JPH0355738B2 - - Google Patents
Info
- Publication number
- JPH0355738B2 JPH0355738B2 JP56163815A JP16381581A JPH0355738B2 JP H0355738 B2 JPH0355738 B2 JP H0355738B2 JP 56163815 A JP56163815 A JP 56163815A JP 16381581 A JP16381581 A JP 16381581A JP H0355738 B2 JPH0355738 B2 JP H0355738B2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- heat
- refrigerant vapor
- absorber
- generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003507 refrigerant Substances 0.000 claims description 42
- 238000005057 refrigeration Methods 0.000 claims description 20
- 239000006096 absorbing agent Substances 0.000 claims description 19
- 238000001704 evaporation Methods 0.000 claims description 9
- 230000002745 absorbent Effects 0.000 claims description 8
- 239000002250 absorbent Substances 0.000 claims description 8
- 238000010521 absorption reaction Methods 0.000 claims description 7
- 230000008020 evaporation Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 238000005507 spraying Methods 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
本発明は圧縮機の成績係数を向上し得て、しか
も容量制御を比較的簡単に行うことができる圧縮
式冷凍装置に関する。
フロン冷媒などの凝縮性ガス冷媒を熱媒体とし
て用いてなる圧縮式冷凍装置は原理的な解明が終
り、さらに実用上の基本技術的な問題についても
改善され尽したの感があり、能力、効率などの点
に関して現状から飛躍した改良は到底望むべくも
ないところまできている。
たヾ、この種の冷凍装置に共通して言える点
は、容量制御を行うのにアンロード機構を用いた
り、モータの回転数を制御したりするのが極く一
般的であるため、比較的複雑な装置となつてコス
ト高につながる問題があり、また、機械面での改
良をはかる以外に成績係数を向上させることは新
しい冷媒の開発が進んでいない点などから現在の
ところ不可能であるなどが指摘されているが、改
善策が全く見当らないまゝで現状に甘んじている
のが実態であると言える。
かゝる実状に鑑みて、本発明は従来の圧縮式冷
凍装置とは形態の異る新規な冷凍装置を開発すべ
き鋭意検討の結果、成績係数のさらに向上をはか
ることができ、かつ容量制御も比較的簡単に行え
る冷凍装置をここに供給するに至つたものであつ
て、特に吸収剤に冷媒蒸気を反応させて得られる
溶液を器体内において低温熱の導入により加熱せ
しめて、前記溶液から冷媒蒸気を発生させる発生
器、この発生した冷媒蒸気を圧縮昇圧する圧縮
機、この圧縮昇圧された高圧冷媒蒸気と前記発生
器から返送された濃溶液とを器体内において反応
させ、濃溶液に前記高圧冷媒蒸気を吸収せしめる
と共に、この吸収によつて発生した反応熱を外部
に取出させる吸収器、該吸収器から前記発生器に
稀溶液を送るために絞り弁あるいはポンプを介設
して有する稀溶液回路、発生器から吸収器に濃溶
液を送るためにポンプを介設して有する濃溶液回
路、前記両溶液回路に関連せしめて稀溶液と濃溶
液の間での熱交換可能に設けた熱交換器からな
り、発生器での蒸気熱を冷熱源に、吸収器での吸
収反応熱を温熱源に夫々利用可能となしたことを
特徴とする。
さらに本発明は、前記構成に加えて、濃溶液回
路における前記熱交換器流入前の低温濃溶液を必
要時に流通し得る凝縮用コイルならびに前記稀溶
液回路における熱交換器流入前の高温稀溶液を必
要時に流通し得る蒸発用コイルが器体内に熱交換
的に設けられてなる溶液濃度調節器を圧縮機の吐
出口と吸収器の流入口とを接続する冷媒蒸気管中
に介設せしめてなる構成を具備せしめたことによ
つて、系内の溶液濃度を調節可能とし、冷凍装置
の容量を適宜調節し得る如くしたことを特徴とす
る。
以下、さらに本発明の具体的内容について添付
図面を参照しつつ詳細に説明する。
第1図は本発明装置に係る装置回路図であつ
て、この装置は溶液散布用ノズル7、熱交換コイ
ル8を上下配置で内蔵して有する発生器1、該発
生器1の気相部に臨ませて開口した出口に低圧冷
媒蒸気管9を通じ吸入口が連絡されてなる圧縮機
2、溶液散布用ノズル11、熱交換コイル12を
上下配置で内蔵して有し、かつ気相部に臨ませて
開口した入口に高圧冷媒蒸気管10を通じ、圧縮
機2の吐出口が連絡されてなる吸収器3、絞り弁
13を途中に有し、かつ吸収器3に該液相部に臨
んで設けられた出口と発生器1の溶液散布用ノズ
ル7とを連絡するための稀溶液回路4、ポンプ1
4を途中に有し、かつ、発生器1に該液相部に臨
んで設けられた出口と吸収器3の溶液散布用ノズ
ル11とを連絡するための濃溶液回路5、両溶液
回路4,5に関連せしめて稀溶液と濃溶液との間
での熱交換可能に設けた熱交換器6、凝縮用コイ
ル16と蒸気用コイル17を上下関係で器体内に
収蔵し、かつ該器体を前記高圧冷媒蒸気管10の
途中に冷媒蒸気通路として介設した溶液濃度調節
器15、濃溶液回路5における熱交換器6に流入
前の部分に介設した第1流量調節弁18、稀溶液
回路4における熱交換器6に流入前の部分に介設
した第2流量調節弁19、前記第1流量調節弁1
8の分流用ポートと凝縮用コイル16の入口側と
を接続する配管20、凝縮用コイル16の出口側
と濃溶液回路5における熱交換器6通過後の部分
とを接続する配管21、前記第2流量調節弁19
の分流用ポートと蒸気用コイル17の入口側とを
接続する配管22、蒸発用コイル17の出口側と
稀溶液回路4における熱交換器6通過後の部分と
を接続する配管23からなつていて、この閉回路
中には吸収剤に冷媒蒸気を反応して得られる溶液
(この溶液の具体例については後述する)を所定
量封入せしめている。
なお、第1流量調節弁18は、発生器1から流
出する低温濃溶液の一部量又は全部量を凝縮用コ
イル16に流通せしめるための制御弁であり、一
方、第2流量調節弁19は、吸収器3から流出す
る高温稀溶液の一部量又は全部量を蒸発用コイル
17に流通せしめるための制御弁である。
上記装置は、熱交換器6で熱交換を行つて温度
が下つた稀溶液(冷媒蒸気を多く吸収した状態の
溶液)が発生器1内で前記ノズル7から散布され
た際に、熱交換コイル8内の水と熱交換して加熱
されることにより、冷媒蒸気を発生して、その際
の蒸発潜熱で熱交換コイル8内の水を冷却する。
この冷却蒸気は低圧冷媒蒸気管9を経て圧縮機
2に送られ、一方、冷媒蒸気が分離した後の濃溶
液(冷媒蒸気の吸収量が少い溶液)は、ポンプ1
4、熱交換機6を経て温度が上昇した後、吸収器
3の溶液散布用ノズル11に送られる。
圧縮機に送られた冷媒蒸気は圧縮昇圧された
後、高圧冷媒蒸気管10を経て吸収器3に流入
し、溶液散布用ノズル11から散布された前記濃
溶液と接して反応し、濃溶液に吸収されると共
