蒸気管中に介設せしめてな
る構成を具備せしめたことによって、系内の溶液濃度を
調節可能とし、冷凍装置の容量を1宜調節し得る如くし
たことを特徴とする。
In addition to the configuration described in IjII, a second invention of the present invention provides a condensing coil that can flow the low-temperature concentrated solution before it flows into the heat exchanger in the concentrated solution circuit when necessary, and a heat exchanger in the dilute solution circuit. A refrigerant that connects the discharge port of the compressor and the inlet of the absorber to a solution concentration regulator, which has an evaporating coil provided in the container for heat exchange, through which the high-temperature dilute solution before entering the exchanger can be circulated when necessary. The present invention is characterized in that by providing a structure in which the steam pipe is interposed, the concentration of the solution in the system can be adjusted, and the capacity of the refrigeration device can be adjusted as needed.

以下、さらに本発明の具体的内容について添付図面を参
照しつつ詳細に説明する。
Hereinafter, specific contents of the present invention will be further explained in detail with reference to the accompanying drawings.

第1図は本発明装置に係る装(d回路図であって、この
装置は溶液散布用ノズル(7)、熱交換コイル(8)を
上下配置で内蔵して有する発生器(1)、該発生器(1
)の気相部(こ臨ませて開口した出口に低圧冷媒火気管
(9)を通じ吸入口が連絡されてなる圧縮機(2)、溶
液散布用ノズル旧)、熱交換コイル(12)を上下配置
で内蔵して有し、かつ気相部に臨ませて開口した入口に
高圧冷媒蒸気管aO)を通じ、圧縮機(21の吐出口が
連絡されてなる吸収器(3)、絞り弁(13)を途中番
と有し、かつ吸収器(3)に該液相部に臨んで設けられ
た出口と発生器(1)の溶液散布用ノズル(7)とを連
絡するだめの稀溶液回路(4)、ポンプ(14)を途中
番こ有し、かつ、発生器(1)に該液相部に臨んで設け
られた出口と吸収器(3)の溶液散布用ノズル圓とを連
絡するだめの濃溶液回路(5)、両溶液回路(41,(
51に関連せしめて稀溶液と濃溶液との間での熱交換可
能に設けた熱交換器(6)からなっていて、この閉回路
中には吸収剤に冷媒蒸気を反応して得られる溶液(この
溶液の具体側番こついては後述する)を適当量封入せし
めている。
FIG. 1 is a circuit diagram of an apparatus according to the present invention (d circuit diagram), which includes a generator (1) having a solution spraying nozzle (7), a heat exchange coil (8) built in in an upper and lower arrangement; Generator (1
) gas phase section (a compressor (2) whose suction port is connected to the outlet opening facing this through a low-pressure refrigerant flame pipe (9), an old solution dispersion nozzle), and a heat exchange coil (12) above and below. A high-pressure refrigerant vapor pipe (aO) is connected to an inlet that is built-in and opens facing the gas phase, and an absorber (3) and a throttle valve (13) are connected to the discharge port of the compressor (21). ) in the middle, and a dilute solution circuit ( 4) A pump (14) is installed in the middle, and the outlet provided in the generator (1) facing the liquid phase portion is connected to the nozzle for dispersing the solution of the absorber (3). concentrated solution circuit (5), both solution circuit (41, (
51, it consists of a heat exchanger (6) installed to enable heat exchange between a dilute solution and a concentrated solution, and in this closed circuit, a solution obtained by reacting refrigerant vapor with an absorbent is used. (The specific number of this solution will be described later) is sealed in an appropriate amount.

上記装置は、熱交換器(6)で熱交換を行って温度が下
った稀溶液(冷媒蒸気を多く吸収した状態の溶液)が発
生器(11内で前記ノズル(7)から散布さiまた際に
、熱交換コイル(8)内の水と熱交換して加熱されるこ
とにより、冷媒蒸気を発生して、その際の蒸発潜熱で熱
交換コイル(8)内の水を冷却する。
In the above device, a dilute solution (a solution that has absorbed a large amount of refrigerant vapor) whose temperature has been lowered by heat exchange in a heat exchanger (6) is sprayed from the nozzle (7) in a generator (11) or At this time, by exchanging heat with the water in the heat exchange coil (8) and heating it, refrigerant vapor is generated, and the water in the heat exchange coil (8) is cooled by the latent heat of evaporation at that time.

