JPH1147555A - Detoxification process for nitrogen trifluoride and detoxification catalyst - Google Patents
Detoxification process for nitrogen trifluoride and detoxification catalystInfo
- Publication number
- JPH1147555A JPH1147555A JP9219761A JP21976197A JPH1147555A JP H1147555 A JPH1147555 A JP H1147555A JP 9219761 A JP9219761 A JP 9219761A JP 21976197 A JP21976197 A JP 21976197A JP H1147555 A JPH1147555 A JP H1147555A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- component
- hydrogen
- nitrogen trifluoride
- detoxification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、三弗化窒素ガス
(以下、NF3と称す)の除害方法、およびNF3を除
害するための触媒に関する。The present invention relates to the nitrogen trifluoride gas abatement method (hereinafter, referred to as NF 3), and to a catalyst for abating NF 3.
【0002】[0002]
【従来技術】現在、地球環境に悪影響をもたらすフロン
やCO2などに対して規制が行われていることは周知で
あり、NF3も自然界ではなかなか分解しない物質であ
る。NF3ガスは、近年、半導体製造に於いてクリーニ
ングガスとして多量に使用されている。しかし、毒性が
あり、地球温暖化効果が大きいことから、排ガス中に残
存するNF3を除去することが望まれている。2. Description of the Related Art At present, it is well known that restrictions are imposed on chlorofluorocarbons and CO 2 which have a bad influence on the global environment, and NF 3 is also a substance which is not easily decomposed in nature. In recent years, a large amount of NF 3 gas has been used as a cleaning gas in semiconductor manufacturing. However, since it is toxic and has a large global warming effect, it is desired to remove NF 3 remaining in exhaust gas.
【0003】上記問題を解決する方法に、高温下で活性
炭を充填したカラムにNF3を含む排ガスを通気する方
法(特開昭62−237929号公報)が知られてい
る。しかしながら、この方法では、地球温暖化の原因の
一つとも言われるCF4を放出する結果となる。As a method for solving the above problem, there is known a method in which an exhaust gas containing NF 3 is passed through a column filled with activated carbon at a high temperature (Japanese Patent Application Laid-Open No. 62-237929). However, in this method, resulting in the release of CF 4, also referred to as one of the causes of global warming.
【0004】また、金属酸化物と反応させて除害する方
法(特開平3−181316号公報)も知られている
が、これも約500℃の高温下で反応を行うことに加
え、NOxを生成するという問題がある。さらに、金属
酸化物は反応によって金属弗化物となりNF3除害能力
を失うので、定期的な金属弗化物の取り出しと金属酸化
物の充填が必要となり、ランニングコストが高くなると
いう欠点がある。Further, although it is reacted with the metal oxide has been known a method of abating (JP-A-3-181316), which is also added to carry out the reaction at a high temperature of about 500 ° C., NO x There is a problem that generates. Further, since the metal oxide becomes a metal fluoride by the reaction and loses the NF 3 abatement ability, it is necessary to periodically take out the metal fluoride and fill the metal oxide, which has a disadvantage that the running cost is increased.
【0005】さらに、高温下でガス状の弗化物を生成す
るような金属を充填したカラムにNF3を通気する方法
(特開昭61−204025号公報)も知られている
が、これによって生成されるガス状の弗化物の2次処理
設備において金属酸化物微粒子が生成し、その処理が必
要になるという欠点がある。Further, a method is known in which NF 3 is passed through a column filled with a metal which generates gaseous fluoride at a high temperature (Japanese Patent Application Laid-Open No. 61-204025). However, there is a disadvantage that metal oxide fine particles are generated in the gaseous fluoride secondary treatment facility to be used, and the treatment is required.
【0006】以上の除害方法では除害装置に充填した除
害剤の交換または補充が必要で、そのためにランニング
コストが高くなるという共通の欠点がある。これに対
し、NF3を触媒の存在下還元性ガスと反応させて除害
する方法が知られており、触媒交換の頻度は前記除害剤
の交換頻度に比べてはるかに低いという利点がある。The above-mentioned abatement method has a common drawback that the abatement agent charged in the abatement apparatus needs to be replaced or replenished, which increases the running cost. On the other hand, a method of removing NF 3 by reacting it with a reducing gas in the presence of a catalyst is known, and has the advantage that the frequency of catalyst replacement is much lower than the frequency of replacement of the harm removing agent. .
