JPS5850290B2 - Sonde for measuring electrical resistance of contents in reduction melting furnace - Google Patents

Sonde for measuring electrical resistance of contents in reduction melting furnace

Info

Publication number
JPS5850290B2
JPS5850290B2 JP4859082A JP4859082A JPS5850290B2 JP S5850290 B2 JPS5850290 B2 JP S5850290B2 JP 4859082 A JP4859082 A JP 4859082A JP 4859082 A JP4859082 A JP 4859082A JP S5850290 B2 JPS5850290 B2 JP S5850290B2
Authority
JP
Japan
Prior art keywords
furnace
sonde
electrode
electrical resistance
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4859082A
Other languages
Japanese (ja)
Other versions
JPS57169005A (en
Inventor
正 磯山
勝秋 片岸
哲二 宮崎
清 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4859082A priority Critical patent/JPS5850290B2/en
Publication of JPS57169005A publication Critical patent/JPS57169005A/en
Publication of JPS5850290B2 publication Critical patent/JPS5850290B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Blast Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、高炉、シャフト炉などのように炉頂部よりコ
ークス、焼結鉱、ペレットおよび塊鉱石(以下鉱石類と
称する)を層状に装入している炉で、コークスと鉱石類
推積層の電気抵抗の差を利用することによって、装入物
の堆積層厚を測定する場合の検出ゾンデの構造に関する
ものである。
Detailed Description of the Invention The present invention relates to a furnace in which coke, sintered ore, pellets, and lump ores (hereinafter referred to as ores) are charged in layers from the top of the furnace, such as a blast furnace or shaft furnace. The present invention relates to the structure of a detection sonde for measuring the thickness of a charge deposit by utilizing the difference in electrical resistance between coke and ore-like layers.

高炉およびシャフト炉などの還元溶解炉では、ベル型も
しくは旋回シュート型の炉頂装入装置によって所定量づ
つ非連続で、しかもコークスと鉱石類を交互に装入して
いる。
In reduction melting furnaces such as blast furnaces and shaft furnaces, coke and ores are charged discontinuously and alternately in predetermined amounts using a bell-shaped or rotating chute-type furnace top charging device.

第1図に本発明に係る高炉の炉頂部の要部断面を示す。FIG. 1 shows a cross section of the main part of the top of the blast furnace according to the present invention.

この場合、ベル1を使用した炉頂装入装置では、ムーバ
ブルアーマ−2の位置により、また図示しないが同様に
用いられる旋回シュート型装入装置では、シュートの傾
斜角の違いにより装入物分布形状が変化する。
In this case, in a top charging device using a bell 1, the charge distribution depends on the position of the movable armor 2, and in a rotating chute type charging device, which is also used (not shown), due to the difference in the angle of inclination of the chute. Shape changes.

このことは同時に、炉径方向における装入物堆積層厚も
大きく変化する。
At the same time, the charge deposition layer thickness in the furnace radial direction also changes significantly.

この結果、炉下部の羽目から送風して生じる炉内ガスの
流れに大きな影響を与える。
As a result, the flow of gas in the furnace caused by air being blown from the slats in the lower part of the furnace is greatly affected.

すなわち、通気抵抗の大きい鉱石層の層厚が厚い部分で
はガス流れが少なく、反対に薄い部分にはガス流れが多
くなる。
That is, in the thick part of the ore layer with high ventilation resistance, the gas flow is small, and on the contrary, in the thin part, the gas flow is large.

このガス流れが著しく偏流した場合には、棚吊り、スリ
ップ、さらにはガス吹抜けなどのトラブルを生じ、炉の
正常な操業が維持できなくなる。
If this gas flow is significantly unbalanced, problems such as shelving, slipping, and gas blow-through may occur, making it impossible to maintain normal operation of the furnace.

したがって、安定した操業状態を維持するには、常に望
ましいガス流れ分布となるよう装入物の層厚を調整する
必要がある。
Therefore, in order to maintain stable operating conditions, it is necessary to constantly adjust the layer thickness of the charge to obtain the desired gas flow distribution.