に、濃溶液は稀溶液となる。
その際、吸収反応熱を発生するので、高温の稀
溶液と熱交換コイル12内の水との間で熱交換さ
せて稀溶液の温度を下げる一方、熱交換コイル1
2からは温水を取り出すことができる。
吸収器3内の稀溶液は絞り弁13で減圧された
後、熱交換器6でさらに冷却されて溶液散布用ノ
ズル7に送られる。
以上のように、溶液の循環ならびに冷媒蒸気の
発生と吸収が行われることによつて、発生器1で
の蒸発熱を冷熱源に、吸収器3での吸収反応熱を
温熱源に夫々利用でき、圧縮機によるヒートポン
プ運転が可能となる。
上記冷凍装置において、溶液冷凍サイクルの要
素である溶液としては、冷媒にアンモニア、吸収
剤にヨウ化ナトリウムを用いてなる溶液と、冷媒
にアンモニア、吸収剤に塩化アンモニウムを用い
てなる溶液と、冷媒にフロンR−22、吸収剤に
E181(テトラエチレングリコール・ジメチルエー
テル)を用してなる溶液と、冷媒にフロンR−
22、吸収剤にDMF(ジメチルホルムアミド)を用
いてなる溶液のうちのいずれかが選択される。
それ等の溶液を用いた溶液冷凍サイクルでヒー
トポンプ運転を行うことによつて、純冷媒の圧縮
冷凍サイクルに較べて成績係数の向上がはかれる
点に本発明の主な特徴が存するのであるが、最大
の期待メリツトである成績係数の改善の可能性に
ついてデータが揃つている反応系、例えばアンモ
ニア水−アンモニア冷媒反応系、E181−R−22
反応系について、32℃廃熱を55℃まで昇温して利
用する廃熱回収ヒートポンプの成績係数(但し熱
量比)と溶液濃度とを計算すると下表のようにな
る。
The present invention relates to a compression type refrigeration system that can improve the coefficient of performance of a compressor and can perform capacity control relatively easily. The principle of compression refrigeration equipment that uses condensable gas refrigerants such as fluorocarbon refrigerants as a heat medium has been fully clarified, and it seems that the basic technical problems in practical use have been improved, and the performance and efficiency have improved. We have reached the point where we cannot hope for any significant improvement over the current situation in these areas. What is common to this type of refrigeration equipment is that it is extremely common to use an unloading mechanism to control the capacity or to control the motor rotation speed, so it is relatively easy to use. There is a problem with the complicated equipment that leads to high costs, and it is currently impossible to improve the coefficient of performance other than by making mechanical improvements, as the development of new refrigerants is not progressing. Although these issues have been pointed out, the reality is that the current situation is complacent with no improvement measures in sight. In view of these circumstances, the present invention has been developed as a result of intensive studies to develop a new refrigeration system that has a different form from conventional compression refrigeration equipment. We have now supplied a refrigeration system that can be operated relatively easily, and in particular, a solution obtained by reacting an absorbent with refrigerant vapor is heated by introducing low-temperature heat into the vessel, and the solution is heated. A generator that generates refrigerant vapor, a compressor that compresses and pressurizes the generated refrigerant vapor, and reacts the compressed and pressurized high-pressure refrigerant vapor with the concentrated solution returned from the generator in the container, and converts the concentrated solution into the An absorber that absorbs high-pressure refrigerant vapor and extracts the reaction heat generated by this absorption to the outside; A solution circuit, a concentrated solution circuit having a pump interposed therein to send the concentrated solution from the generator to the absorber, and a heat source connected to both solution circuits to enable heat exchange between the dilute solution and the concentrated solution. It consists of an exchanger, and is characterized in that the steam heat in the generator can be used as a cold heat source, and the absorption reaction heat in the absorber can be used as a heat source. Furthermore, in addition to the above configuration, the present invention provides a condensing coil through