この冷却蒸気は低圧冷媒蒸気管(9)を経て圧縮機(2
)に送られ、一方、冷媒蒸気が分離した後の濃溶液(冷
媒蒸気の吸収量が少い溶液)は、ポンプf141゜熱交
換器(6)を経て温度が上昇した後、吸収器(31の溶
液散布用ノズル(11)に送られる。
This cooling vapor passes through the low pressure refrigerant vapor pipe (9) to the compressor (2).
), and on the other hand, after the refrigerant vapor has been separated, the concentrated solution (a solution that absorbs less refrigerant vapor) passes through the pump f141° heat exchanger (6), increases in temperature, and then passes through the absorber (31 The solution is sent to the solution spraying nozzle (11).

圧縮@4こ送られた冷媒蒸気は圧縮昇圧さねた後、高圧
冷媒蒸気管(10)を経て吸収器(31!こ流入し、溶
液散布用ノズル(11)から散布された前記濃溶液と接
して反応し、濃溶液に吸収されると共に、濃溶液は稀溶
液となる。
The compressed refrigerant vapor is compressed and pressurized, and then flows into the absorber (31) through the high-pressure refrigerant vapor pipe (10), where it is mixed with the concentrated solution sprayed from the solution spray nozzle (11). When they come into contact with each other, they react and are absorbed into a concentrated solution, and the concentrated solution becomes a dilute solution.

その際、吸収反応熱を発生するので、高温の稀溶液と熱
交換コイルf12]内の水との間で熱交換させて稀溶液
の温((を下げる一方、熱交換コイル(121からは温
水を取り出すことができる。
At that time, absorption reaction heat is generated, so heat is exchanged between the high temperature dilute solution and water in the heat exchange coil f12 to lower the temperature of the dilute solution. can be taken out.

吸収器(3)内の稀溶液は絞り弁(13)で減圧された
後、熱交換器(6)でさら番こ冷却されて溶液散布用ノ
ズル(7)に送られる。
The dilute solution in the absorber (3) is depressurized by the throttle valve (13), further cooled by the heat exchanger (6), and sent to the solution spraying nozzle (7).

以−Lのようlこ、溶液の循環ならびに冷媒蒸気の発生
と吸収が行われることによって、発尖器(1)での蒸発
熱を冷熱源に、吸収器(3)での吸収反応熱を温熱源に
夫々利用でき、圧縮機によるヒートポンプ運転が可能と
なる。
As described above, by circulating the solution and generating and absorbing refrigerant vapor, the heat of evaporation in the sharpener (1) is used as a cold heat source, and the heat of absorption reaction in the absorber (3) is used as a cold heat source. Each can be used as a heat source, making it possible to operate a heat pump using a compressor.

上記冷凍装置において、溶液冷凍サイクルの要素である
溶液としては、冷媒にアンモニア、吸収剤にヨウ化ナト
リウムを用いてなる溶液と、冷媒番こアンモニア、吸収
剤に塩化アンモニウムを用いてなる溶液と、冷媒にフロ
ンR−22,吸収剤番こE181 (テトラエチレング
リコール・ジメチルエーテル)を用いてなる溶液と、冷
媒にフロンR−22、吸収剤にDMF(ジメチルホルム
アミド)を用いてなる溶液のうちのいずれかが選択され
る。
In the above-mentioned refrigeration system, the solutions that are the elements of the solution refrigeration cycle include a solution using ammonia as a refrigerant and sodium iodide as an absorbent, and a solution using ammonia as a refrigerant and ammonium chloride as an absorbent. Either a solution using Freon R-22 as a refrigerant and Noko E181 (tetraethylene glycol dimethyl ether) as an absorbent, or a solution using Freon R-22 as a refrigerant and DMF (dimethylformamide) as an absorbent. is selected.