層厚を調整する方法として、ベル型装入装置ではムーバ
ブルアーマ−2の位置を変更し、また旋回シュート型装
入装置ではシュートの傾斜角を変える手段があるが、い
ずれにしても適切な層厚調整を行うためには、堆積層厚
を確実に測定しなければならない。
As a method of adjusting the layer thickness, there is a method of changing the position of the movable armor 2 in a bell-type charging device, and a method of changing the inclination angle of the chute in a rotating chute-type charging device, but in either case, it is possible to adjust the layer thickness by changing the position of the movable armor 2 in a bell-type charging device. In order to adjust the thickness, it is necessary to reliably measure the thickness of the deposited layer.

堆積層厚を測定する方法として、炉内の装入物の電気抵
抗の差を利用したものが知られており、この方法は一対
の電極を有する2個のゾンデ7゜7′を高さhだけ異に
して炉壁から炉内へ挿入固定し、炉内を降下するコーク
スと鉱石類の判別を行うと共にコークス層と鉱石層がそ
れぞれ継続して検出されている時間を測定し、更にコー
クス層と鉱石類層の境界面が上方のゾンデ7で検知した
後同じ境界面が下方のゾンデγで検出するまでの時間を
測定する一部とにより、ゾンデ7と7′間距離を表わす
前記高さhを前記同じ境界面が2個のゾンデで検出され
る時間差で除して装入物の降下速度を求め、この降下速
度と前記各層が継続して検出されている時間との積から
各層の層厚を求めるものである。
A known method for measuring the thickness of the deposited layer is to use the difference in electrical resistance of the charge in the furnace. The coke and ores falling in the furnace are distinguished from each other by being inserted and fixed into the furnace from the furnace wall, and the time during which the coke and ore layers are continuously detected is measured. and a part that measures the time from when the boundary surface of the ore layer is detected by the upper sonde 7 to when the same boundary surface is detected by the lower sonde γ, and the above-mentioned height representing the distance between the sondes 7 and 7' The descending speed of the charge is determined by dividing h by the time difference between the times when the same boundary surface is detected by the two sondes, and the product of this descending speed and the time during which each layer is continuously detected is used to calculate the rate of descent of each layer. This is to find the layer thickness.

従って、装入物の電気抵抗をいかに精度よくかつ継続し
て測定するかということが炉内装入物の層厚を測定する
重要なポイントとなっている。
Therefore, how to accurately and continuously measure the electrical resistance of the charge is an important point in measuring the layer thickness of the charge in the furnace.

第1図において、3は検尺計、4は炉壁を示す。In FIG. 1, 3 indicates a measuring meter and 4 indicates a furnace wall.

このゾンデとしては、従来は第2図a =dに示す構造
のものが用いられていた。
Conventionally, this sonde has the structure shown in FIG. 2 a = d.

第2図a、bは装入物粒径が30朋以下の比較的細粒の
多い場合に使用され、第2図c、dは粒径30□□□以
上の粗粒の多い場合によく使用されるゾンデの例を示す
ものでa、cは径方向断面図、b、dは長さ方向断面図
である。
Figure 2 a and b are used when there are many relatively fine grains with a grain size of 30 mm or less, and Figure 2 c and d are used when there are many coarse grains with a grain size of 30 mm or more. An example of a sonde used is shown, with a and c being radial cross-sectional views, and b and d being longitudinal cross-sectional views.

第2図a−dに示す従来のゾンデは一対の電極10.1
1を絶縁物質12により電気的に絶縁して同心状に構成
し中心の電極11を円筒状の電極10よりは炉内側へ水
平方向に長く突出させる如く構成しており、例えば一対
の電極間距離が40mmでコークス堆積層の電気抵抗ば
1〜3Ωの場合、鉱石類では1000〜10000Ωと
大きな差異があることを利用したものである。
The conventional sonde shown in Figures 2a-d has a pair of electrodes 10.1.
1 are electrically insulated by an insulating material 12 and configured concentrically, and the central electrode 11 is configured to protrude horizontally toward the inside of the furnace longer than the cylindrical electrode 10. For example, the distance between a pair of electrodes is This method takes advantage of the fact that when the electrical resistance of a coke deposited layer is 40 mm and the electrical resistance is 1 to 3 Ω, there is a large difference between 1000 and 10000 Ω for ores.