which the low-temperature concentrated solution before flowing into the heat exchanger in the concentrated solution circuit can be circulated when necessary, and a high-temperature dilute solution in the dilute solution circuit before flowing into the heat exchanger. A solution concentration regulator having an evaporating coil that can be circulated when necessary for heat exchange inside the container is interposed in a refrigerant vapor pipe connecting the discharge port of the compressor and the inlet of the absorber. By providing this configuration, the solution concentration within the system can be adjusted, and the capacity of the refrigeration device can be adjusted as appropriate. Hereinafter, specific contents of the present invention will be further explained in detail with reference to the accompanying drawings. FIG. 1 is a circuit diagram of an apparatus according to the present invention, which includes a generator 1 having a solution dispersion nozzle 7 and a heat exchange coil 8 arranged vertically, and a gas phase section of the generator 1. It has a compressor 2, a solution dispersion nozzle 11, and a heat exchange coil 12 arranged vertically in the compressor 2, the suction port of which is connected to the outlet facing the open side through a low-pressure refrigerant vapor pipe 9, and facing the gas phase part. A high-pressure refrigerant vapor pipe 10 is connected to the inlet of the compressor 2, and a throttle valve 13 is provided in the middle of the absorber 3, and the absorber 3 is provided facing the liquid phase part. a dilute solution circuit 4 and a pump 1 for communicating the outlet of the generator 1 with the solution spraying nozzle 7 of the generator 1;
4 in the middle, and a concentrated solution circuit 5 for communicating the outlet provided in the generator 1 facing the liquid phase with the solution spraying nozzle 11 of the absorber 3, both solution circuits 4, 5, a heat exchanger 6 provided to enable heat exchange between a dilute solution and a concentrated solution, a condensing coil 16 and a steam coil 17 are housed in a vertical relationship in a container, and the container is A solution concentration regulator 15 interposed as a refrigerant vapor passage in the middle of the high-pressure refrigerant vapor pipe 10, a first flow rate control valve 18 interposed in a portion of the concentrated solution circuit 5 before flowing into the heat exchanger 6, and a dilute solution circuit. 4, a second flow rate control valve 19 interposed in a portion before flowing into the heat exchanger 6, and the first flow rate control valve 1
8, a pipe 20 that connects the inlet side of the condensation coil 16, a pipe 21 that connects the outlet side of the condensation coil 16 and the portion of the concentrated solution circuit 5 after passing through the heat exchanger 6; 2 flow rate control valve 19
It consists of a pipe 22 that connects the diversion port and the inlet side of the steam coil 17, and a pipe 23 that connects the outlet side of the evaporation coil 17 and the portion of the dilute solution circuit 4 after passing through the heat exchanger 6. A predetermined amount of a solution obtained by reacting the absorbent with refrigerant vapor (a specific example of this solution will be described later) is sealed in this closed circuit. Note that the first flow rate control valve 18 is a control valve for causing a part or all of the low temperature concentrated