それ等の溶液を用いた溶液冷凍サイクルでヒートポンプ
運転を行うことによって、純冷媒の圧縮冷凍サイクルL
こ較べて成績係数の向上かはかねる点に本発明の主な特
徴が存するのであるが、峡・大の期待メリットである成
績係数の改善の可能性についてデータが揃っている反応
系、例えばアンモニア水−アンモニア冷媒反応系、E 
181−R−22反応系について、32℃廃熱を55℃
まで昇iMして利用する廃熱回収ヒートポンプの成績係
数(但し熱量比)と溶液濃度とを計算すると下表のよう
になる。
By performing heat pump operation in a solution refrigeration cycle using such solutions, a pure refrigerant compression refrigeration cycle L
The main feature of the present invention is that it may or may not improve the coefficient of performance, but it is possible to improve the coefficient of performance by using reaction systems for which data are available, such as ammonia Water-ammonia refrigerant reaction system, E
For the 181-R-22 reaction system, 32℃ waste heat was converted to 55℃
The table below shows the coefficient of performance (heat ratio) and solution concentration of a waste heat recovery heat pump that is used by heating up to iM.

(以下蒙15) 上述の理論計算から明らかなように、アンモニア、フロ
ンR−22等の純冷媒のサイクルを利用した従来の圧縮
冷凍装置に比較して成績係数の向上が見られるが、これ
は系統における高低圧圧力比は大きくなって圧縮機の所
要動力が増大するものの、蒸発潜熱及び反応熱が利用で
きるからである。
(Hereinafter referred to as Meng 15) As is clear from the above theoretical calculations, the coefficient of performance is improved compared to conventional compression refrigeration equipment that uses pure refrigerant cycles such as ammonia and Freon R-22. This is because the latent heat of vaporization and the heat of reaction can be utilized, although the high-low pressure ratio in the system increases and the power required for the compressor increases.

次に本発明に係る冷凍装置において、冷凍容量の制御を
行う場合に圧縮機(2)をアンロード機構によって能力
制御を行わせ、あるいは回転数制御によって能力制御を
行わせることは当然可能であるが、圧縮機(2)は通常
の運転を続行しながら、溶液冷媒系内の溶液rl= 度
を調節することによって容は11〒制御が可能である。
Next, in the refrigeration system according to the present invention, when controlling the refrigeration capacity, it is naturally possible to control the capacity of the compressor (2) by using an unloading mechanism or by controlling the rotation speed. However, while the compressor (2) continues its normal operation, the capacity can be controlled by adjusting the temperature of the solution in the solution refrigerant system.

か\る制御態様に関しては特にfB2番目の発明に関す
るものであるから、これを第2図に基いて以下説明する
Since this control mode particularly relates to the second invention, it will be explained below based on FIG. 2.

第2図において付した符号のうち、第1図々示の各部材
に夫々対応する部材については夫々第1図と同符号を付
しており、それ等についての詳細説明は省略して新たに
付加さねた機構lとついてのみ述べると、(i印は圧縮
機(2)の吐出口と吸収器(31の冷媒流入口とを接続
する高圧冷媒蒸気管(10(中に介設してなる溶液濃度
調節器であって、該調節器(151には凝縮用コイル(
16)を上部に、蒸発用コイル(17)を下部に配置し
て内蔵せしめている。
Among the reference numerals given in Figure 2, the members corresponding to those shown in Figure 1 are given the same reference numerals as in Figure 1, and detailed explanations thereof will be omitted and newly added. To describe only the mechanism l that was not added, (i mark is a high-pressure refrigerant vapor pipe (10 (interposed inside) connecting the discharge port of the compressor (2) and the refrigerant inlet of the absorber (31). A solution concentration regulator (151) includes a condensing coil (151).
16) in the upper part and the evaporation coil (17) in the lower part.

(18)は濃溶液回路(5)における熱交換器(6)流
入前の部分Iこ介設した流量調節弁であり、また、dは
稀溶液回路(41における熱交換器(6)流入前の部分
に介設した流量調節弁である。
(18) is a flow rate control valve installed in the part I before the inflow to the heat exchanger (6) in the concentrated solution circuit (5), and d is the flow control valve installed in the part I before inflow to the heat exchanger (6) in the dilute solution circuit (41). This is a flow control valve installed in the section.

流量調節弁(181は、分流用ポートを配管(”廟によ
って凝縮用コイル(1,61の入口側に接続し、一方、
流量調節弁(19)は分流用ポートを配管イ22)によ
って蒸発用コイルt17)の入口側に接続している。
The flow rate control valve (181) connects the diversion port to the inlet side of the condensing coil (1, 61) by means of piping.
The flow control valve (19) has a dividing port connected to the inlet side of the evaporation coil t17) via a piping 22).