しかるに、第2図axdに示す従来のゾンデによる測定
では、炉内装入物の電気抵抗測定値が、経時的に大きく
変化し、ある期間以上経過するとほとんど抵抗測定がで
きなくなる欠点をもって0)る。
However, the measurement using the conventional sonde shown in FIG. 2axd has the disadvantage that the measured electrical resistance of the contents in the furnace changes greatly over time, and after a certain period of time it becomes almost impossible to measure the resistance.

この例を第3図a、b、cに示す。すなわち、ゾンデ設
置2日後では、コークス層1〜3Ω、鉱石類層800〜
1000Ωを示しているが、20日後では鉱石類層が8
0〜110Ωまで低下し、50日後では、100前後と
なり、コークス層か、鉱石類層かの判定ができず装入物
層厚を求めることが不可能となる。
Examples of this are shown in Figures 3a, b, and c. That is, two days after the sonde installation, the coke layer was 1 to 3 Ω, and the ore layer was 800 to 3 Ω.
It shows 1000Ω, but after 20 days, the ore layer is 8
It decreases to 0 to 110Ω, and after 50 days, it becomes around 100, making it impossible to determine whether it is a coke layer or an ore layer, and it becomes impossible to determine the charge layer thickness.

この原因は、炉内に挿入されたゾンデの電極10.11
間の絶縁物質12が、炉内ガス温度が高いことによる熱
ショック、または装入物の降下による衝撃、および摩耗
作用によって破損、脱落し、電極10.11間に炉内ガ
ス中に含まれる微粉カーボンや、装入物中の小粒径のコ
ークスが入り込み、絶縁不良を起し、電気抵抗がコーク
スと同程度まで低下することによるものである。
The cause of this is the sonde electrode 10.11 inserted into the furnace.
The insulating material 12 between the electrodes 10 and 11 is damaged and falls off due to thermal shock due to the high furnace gas temperature, impact due to the falling charge, and abrasion, and the fine powder contained in the furnace gas between the electrodes 10 and 11. This is because carbon and small-sized coke in the charge enter, causing insulation failure and reducing electrical resistance to the same level as coke.

ゾンデに使用する絶縁物質12は、使用条件が、高温の
還元ガス中であるため、使用材料が非常に限定され、従
来は鉱石とはゾ同程度の電気抵抗をもつ耐熱レンガを使
用して0)るため、炉内への装入物装入時の衝撃や装入
物降下による摩耗作用により短期間で前述のような破損
、脱落を起している。
The insulating material 12 used in the sonde is used in a high-temperature reducing gas, so the materials that can be used are very limited. ), the above-mentioned breakage and falling-off occur in a short period of time due to the impact when charging the charge into the furnace and the abrasion caused by the falling charge.

本発明は、これらの問題を解決し、長期間にわたって安
定して装入物の電気抵抗を測定できるようにしたもので
ある。
The present invention solves these problems and makes it possible to measure the electrical resistance of a charge stably over a long period of time.

第4図に本発明の層厚検知用ゾンデの構造例を示す。FIG. 4 shows an example of the structure of the sonde for layer thickness detection according to the present invention.

第4図に示すものは、電極10.11の少なくとも一方
10を耐熱性がよく、シかも耐摩耗性のある材料例えば
ステンレス鋼により作り、この電極10は、絶縁物質1
2のゾンデ生端部下側の一部を残して該絶縁物質12が
炉内を降下する装入物に直接接触しないように端面を含
め全体的に覆うように形威し、他方の中心電極11は外
側電極10の先端付近下側から下向きに炉内に突き出し
、更にその先端部分を屈曲させて電極10の先端面と同
一面まで延長したものである。
In the device shown in FIG. 4, at least one of the electrodes 10, 11 is made of a material having good heat resistance and wear resistance, such as stainless steel, and this electrode 10 is made of an insulating material 1.
The insulating material 12 is shaped so as to cover the whole including the end surface so that the insulating material 12 does not come into direct contact with the charge descending in the furnace, leaving a part of the lower part of the raw end of the second sonde, and the other center electrode 11 protrudes downward into the furnace from below near the tip of the outer electrode 10, and further bends its tip to extend to the same plane as the tip surface of the electrode 10.

第4図のaは側断面図を、bは正面図を、またCは第4
図aのA−Aで示される先端部の底面図をそれぞれ示す
In Fig. 4, a shows a side sectional view, b shows a front view, and C shows the fourth
Figure 3 shows a bottom view of the tip section indicated by A-A in figure a, respectively.