solution flowing out from the generator 1 to flow through the condensing coil 16, while the second flow rate control valve 19 is , is a control valve for causing a part or all of the high temperature dilute solution flowing out from the absorber 3 to flow to the evaporation coil 17. In the above device, when a dilute solution (a solution that has absorbed a large amount of refrigerant vapor) whose temperature has been lowered by heat exchange in a heat exchanger 6 is sprayed from the nozzle 7 in the generator 1, the heat exchange coil By exchanging heat with the water in the heat exchange coil 8 and being heated, refrigerant vapor is generated, and the water in the heat exchange coil 8 is cooled by the latent heat of evaporation at that time. This cooling vapor is sent to the compressor 2 via the low-pressure refrigerant vapor pipe 9, while the concentrated solution after the refrigerant vapor has been separated (a solution that absorbs a small amount of refrigerant vapor) is pumped 1
4. After passing through the heat exchanger 6 and increasing its temperature, it is sent to the solution spraying nozzle 11 of the absorber 3. After being compressed and pressurized, the refrigerant vapor sent to the compressor flows into the absorber 3 through the high-pressure refrigerant vapor pipe 10, and reacts with the concentrated solution sprayed from the solution spraying nozzle 11, turning into a concentrated solution. Upon absorption, the concentrated solution becomes a dilute solution. At this time, absorption reaction heat is generated, so heat is exchanged between the high temperature dilute solution and the water in the heat exchange coil 12 to lower the temperature of the dilute solution.
Hot water can be taken out from 2. After the dilute solution in the absorber 3 is depressurized by the throttle valve 13, it is further cooled by the heat exchanger 6 and sent to the solution spraying nozzle 7. As described above, by circulating the solution and generating and absorbing refrigerant vapor, the heat of evaporation in the generator 1 can be used as a cold heat source, and the heat of absorption reaction in the absorber 3 can be used as a heat source. , it becomes possible to operate a heat pump using a compressor. In the above-mentioned refrigeration system, the solutions that are the elements of the solution refrigeration cycle include a solution using ammonia as a refrigerant and sodium iodide as an absorbent, a solution using ammonia as a refrigerant and ammonium chloride as an absorbent, and a solution using ammonia as a refrigerant and ammonium chloride as an absorbent. Freon R-22, absorbent
A solution made using E181 (tetraethylene glycol dimethyl ether) and Freon R- as a refrigerant.
22. One of the solutions using DMF (dimethylformamide) as an absorbent is selected. The main feature of the present invention is that by performing heat pump operation in a solution refrigeration cycle using such a solution, the coefficient of performance can be improved compared to a compression refrigeration cycle using pure refrigerant. Reaction systems for which data are available regarding the possibility of improving the coefficient of performance, which is the expected benefit of
Regarding the reaction system, the coefficient of performance (heat ratio) and solution concentration of a waste heat recovery heat pump that raises the temperature of 32°C waste heat to 55°C and uses it are calculated as shown in the table below.