【0007】特開平2−303524号公報には、還元
性ガスとして水素を用いる方法が開示されている。還元
触媒としては元素周期表第Vlll族元素およびCu、
Cr、Znからなる群より選ばれた1種以上を含む金属
が挙げられている。しかしながら、本発明者らの知見に
よればこれらの触媒を通常使用されるアルミナ、シリ
カ、チタニア、シリカ−アルミナ等の担体に担持して使
用すると、触媒活性が経時的に低下し、安定した触媒性
能が得られないことがわかった。[0007] JP-A-2-303524 discloses a method using hydrogen as a reducing gas. Examples of the reduction catalyst include Vll group elements of the periodic table and Cu,
Metals containing at least one selected from the group consisting of Cr and Zn are mentioned. However, according to the findings of the present inventors, when these catalysts are used by being supported on a commonly used carrier such as alumina, silica, titania, and silica-alumina, the catalytic activity decreases with time, and a stable catalyst is used. It turned out that performance could not be obtained.
【0008】特開平8−131774号公報には、還元
性ガスとして炭化水素を用いる方法が開示されている
が、NF3と炭化水素との反応でCF4が生成する恐れ
があり、地球温暖化防止の観点からは望ましくない。特
開平3−65219号公報には塩化水素を用いる方法が
開示されているが、腐食性かつ毒性ガスである塩化水素
を使用することは望ましくない。Japanese Patent Application Laid-Open No. 8-131774 discloses a method using hydrocarbon as a reducing gas. However, there is a fear that CF 4 is generated by a reaction between NF 3 and hydrocarbon, and global warming is caused. It is not desirable from the viewpoint of prevention. JP-A-3-65219 discloses a method using hydrogen chloride, but it is not desirable to use hydrogen chloride which is a corrosive and toxic gas.
【0009】[0009]
【発明が解決しようとする課題】本発明は、NF3を安
全、かつ効率的に除害する方法およびその触媒を提供す
ることにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for safely and efficiently removing NF 3 and a catalyst thereof.
【0010】[0010]
【課題を解決するための手段】本発明者らは、従来技術
の欠点を改良し工業的実施の可能な方法について鋭意検
討した結果、特定の金属とアルカリ金属あるいはアルカ
リ土類金属の弗化物を担体とする触媒を用いることによ
り、NF3を除害する方法を見出し、本発明を完成した
ものである。Means for Solving the Problems The present inventors have intensively studied a method which can improve the disadvantages of the prior art and can be implemented industrially, and as a result, have found that a specific metal and a fluoride of an alkali metal or an alkaline earth metal can be obtained. The present invention has been completed by finding a method for removing NF 3 by using a catalyst as a carrier.
【0011】すなわち、本発明はFe、Co、Ni、C
u、Zn、Ru、Rh、Pd、Ag、Ir、Pt、Au
よりなる群から選ばれる第1成分およびアルカリ金属弗
化物、アルカリ土類金属弗化物のうち少なくとも1種以
上よりなる第2成分を含有する触媒の存在下、三弗化窒
素を含む排ガスと水素とを反応させることを特徴とする
三弗化窒素の除害方法であり、また、Fe、Co、N
i、Cu、Zn、Ru、Rh、Pd、Ag、Ir、P
t、Auよりなる群から選ばれる第1成分とアルカリ金
属弗化物、アルカリ土類金属弗化物のうち少なくとも1
種以上よりなる第2成分を含有することを特徴とする三
弗化窒素を除害するための触媒に関する。That is, the present invention relates to Fe, Co, Ni, C
u, Zn, Ru, Rh, Pd, Ag, Ir, Pt, Au
An exhaust gas containing nitrogen trifluoride and hydrogen in the presence of a catalyst containing a first component selected from the group consisting of a first component and at least one of an alkali metal fluoride and an alkaline earth metal fluoride. To remove nitrogen trifluoride, wherein Fe, Co, N
i, Cu, Zn, Ru, Rh, Pd, Ag, Ir, P
a first component selected from the group consisting of t and Au and at least one of an alkali metal fluoride and an alkaline earth metal fluoride;
The present invention relates to a catalyst for removing nitrogen trifluoride, which comprises a second component comprising at least one species.