第4図に示す電極10と11の炉内側間隔dは層厚を測
定し、ようとする装入物の最大粒径と同程度に設計する
ことが肝要である。
It is important to measure the layer thickness and design the space d between the electrodes 10 and 11 inside the furnace shown in FIG. 4 to be approximately the same as the maximum grain size of the intended charge.

これは間隔dが装入物粒径よりも小さい場合、電極10
.11間を装入物が通過しないため装入物と装入物層が
入り込み沈積して絶縁不良を起すことと、ゾンデ自体が
装入物の降下を妨げることによって生ずる空洞内に電極
11が入ってしまい装入物の電気抵抗が測定できなくな
ることがあるためである。
This means that if the spacing d is smaller than the grain size of the charge, the electrode 10
.. Since the charge does not pass between the electrodes 11 and 11, the charge and the charge layer may enter and deposit, causing insulation defects, and the electrode 11 may enter the cavity caused by the sonde itself preventing the charge from descending. This is because it may become impossible to measure the electrical resistance of the charged material.

なお、前記空洞内にとどまらない間隔であるかぎりその
間隔をあまり大きくとる必要はない。
Incidentally, as long as the distance does not remain within the cavity, it is not necessary to make the distance very large.

この間隔を大きくとり過ぎると鉱石類とコークス層との
境界層検知時間に誤差が生じることとなるからである。
This is because if this interval is too large, an error will occur in the detection time of the boundary layer between the ore and the coke layer.

本発明は以上のような構成であるから、装入物により損
傷を受けることが少なく、長期にわたり安定した計測を
行なえるものである。
Since the present invention has the above-described configuration, it is less likely to be damaged by the charged materials, and stable measurements can be performed over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高炉の炉頂部の要部断面図、第2図a〜dは従
来の層厚検知用ゾンデの構造例を示す図です、dは長さ
方向断面図、a、Cは径方向断面図、第3図a、b、c
は従来の検知用ゾンデを使用した場合の電気抵抗測定値
の経時変化を示す説明図、第4図は本発明の実施例を示
す図であり、aは縦断面図、bは正面図、Cはa図A−
Aで示される先端部分の底面図である。 1・・・・・・ベル、2・・・・・・ムーバブルアーマ
−13・・・・・・検尺針、4・・・・・・炉壁、5・
・・・・・コークス層、6・・・・・・鉱石顔面、7お
よび7′・・・・・・ゾンデ、10および11・・・・
・・電極、12・・・・・・絶縁物質。
Figure 1 is a cross-sectional view of the main parts of the top of a blast furnace, Figures 2 a to d are diagrams showing an example of the structure of a conventional sonde for layer thickness detection, d is a longitudinal cross-sectional view, and a and C are radial directions. Cross-sectional view, Figure 3 a, b, c
4 is an explanatory diagram showing the change in electrical resistance measurement value over time when a conventional detection sonde is used, and FIG. 4 is a diagram showing an embodiment of the present invention, in which a is a longitudinal sectional view, b is a front view, and is a figure A-
FIG. 3 is a bottom view of the tip portion indicated by A; 1... Bell, 2... Movable armor 13... Measuring needle, 4... Furnace wall, 5...
...Coke layer, 6...Ore face, 7 and 7'...Sonde, 10 and 11...
...Electrode, 12...Insulating material.

Claims (1)