【表】【table】
【表】
上述の理論計算から明らかなように、アンモニ
ア、フロンR−22等の純冷媒のサイクルを利用し
た従来の圧縮冷凍装置に比較して成績係数の向上
が見られるが、これは系統における高低圧圧力比
は大きくなつて圧縮機の所要動力が増大するもの
の、蒸発潜熱及び反応熱が利用できるからであ
る。
次に本発明に係る冷凍装置において、冷凍容量
の制御を行う場合に圧縮機2をアンロード機構に
よつて能力制御を行わせ、あるいは回転数制御に
よつて能力制御を行わせることは当然可能である
が、圧縮機2の通常の運転を続行しながら、溶液
冷媒系内の溶液濃度を調節することによつて容量
制御が可能である。
かかる制御態様に関して以下、第1図に基づい
て説明する。
この冷凍装置において、例えば容量を低減側に
制御したい場合には、圧縮機2を通常の能力の
まゝで運転しながら流量調節弁18を分流用ポー
トが開く方向に操作せしめると、圧縮機2の吐出
側冷媒蒸気の一部は、溶液濃度調節器15内で凝
縮用コイル16内に流れる低温濃溶液と熱交換し
て凝縮液化し器底部に貯溜される。
その結果、系内溶液の冷媒含有率が下つて、発
生熱、吸収熱はともに減少し冷凍装置の容量が低
減する。
一方、増容量側に制御したい場合には、圧縮機
2は通常の運転を行わせながら流量調節弁19を
分流用ポートが開く方向に操作せしめる。
かくすることにより、溶液濃度調節器15の底
部に貯溜している冷媒液を蒸発用コイル17内を
流通する高温稀溶液にようて加熱される結果、蒸
発して高圧冷媒蒸気管10に返されて吸収器3に
送り込まれる。
従つて、系内溶液の冷媒含有率が上昇し、発生
熱、吸収熱はともに増加し、冷凍装置の容量が増
大する。
このように溶液冷媒系内の溶液濃度を調節する
ことによつて、圧縮機2は通常の運転にしたまゝ
で装置容量を増減調節することが可能である。
本発明は以上詳記した通りの構成および作用を
有するものであつて、凝縮と蒸発が行わせる純冷
媒のサイクルに比して系内圧力を比較的低圧にさ
せて運転できるため装置コストを低減することが
可能である。
また、系統の高低圧々力比は大きくなつて圧縮
機所要動力は増大するが、蒸発潜熱および反応熱
が利用できるため、成績係数が改善される。
さらに本発明は、系統内の溶液濃度を溶液濃度
調節器15の作用で大小調節し、もつて装置容量
を増減制御できるので取扱い上の便利さはもとよ
り、細かい容量制御を容易に行うことが可能であ
つて、その実用的効果は大なるものがある。
しかして本発明は排熱を僅かに温度上昇させて
利用する場合、温度上昇の必要が殆どなくて離れ
た個所で熱利用を行わせる熱輸送システムの場合
等に適用して頗る効果の大なる冷凍装置である。[Table] As is clear from the above theoretical calculations, the coefficient of performance is improved compared to conventional compression refrigeration equipment that uses pure refrigerant cycles such as ammonia and CFC R-22. This is because the latent heat of vaporization and the heat of reaction can be utilized, although the high-low pressure ratio increases and the required power of the compressor increases. Next, in the refrigeration system according to the present invention, when controlling the refrigeration capacity, it is naturally possible to control the capacity of the compressor 2 by using the unloading mechanism or by controlling the rotation speed. However, capacity control is possible by adjusting the solution concentration in the solution refrigerant system while continuing normal operation of the compressor 2. This control mode will be explained below based on FIG. 1. In this refrigeration system, if you want to control the capacity to a reduced side, for example, if you operate the flow control valve 18 in the direction in which the diversion port opens while the compressor 2 is operated at its normal capacity, the compressor 2 A part of the refrigerant vapor on the discharge side exchanges heat with the low-temperature concentrated solution flowing in the condensing coil 16 in the solution concentration regulator 15, condenses and liquefies, and is stored at the bottom of the vessel. As a result, the refrigerant content of the solution in the system decreases, and both the generated heat and absorbed heat decrease, reducing the capacity of the refrigeration system. On the other hand, when it is desired to increase the capacity, the compressor 2 is operated normally while the flow control valve 19 is operated in the direction in which the diversion port opens. As a result, the refrigerant liquid stored at the bottom of the solution concentration regulator 15 is heated by the high-temperature dilute solution flowing through the evaporation coil 17, and is evaporated and returned to the high-pressure refrigerant vapor pipe 10. and sent to the absorber 3. Therefore, the refrigerant content of the solution in the system increases, both the heat generated and the heat absorbed increase, and the capacity of the refrigeration system increases. By adjusting the solution concentration in the solution refrigerant system in this way, it is possible to increase or decrease the capacity of the compressor 2 while maintaining normal operation. The present invention has the structure and operation as described in detail above, and can be operated at a relatively low pressure in the system compared to a pure refrigerant cycle in which condensation and evaporation occur, thereby reducing equipment costs. It is possible to do so. Furthermore, although the high-to-low pressure ratio of the system increases and the power required for the compressor increases, the latent heat of vaporization and reaction heat can be used, so the coefficient of performance is improved. Furthermore, according to the present invention, the solution concentration in the system can be adjusted to be large or small by the action of the solution concentration regulator 15, thereby increasing or decreasing the device capacity, which is not only convenient in terms of handling, but also allows fine capacity control to be performed easily. However, its practical effects are significant. Therefore, the present invention can be applied to a heat transport system where waste heat is used with a slight temperature increase, or where heat is utilized at a remote location with almost no need for temperature increase. It is a refrigeration device.