前記凝縮用コイル(16)はその出口側を配管(21)
によって濃溶液回路(511こ分岐接続せしめていて、
前記流量調節弁(18)を操作した際に、発生器(1)
から流出する低温濃溶液の一部量又は全部量が凝縮用コ
イル(16)に流通するようになっている。
The condensing coil (16) has its outlet side connected to a pipe (21)
The concentrated solution circuit (511 branches) is connected by
When the flow control valve (18) is operated, the generator (1)
A part or all of the low temperature concentrated solution flowing out from the condensing coil (16) is arranged to flow through the condensing coil (16).

一方、蒸発用コイル(17)はその出口側を配管f’!
3)に゛・よって稀溶液回路(4)Lこ分岐接続せしめ
ていて、@記流耐調節弁(19)を操作した際に、吸収
器(3)から流出する高温稀溶液の一部量又は全部量が
蒸発用コイル(1,7) &こ流通するようになってい
る。
On the other hand, the evaporation coil (17) has its outlet side connected to the piping f'!
According to 3), the dilute solution circuit (4) L is branched and connected, and when the flow-proof control valve (19) is operated, a portion of the high-temperature dilute solution flowing out from the absorber (3) Alternatively, the entire amount is distributed through the evaporation coils (1, 7) &.

この冷凍装置において、例えば容量を低減側に制御した
い場合迅こは、圧縮機(2)を通常の能力のま\で運転
しなから流量調節弁(18)を分流用ポートが開く方向
に操作せしめると、圧縮1Jf21の吐出側冷媒蒸気の
一部は、溶液濃度調節器(151内で凝縮用コイル(l
η内に流れる低温濃溶液と熱交換して凝縮液化し器底部
に貯溜される。
In this refrigeration system, if you want to control the capacity to a reduced side, for example, you should operate the compressor (2) at its normal capacity and then operate the flow control valve (18) in the direction that opens the diversion port. When this happens, a part of the refrigerant vapor on the discharge side of compression 1Jf21 is transferred to the condensing coil (l) in the solution concentration regulator (151).
It exchanges heat with the low-temperature concentrated solution flowing in η, condenses and liquefies it, and stores it at the bottom of the vessel.

その結果、系内溶液の冷媒含有率が下って、発生熱、吸
収熱はともに減少し冷凍装置の容量が低減する。
As a result, the refrigerant content of the solution in the system decreases, and both the generated heat and absorbed heat decrease, reducing the capacity of the refrigeration system.

一方、増容量側に制御したい場合には、圧副磯(2)は
通常の運転を行わせながら流量調節弁(19)を分流用
ポートが開く方向に操作せしめる。
On the other hand, when it is desired to increase the capacity, the flow control valve (19) is operated in the direction in which the diversion port opens while the pressure sub-isolation (2) is operating normally.

かくするととにより、溶液濃度調節器(丙の底部に貯溜
している冷媒液は蒸発用コイル(17)内を流通するj
所温稀溶液によって加熱される結果、蒸発して高圧冷媒
蒸気管00に返されて吸収器(3)Iこ送り込まれる。
As a result, the refrigerant liquid stored at the bottom of the solution concentration regulator (C) flows through the evaporation coil (17).
As a result of being heated by the dilute solution at a certain temperature, it evaporates and is returned to the high-pressure refrigerant vapor pipe 00 and sent to the absorber (3) I.

従って、系内溶液の冷媒含有率が上昇し1発生熱、吸収
熱はともに増加し、冷凍装置の容量が増大する。
Therefore, the refrigerant content of the solution in the system increases, and both the heat generated and the heat absorbed increase, and the capacity of the refrigeration system increases.

このように溶液冷媒系内の溶液濃度を調節することによ
って、圧縮機(2)は通常の運転にしたま\で装置容量
を増減調節することが口」能である。
By adjusting the solution concentration in the solution refrigerant system in this manner, it is possible to increase or decrease the capacity of the compressor (2) while the compressor (2) is in normal operation.