【特許請求の範囲】[Claims] 1 還元溶解炉の側壁から炉内へ挿入した後固定し炉内
を降下する装入物の電気抵抗を測定することによりコー
クスと鉱石類を判別するゾンデにおいて、先端下部に切
欠部を有し残りは先端面を含めて全体を覆うように構成
した筒状の電極10と、この電極10の中に絶縁物12
により電気的に絶縁して同心的に配置した他の電極11
とからなり、電極11の先端を前記切欠部から炉内へ突
出せしめかつこの突出せしめた電極11を前方に屈曲さ
せると共に電極10との間隔dを装入物の最大粒径と同
程度にしたことを特徴とする還元溶解炉内装入物の電気
抵抗測定用ゾンデ。
1 In a sonde that is inserted into the furnace from the side wall of a reduction melting furnace and then fixed, it is used to distinguish between coke and ores by measuring the electrical resistance of the charge as it descends inside the furnace. A cylindrical electrode 10 configured to cover the entire surface including the tip surface, and an insulator 12 inside this electrode 10.
Another electrode 11 is electrically insulated and concentrically arranged.
The tip of the electrode 11 was made to protrude into the furnace from the notch, and the protruded electrode 11 was bent forward, and the distance d from the electrode 10 was made to be approximately the same as the maximum grain size of the charge. A sonde for measuring electrical resistance of contents in a reduction melting furnace, characterized by:
JP4859082A 1982-03-26 1982-03-26 Sonde for measuring electrical resistance of contents in reduction melting furnace Expired JPS5850290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4859082A JPS5850290B2 (en) 1982-03-26 1982-03-26 Sonde for measuring electrical resistance of contents in reduction melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4859082A JPS5850290B2 (en) 1982-03-26 1982-03-26 Sonde for measuring electrical resistance of contents in reduction melting furnace

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9266876A Division JPS5318409A (en) 1976-08-03 1976-08-03 Measuring probe for electric resistance of burden in reduction smelting furnace

Publications (2)

Publication Number Publication Date
JPS57169005A JPS57169005A (en) 1982-10-18
JPS5850290B2 true JPS5850290B2 (en) 1983-11-09

Family

ID=12807615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4859082A Expired JPS5850290B2 (en) 1982-03-26 1982-03-26 Sonde for measuring electrical resistance of contents in reduction melting furnace

Country Status (1)

Country Link
JP (1) JPS5850290B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427289U (en) * 1990-06-28 1992-03-04

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583810A (en) * 1991-01-31 1996-12-10 Interuniversitair Micro-Elektronica Centrum Vzw Method for programming a semiconductor memory device
US6243293B1 (en) 1992-01-29 2001-06-05 Interuniversitair Micro-Elektronica Centrum Contacted cell array configuration for erasable and programmable semiconductor memories
EP1029085B1 (en) * 1997-08-20 2005-06-29 Moskovsky Institut Stali I Splavov Probe scanning system for checking the distribution of burden materials in metallurgical units
CN102392089A (en) * 2011-11-03 2012-03-28 江苏省沙钢钢铁研究院有限公司 Simple measuring device and method for thickness distribution of blast furnace radial coke and ore layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427289U (en) * 1990-06-28 1992-03-04

Also Published As

Publication number Publication date
JPS57169005A (en) 1982-10-18

Similar Documents

Publication Publication Date Title
US3078707A (en) Thickness gage for blast furnace wall
JPS5850290B2 (en) Sonde for measuring electrical resistance of contents in reduction melting furnace
JPS5832207B2 (en) Charge deposition layer thickness detection sonde
JP4157951B2 (en) Charge distribution control method for blast furnace throat
JPS6240402B2 (en)
JPS5848605B2 (en) Method for measuring the layer thickness distribution, descending rate distribution, and boundary surface shape of the contents in the reduction melting furnace
JPS6040484B2 (en) Method for understanding charging and falling status of blast furnace raw materials
JPS5833082A (en) Method of deciding behavior of charge in furnace in metal smelting furnace, etc.
JP6631588B2 (en) Method for detecting deviation of charge descending speed and method for operating blast furnace
SU1133295A1 (en) Probe for controlling charge parameters in blast furnace
JPH062886B2 (en) Blast furnace operation method
JP2931502B2 (en) Blast furnace operation method
JPH0587463A (en) Production of sintered ore
JPS6230805A (en) Instrument for measuring layer thickness of charge in shaft furnace
JPS6360801B2 (en)
JPS6032795B2 (en) Mixed layer detection method for vertical furnace contents
JPH0586446B2 (en)
RU2022025C1 (en) Method of charging blast furnace
JPS5862570A (en) Detection of falling speed distribution for charge in blast furnace
JPS61201711A (en) Operating method for blast furnace
KR100286657B1 (en) Differential level measuring device in differential storage
JPS61175515A (en) Measurement of thickness of accumulated layer and falling speed of charge in reducing melting furnace
JPH06306420A (en) Operation of blast furnace
JPS59221583A (en) Method of monitoring internal state of vertical type furnace
RU2015169C1 (en) Method of controlling distribution of stocks along mouth periphery in blast furnace