第1図は本発明装置例に係る装置回路図であ
る。
1……発生器、2……圧縮機、3……吸収器、
4……稀溶液回路、5……濃溶液回路、6……熱
交換器、13……絞り弁、14……ポンプ、15
……溶液濃度調節器。
FIG. 1 is a device circuit diagram according to an example of the device of the present invention. 1... Generator, 2... Compressor, 3... Absorber,
4... Dilute solution circuit, 5... Concentrated solution circuit, 6... Heat exchanger, 13... Throttle valve, 14... Pump, 15
...Solution concentration regulator.
Claims (1)
を器体内において低温熱の導入により加熱せしめ
て、前記溶液から冷媒蒸気を発生させる発生器
1、この発生した冷媒蒸気を圧縮昇圧する圧縮機
2、この圧縮昇圧された高圧冷媒蒸気と前記発生
器1から返送された濃溶液とを器体内において反
応させ、濃溶液に前記高圧冷媒蒸気を吸収せしめ
ると共に、この吸収によつて発生した反応熱を外
部に取出させる吸収器3、該吸収器3から前記発
生器1に稀溶液を送るために絞り弁13あるいは
ポンプを介設して有する稀溶液回路4、発生器1
から吸収器3に濃溶液を送るためにポンプ14を
介設して有する濃溶液回路5、前記両溶液回路
4,5に関連せしめて稀溶液と濃溶液との間での
熱交換可能に設けた熱交換器6、濃溶液回路5に
おける熱交換器6流入前の低温濃溶液を必要時に
流通し得る凝縮用コイル16ならびに稀溶液回路
4における熱交換器6流入前の高温稀溶液を必要
時に流通し得る蒸発用コイル17を器体内に熱交
換的に備えて、圧縮機2の吐出口と吸収器3の流
入口とを接続する冷媒蒸気管中に介設せしめた溶
液濃度調節器15からなり、発生器1での蒸発熱
を冷熱源に、吸収器3での吸収反応熱を温熱源に
夫々利用可能となすと共に、系内溶液濃度を調節
して冷凍装置の容量を適宜調節し得る如くしたこ
とを特徴とする圧縮式冷凍装置。1. A generator 1 that generates refrigerant vapor from the solution by heating a solution obtained by reacting an absorbent with refrigerant vapor by introducing low-temperature heat into the container, and a compressor 2 that compresses and pressurizes the generated refrigerant vapor. The compressed and pressurized high-pressure refrigerant vapor and the concentrated solution returned from the generator 1 are reacted in the container, and the concentrated solution absorbs the high-pressure refrigerant vapor, and the reaction heat generated by this absorption is absorbed. An absorber 3 to be taken out to the outside, a dilute solution circuit 4 having a throttle valve 13 or a pump interposed therein to send the dilute solution from the absorber 3 to the generator 1, and the generator 1.