【0012】[0012]
【発明の実施の形態】以下、本発明を更に詳細に説明す
る。本発明の除害方法は超LSIエッチング装置からの
排ガス、CVDクリーニングガスの排ガス、NF3容器
からの漏洩ガスなど、NF3を含むガスの除害に適用さ
れる。NF3を含むガスは水素と反応し除害される。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in more detail. Abatement process of the present invention is an exhaust gas from an ultra LSI etching apparatus, the exhaust gas of CVD cleaning gas, such as leakage gases from NF 3 container, applied to the abatement of gas containing NF 3. The gas containing NF 3 reacts with hydrogen and is harmed.
【0013】本発明で用いられる触媒は、Fe、Co、
Ni、Cu、Zn、Ru、Rh、Pd、Ag、Ir、P
t、Auよりなる群から選ばれる第1成分とアルカリ金
属弗化物、アルカリ土類金属弗化物のうち少なくとも1
種以上よりなる第2成分からなるものである。The catalyst used in the present invention is Fe, Co,
Ni, Cu, Zn, Ru, Rh, Pd, Ag, Ir, P
a first component selected from the group consisting of t and Au and at least one of an alkali metal fluoride and an alkaline earth metal fluoride;
It comprises a second component comprising at least one species.
【0014】第1成分の中では、Ni、Ru、Pd、P
tが活性が高く、特に望ましい。触媒に含まれる第1成
分の含有量は、0.01〜70重量%、好ましくは0.
1〜50重量%が好適である。含有量が0.01重量%
未満では触媒活性が低過ぎ、70重量%を越えると活性
成分の分散が悪くなり、やはり触媒活性が低下するので
好ましくない。第1成分の含有量の最適値は金属の種類
によって異なり、例えば第1成分がNiの場合は10〜
50重量%、第1成分がRu、Pd、Ptの場合は0.
1〜5重量%が好ましい。第2成分はLi、Na、K、
Rb、Cs、Mg、Ca、Sr、またはBaの弗化物で
ある。Among the first components, Ni, Ru, Pd, P
t is highly active and is particularly desirable. The content of the first component contained in the catalyst is 0.01 to 70% by weight, preferably 0.1 to 70% by weight.
1 to 50% by weight is preferred. Content is 0.01% by weight
If it is less than 70% by weight, the catalytic activity is too low, and if it exceeds 70% by weight, the dispersion of the active ingredient is deteriorated, and the catalytic activity is undesirably reduced. The optimum value of the content of the first component differs depending on the type of metal. For example, when the first component is Ni, 10 to 10
50% by weight, 0.1% when the first component is Ru, Pd, Pt.
1-5% by weight is preferred. The second component is Li, Na, K,
Rb, Cs, Mg, Ca, Sr, or Ba fluoride.
【0015】触媒の形状は、球状、タブレット状、リン
グ状、破砕品(不定型)等、任意の形状を用いることが
できる。成形にあたっては第2成分を所定の形状に成形
した後に、含浸、コーティング等の公知の方法で第1成
分を担持しても良く、また、第1成分と第2成分を乾式
または湿式で混合した後、所定の形状に成形しても良
い。The catalyst may have any shape such as a sphere, a tablet, a ring, and a crushed product (irregular type). In molding, after forming the second component into a predetermined shape, the first component may be supported by a known method such as impregnation or coating, or the first component and the second component are mixed in a dry or wet method. After that, it may be formed into a predetermined shape.