本発明は以上詳記した通りの構成および作用を有するも
のであって、凝縮と蒸発を行わせる純1勺媒のサイクル
に比して系内圧力を比較的低圧番こさせて運転できるた
め装置コストを低減することが可能である。
The present invention has the structure and operation as described in detail above, and the system can be operated at a relatively low pressure compared to a pure single-component cycle that performs condensation and evaporation. It is possible to reduce costs.

また、系統の高低圧々力比は大きくなって圧縮機所要動
力は増大するが、蒸発潜熱セよび反応熱が利用できるた
め、成績係数が改善される。  −さらに本発明は、系
統内の溶液濃度を溶液濃度調節器(丙の作用で大小調節
し、もって装置容量を増減制御できるので取扱い上の便
利さはもとより、細かい容量制御を容易に行うことか可
能であって、その実用的効果は大なるものがある。
In addition, although the high-to-low pressure ratio of the system increases and the power required for the compressor increases, the latent heat of vaporization and reaction heat can be used, so the coefficient of performance is improved. -Furthermore, the present invention allows the solution concentration in the system to be adjusted in size by the action of the solution concentration regulator (C), thereby increasing or decreasing the device capacity. It is possible, and its practical effects are great.

しか1−で本発明は排熱を僅か【こ温度上昇させて利用
する場合、温度上昇の必要が殆どなくて離れた個所で熱
利用を行わせる熱輸送システムの場合等に適用して頗る
効果の大なる冷凍装置である。
However, in 1-1, the present invention has great effects when applied to heat transport systems where heat is utilized at a remote location because there is almost no need to raise the temperature when waste heat is utilized by raising the temperature slightly. It is a large refrigeration device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置例に係る装置回路図、第2図は第2
番目の発明に係る冷凍装置の装置回路図である。 (1)・・・・・・・・・・・発生器。 (21・・・・・・・・・・・・圧縮機。 (3)・・・・・・・・吸収器。 (4)・・・・・・・・1#溶液回路。 (5)・・・・・濃溶液回路。 (6)・・・・・・・・・・・熱交換器。 (13)・・t・・・・・絞り弁。 (14)  ・・・ポンプ。 (15)・・・・・・・・・・溶液濃度調節器。 特許出願人  工業技術院長 第1図 第2図
FIG. 1 is a device circuit diagram according to an example of the device of the present invention, and FIG.
FIG. 3 is a device circuit diagram of a refrigeration device according to the second invention. (1)・・・・・・・・・・・・ Generator. (21......Compressor. (3)...Absorber. (4)...1# solution circuit. (5) ...Concentrated solution circuit. (6) ....Heat exchanger. (13) ...T ... Throttle valve. (14) ...Pump. ( 15)・・・・・・・・・・・・Solution concentration regulator. Patent applicant: Director of the Agency of Industrial Science and Technology Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、 吸収剤に冷媒蒸気を反応させて得られる溶液を器
体内において低温熱の導入により加熱せしめて、前記溶
液から冷媒蒸気を発生させる発生器fl+、この発生し
た冷媒素気を圧縮昇圧する圧fd 14121、この圧
縮昇圧された高圧冷媒蒸気と前記発生器fllから返送
されだ濃溶液とを器体内において反応させ、濃溶液に前
記高圧冷媒蒸気を吸収せしめると共に、この吸収によっ
て発生した反応熱を外部に取出す吸収器(3)、該吸収
器(3)から前記発生器fi+に稀溶液を送るために絞
り弁(131あるいはポンプを介設して有する稀溶液回
路(41、発生器(1)から吸収器(3)に濃溶液を送
るためにポンプ旧)を介設して有する濃溶液回路(5)
、前記両溶液回路f41.(51に関連せし。 めで稀溶液と濃溶液の間での熱交換可能に設けた熱交換
器(6)からなり、発生器(1)での蒸発熱を冷熱源l
・と1、吸収器(3)での吸収反応熱を温熱源に夫々利
用可能となしたことを特徴とする圧縮式冷、凍装置。 2、吸収剤に冷媒蒸気を反応して得られる溶液を器体内
において低温熱の導入により加熱せしめて、前記溶液か
ら冷媒蒸気を発生させる発生器il+、この発生した冷
媒蒸気を圧縮昇圧する圧縮(幾(2)、この圧縮昇圧さ
れた高圧冷媒蒸気と前記発生器(1)から返送された濃
溶液とを器体内において反応させ、濃溶液に前記高圧冷
媒蒸気を吸収せしめると共に、この吸収によって発生し
た反応熱を外部に取出させる吸収器(3)、該吸収器(
3)から前記発生器(1)に稀溶液を送るために絞り弁
(13)あるいはポンプを介設して有する稀溶液回路(
4)、発生器(1)から吸収器(31に濃溶液を送るた
め番こポンプ(14)を介設して有する濃溶液回路(5
)、前記両溶液回路(4+、 +51に関連せしめて稀
溶液と濃溶液との間での熱交換可能に設けた熱交換器(
6)、濃溶液回路(5)における熱交換器(6)流入前
の低温濃溶液を必要時に流通し得る凝縮用コイル(16
1ならびに稀溶液回路(4目こおける熱交換器(6)流
入前の高温稀溶液を必要時に流通し得る蒸発用コイル0
7)を器体内に熱交換約6こ備えて、圧縮機(2)の吐
出口と吸収器(3)の流入口とを接続する冷媒蒸気管中
に介設せしめた溶液濃度調節器(15)力)らなり、発
生器(1,1での蒸発熱を冷熱涼感こ、吸収器(3)で
の吸収反応熱を温熱源に夫々利用可能となA−と共に、
系内溶液濃度を調節して冷凍装置の容(]1を、1&官
調節し得る如くしたことを特徴とする圧縮式冷凍装置。