A concentrated solution circuit 5 having a pump 14 interposed therein for sending the concentrated solution from the solution to the absorber 3, and connected to both the solution circuits 4 and 5 to enable heat exchange between the dilute solution and the concentrated solution. a condensing coil 16 through which the low-temperature concentrated solution before flowing into the heat exchanger 6 in the concentrated solution circuit 5 can be circulated when necessary, and a high-temperature dilute solution before flowing into the heat exchanger 6 in the dilute solution circuit 4 when necessary. From the solution concentration regulator 15, which is equipped with an evaporating coil 17 that can be circulated for heat exchange inside the container and is interposed in a refrigerant vapor pipe that connects the outlet of the compressor 2 and the inlet of the absorber 3. Therefore, the heat of evaporation in the generator 1 can be used as a cold heat source, and the heat of absorption reaction in the absorber 3 can be used as a heat source, and the capacity of the refrigeration system can be adjusted as appropriate by adjusting the concentration of the solution in the system. A compression type refrigeration device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16381581A JPS5864470A (en) | 1981-10-13 | 1981-10-13 | Compression type refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16381581A JPS5864470A (en) | 1981-10-13 | 1981-10-13 | Compression type refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5864470A JPS5864470A (en) | 1983-04-16 |
JPH0355738B2 true JPH0355738B2 (en) | 1991-08-26 |
Family
ID=15781240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16381581A Granted JPS5864470A (en) | 1981-10-13 | 1981-10-13 | Compression type refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5864470A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1233655A (en) * | 1983-09-29 | 1988-03-08 | Arnold R. Vobach | Chemically assisted mechanical refrigeration process |
JPS61140759A (en) * | 1984-12-11 | 1986-06-27 | 三菱重工業株式会社 | Compression type heat pump by two medium |
JPS61180864A (en) * | 1985-02-04 | 1986-08-13 | 三洋電機株式会社 | Absorption refrigerator |
JPH0670534B2 (en) * | 1985-05-01 | 1994-09-07 | 利明 加部 | Chemical heat pump equipment |
JPS62129663A (en) * | 1985-11-29 | 1987-06-11 | 大阪瓦斯株式会社 | Absorption type heat pump |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5343268A (en) * | 1976-09-30 | 1978-04-19 | Toshio Hosokawa | Refrigeration system |
JPS5637471A (en) * | 1979-06-08 | 1981-04-11 | Energiagazdalkodasi Intezet | Hybrid heat pump |
-
1981
- 1981-10-13 JP JP16381581A patent/JPS5864470A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5343268A (en) * | 1976-09-30 | 1978-04-19 | Toshio Hosokawa | Refrigeration system |
JPS5637471A (en) * | 1979-06-08 | 1981-04-11 | Energiagazdalkodasi Intezet | Hybrid heat pump |
Also Published As
Publication number | Publication date |
---|---|
JPS5864470A (en) | 1983-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4732008A (en) | Triple effect absorption chiller utilizing two refrigeration circuits | |
JPS61110852A (en) | Absorption heat pump/refrigeration system | |
US4526009A (en) | Method of operating a bimodal heat pump, as well as bimodal heat pump for using said method | |
JPH0423185B2 (en) | ||
WO1997040327A1 (en) | Compression absorption heat pump | |
JPS61110853A (en) | Absorption heat pump/refrigeration system | |
JPH0355738B2 (en) | ||
JPS6277554A (en) | Hot-water supply device | |
US4476694A (en) | Absorption cooling and heating system | |
US5966948A (en) | Sub-ambient absorber GAX cycle | |
US3922873A (en) | High temperature heat recovery in refrigeration | |
JPS62218773A (en) | Cold and heat accumulator | |
JP3466018B2 (en) | Liquid phase separation type absorption refrigeration system | |
JPS5815701B2 (en) | Solar heat absorption type air conditioning and water heater | |
JPS6353456B2 (en) | ||
JP3407659B2 (en) | Air conditioning equipment | |
JP2835945B2 (en) | Absorption refrigerator | |
JPS582564A (en) | Composite absorption type refrigerator | |
JP3429906B2 (en) | Absorption refrigerator | |
JP2556222B2 (en) | Chemical refrigeration equipment | |
JP2627990B2 (en) | Heat transport system | |
JPH1163720A (en) | Coupled refrigerant and adsorbing agent and adsorbing type cold heat generating device using this coupled refrigerant and adsorbing agent | |
JPH0517466B2 (en) | ||
JPS58102071A (en) | Air conditioner | |
JPH058348B2 (en) |