【0016】触媒の製造法としては、第2成分からなる
成形担体を第1成分の化合物を含む溶液に浸漬し、しか
るのちに乾燥、焼成して第1成分を含浸担持する方法を
とることができる。また、第1成分の水溶性塩の水溶液
と適当な沈殿剤とを混合して第1成分の化合物からなる
沈殿を生成せしめ、これをスラリー状のまま、あるいは
乾燥後に第2成分と混合し、成形、焼成して触媒とする
こともできる。さらに、単体金属状あるいは化合物の状
態の第1成分粉末を第2成分と混合し、成形、焼成して
触媒とする方法をとることもできる。本発明の触媒はそ
の製造方法によって限定されるものではなく、上記以外
の方法で製造した触媒も本発明の範囲に含まれる。As a method for producing the catalyst, a method may be employed in which the molded carrier comprising the second component is immersed in a solution containing the compound of the first component, and then dried and calcined to impregnate and carry the first component. it can. Further, an aqueous solution of the water-soluble salt of the first component is mixed with an appropriate precipitant to form a precipitate comprising the compound of the first component, and this is mixed with the second component as a slurry or after drying, The catalyst can be formed by molding and firing. Further, a method in which the first component powder in the form of a simple metal or a compound is mixed with the second component, and molded and calcined to obtain a catalyst may be employed. The catalyst of the present invention is not limited by its production method, and a catalyst produced by a method other than the above is also included in the scope of the present invention.
【0017】触媒の存在下、水素とNF3との反応温度
は、通常室温から600℃の範囲で適宜選択される。な
かでも100〜450℃、好ましくは150〜300℃
で反応させるのがよい。反応温度が低すぎると工業的に
許容される速度で反応を進めることができず、反応温度
が高すぎると装置の耐熱性、耐食性に問題が生じ、設備
費が高くなるので好ましくない。The reaction temperature between hydrogen and NF 3 in the presence of a catalyst is appropriately selected usually from room temperature to 600 ° C. Above all, 100-450 ° C, preferably 150-300 ° C
It is good to react with. If the reaction temperature is too low, the reaction cannot proceed at an industrially acceptable rate, and if the reaction temperature is too high, problems arise in the heat resistance and corrosion resistance of the apparatus, and equipment costs increase, which is not preferable.
【0018】触媒の存在下、水素とNF3との反応にお
ける安全性の確保は特に重要である。これには水素とN
F3が爆発性混合気体を形成しないようガス組成を制御
することは勿論であるが、反応に伴う発熱による反応器
の温度上昇が適切な範囲に抑えられることが重要であ
る。このため、NF3は水素と混合されるに先立って不
活性ガスによって2容量%(以後、容量%は単に%で表
示)以下、好ましくは1.5%以下、さらに好ましくは
1%以下に希釈される。希釈用の不活性ガスとしては通
常窒素が用いられる。It is particularly important to ensure safety in the reaction between hydrogen and NF 3 in the presence of a catalyst. This includes hydrogen and N
It goes without saying that the gas composition is controlled so that F 3 does not form an explosive gas mixture, but it is important that the temperature rise of the reactor due to the heat generated by the reaction be suppressed to an appropriate range. Therefore, NF 3 is diluted with an inert gas to 2% by volume or less (hereinafter, volume% is simply expressed as%), preferably 1.5% or less, more preferably 1% or less before being mixed with hydrogen. Is done. As the inert gas for dilution, nitrogen is usually used.
【0019】添加される水素のNF3に対するモル比は
1.5〜10、好ましくは1.5〜5が好適である。モ
ル比が1.5未満ではNF3の分解率が低くなり好まし
くない。また、モル比が10を越えてもNF3の分解率
は上昇せず、可燃性ガスである水素が多量に残留するの
で好ましくない。また、水素濃度が5%以下であれば、
仮にNF3との反応が起こらず、水素がNF3除害設備
内で消費されずにそのまま大気中に放出されても爆発の
恐れがないため、水素濃度が5%以下であることが好ま
しい。仮にNF3濃度1.5%、水素濃度5%とすると
水素のNF3に対するモル比は3.3となり、前記の好
ましいモル比の範囲に含まれる。反応の空間速度は10
0〜100,000hr−1、好ましくは500〜5
0,000hr−1が好適である。The molar ratio of added hydrogen to NF 3 is preferably 1.5 to 10, more preferably 1.5 to 5. If the molar ratio is less than 1.5, the decomposition rate of NF 3 is undesirably low. Further, if the molar ratio exceeds 10, the decomposition rate of NF 3 does not increase, and a large amount of hydrogen, which is a flammable gas, remains undesirably. If the hydrogen concentration is 5% or less,
It is preferable that the hydrogen concentration is 5% or less, since no reaction with NF 3 occurs, and there is no danger of explosion even if hydrogen is released to the atmosphere without being consumed in the NF 3 abatement equipment. Assuming that the NF 3 concentration is 1.5% and the hydrogen concentration is 5%, the molar ratio of hydrogen to NF 3 is 3.3, which is included in the above-mentioned preferable molar ratio. Space velocity of reaction is 10
0-100,000 hr -1 , preferably 500-5
000 hr -1 is preferred.