[Claims] 1. A generator fl+ that generates refrigerant vapor from the solution by heating a solution obtained by reacting refrigerant vapor with an absorbent by introducing low-temperature heat into the container, and a generator fl+ that generates refrigerant vapor from the solution; The compressed and pressurized high-pressure refrigerant vapor and the concentrated solution returned from the generator flll are reacted in the vessel, and the concentrated solution absorbs the high-pressure refrigerant vapor, and this absorption an absorber (3) for extracting the reaction heat generated by the absorber (3) to the outside, and a dilute solution circuit (41) having a throttle valve (131 or pump interposed) for sending the dilute solution from the absorber (3) to the generator fi+. , a concentrated solution circuit (5) having a pump (formerly known as a pump) interposed to send the concentrated solution from the generator (1) to the absorber (3).
, both solution circuits f41. (Related to 51) It consists of a heat exchanger (6) installed to enable heat exchange between a dilute solution and a concentrated solution, and converts the heat of evaporation in the generator (1) into a cold source
- and 1. A compression type refrigeration/freezing device characterized in that the absorption reaction heat in the absorber (3) can be used as a heat source. 2. A generator il+ that generates refrigerant vapor from the solution by heating the solution obtained by reacting refrigerant vapor with the absorbent by introducing low-temperature heat into the vessel, and a compressor (il+) that compresses and increases the pressure of the generated refrigerant vapor. (2) This compressed and pressurized high-pressure refrigerant vapor is reacted with the concentrated solution returned from the generator (1) in the vessel, and the concentrated solution absorbs the high-pressure refrigerant vapor, and the absorption generates an absorber (3) for extracting the generated reaction heat to the outside;
3) A dilute solution circuit (13) having a throttle valve (13) or a pump interposed therein to send the dilute solution from the generator (1).
4), a concentrated solution circuit (5) having a pump (14) interposed therein for sending a concentrated solution from the generator (1) to the absorber (31);
), a heat exchanger (4+, +51) provided to enable heat exchange between the dilute solution and the concentrated solution in connection with both solution circuits (4+, +51).
6), a condensing coil (16) through which the low-temperature concentrated solution before flowing into the heat exchanger (6) in the concentrated solution circuit (5) can be circulated when necessary.
1 and the dilute solution circuit (heat exchanger (6) in the 4th coil) Evaporation coil 0 that can circulate the high temperature dilute solution before it flows in when necessary
A solution concentration regulator (15) is provided in the refrigerant vapor pipe connecting the discharge port of the compressor (2) and the inlet of the absorber (3). ), the heat of evaporation in the generator (1, 1) can be used as a cooling and cooling sensation, and the heat of absorption reaction in the absorber (3) can be used as a heat source.
A compression type refrigeration apparatus characterized in that the capacity of the refrigeration apparatus can be adjusted by adjusting the concentration of a solution in the system.
JP16381581A 1981-10-13 1981-10-13 Compression type refrigerator Granted JPS5864470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16381581A JPS5864470A (en) 1981-10-13 1981-10-13 Compression type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16381581A JPS5864470A (en) 1981-10-13 1981-10-13 Compression type refrigerator

Publications (2)

Publication Number Publication Date
JPS5864470A true JPS5864470A (en) 1983-04-16
JPH0355738B2 JPH0355738B2 (en) 1991-08-26

Family

ID=15781240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16381581A Granted JPS5864470A (en) 1981-10-13 1981-10-13 Compression type refrigerator

Country Status (1)

Country Link
JP (1) JPS5864470A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105869A (en) * 1983-09-29 1985-06-11 ア−ノルド、ア−ル、ボバチ Chemically assisted machine refrigeration method
JPS61140759A (en) * 1984-12-11 1986-06-27 三菱重工業株式会社 Compression type heat pump by two medium
JPS61180864A (en) * 1985-02-04 1986-08-13 三洋電機株式会社 Absorption refrigerator
JPS61252460A (en) * 1985-05-01 1986-11-10 加部 利明 Chemical heat pump system
JPS62129663A (en) * 1985-11-29 1987-06-11 大阪瓦斯株式会社 Absorption type heat pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343268A (en) * 1976-09-30 1978-04-19 Toshio Hosokawa Refrigeration system
JPS5637471A (en) * 1979-06-08 1981-04-11 Energiagazdalkodasi Intezet Hybrid heat pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343268A (en) * 1976-09-30 1978-04-19 Toshio Hosokawa Refrigeration system
JPS5637471A (en) * 1979-06-08 1981-04-11 Energiagazdalkodasi Intezet Hybrid heat pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105869A (en) * 1983-09-29 1985-06-11 ア−ノルド、ア−ル、ボバチ Chemically assisted machine refrigeration method
JPH0532664B2 (en) * 1983-09-29 1993-05-17 Aaru Bobachi Aanorudo
JPS61140759A (en) * 1984-12-11 1986-06-27 三菱重工業株式会社 Compression type heat pump by two medium
JPS61180864A (en) * 1985-02-04 1986-08-13 三洋電機株式会社 Absorption refrigerator
JPS61252460A (en) * 1985-05-01 1986-11-10 加部 利明 Chemical heat pump system
JPH0670534B2 (en) * 1985-05-01 1994-09-07 利明 加部 Chemical heat pump equipment
JPS62129663A (en) * 1985-11-29 1987-06-11 大阪瓦斯株式会社 Absorption type heat pump

Also Published As

Publication number Publication date
JPH0355738B2 (en) 1991-08-26

Similar Documents

Publication Publication Date Title
US4691532A (en) Dual cooling/heating system energy recovery
US4732008A (en) Triple effect absorption chiller utilizing two refrigeration circuits
US4100755A (en) Absorption refrigeration system utilizing solar energy
US5442931A (en) Simplified adsorption heat pump using passive heat recuperation
KR20010041159A (en) Heat pumps using organometallic liquid absorbents
US4526009A (en) Method of operating a bimodal heat pump, as well as bimodal heat pump for using said method
JPS5864470A (en) Compression type refrigerator
KR20030045175A (en) Phase-change Heat Transfer Coupling For Aqua-ammonia Absorption Systems
JPS62218769A (en) Heat pump air-conditioning hot-water supply device
JPS5815701B2 (en) Solar heat absorption type air conditioning and water heater
JPS62218773A (en) Cold and heat accumulator
JP3138081B2 (en) Absorption heat pump equipment
JP3407659B2 (en) Air conditioning equipment
JPS582564A (en) Composite absorption type refrigerator
JPH01208668A (en) Heat storage type cold and hot heat generating device
JP3429905B2 (en) Absorption refrigerator
JPS58108372A (en) Air-conditioning hot-water supply device
JPS586376A (en) Absorption type air conditioner
JPH0253702B2 (en)
JPH01312365A (en) Cooling and heating device
CN113587491A (en) Double-stage generation absorption heat pump air conditioning device
JPS58102071A (en) Air conditioner
JP3159038B2 (en) Absorption heat pump
JPH058348B2 (en)
JPH04143555A (en) Absorption type refrigerating plant and controlling method thereof