【0020】触媒の存在下、NF3と水素との反応によ
り、弗化水素等の弗素化合物が生成する。この弗素化合
物を除去するための吸着剤として、アルカリ土類酸化物
やソーダライムのような塩基性酸化物、弗化ナトリウ
ム、モレキュラーシーブ、活性アルミナ等が使用され
る。これらの吸着剤は安価であり、結果としてNF3除
害プロセスのランニングコストが低減される。また、弗
化水素等の弗素化合物をスクラバーで処理する方法も用
いることができる。The reaction of NF 3 with hydrogen in the presence of a catalyst produces a fluorine compound such as hydrogen fluoride. As an adsorbent for removing the fluorine compound, a basic oxide such as alkaline earth oxide or soda lime, sodium fluoride, molecular sieve, activated alumina and the like are used. These adsorbents are inexpensive and result in reduced running costs for the NF 3 abatement process. Further, a method of treating a fluorine compound such as hydrogen fluoride with a scrubber can also be used.
【0021】[0021]
【実施例】以下、実施例により本発明の方法をさらに具
体的に説明するが、本発明はこれらの実施例に限定され
るものではない。また、重量%はwt%に、容量%は単
に%で表す。 実施例1 ニッケル粉末30wt%と弗化カルシウム粉末70wt
%をビニール袋の中で均一に混合し、少量の水を加えて
自動乳鉢でペースト状の混合物を調製した。この混合物
を120℃、1時間乾燥した後、粒径0.5mm以下に
粉砕し、打錠成型で直径5mm、高さ5mmのタブレッ
トを製造した。このようにして得られたNi(30wt
%)/CaF2触媒を粒径1〜2mmに粉砕し、40m
lを内径20mmの流通式反応器に充填した。また、粒
径1〜2mmのソーダライム500mlを内径20mm
の流通式反応器に充填し、前記触媒を充填した反応器の
下流側に接続した。NF31%、水素5%、残部窒素か
らなるガスを空間速度(SV)1200hr−1で反応
器に供給し、250℃で反応させた。反応開始から1時
間後、5時間後、および100時間後にソーダライム充
填反応器(吸着装置)出口の排ガスをガスクロマトグラ
フで分析したが、NF3は検出されなかった。また、吸
着装置出口の排ガスを水を入れたバブラーを通過させ、
水に溶解した成分の分析を行った結果、弗素化合物は検
出されなかった。EXAMPLES Hereinafter, the method of the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, weight% is expressed by wt%, and volume% is simply expressed by%. Example 1 Nickel powder 30 wt% and calcium fluoride powder 70 wt
% Was uniformly mixed in a plastic bag, a small amount of water was added, and a paste-like mixture was prepared in an automatic mortar. This mixture was dried at 120 ° C. for 1 hour, pulverized to a particle size of 0.5 mm or less, and tableted to produce a tablet having a diameter of 5 mm and a height of 5 mm. The Ni (30 wt.
%) / CaF 2 catalyst was crushed to a particle size of 1 to 2 mm,
was charged into a flow reactor having an inner diameter of 20 mm. In addition, 500 ml of soda lime having a particle size of
And connected to the downstream side of the reactor filled with the catalyst. A gas consisting of 1% of NF 3 , 5% of hydrogen and the balance of nitrogen was supplied to the reactor at a space velocity (SV) of 1200 hr −1 and reacted at 250 ° C. One hour, 5 hours, and 100 hours after the start of the reaction, the exhaust gas at the outlet of the soda lime-filled reactor (adsorber) was analyzed by gas chromatography, but NF 3 was not detected. Also, the exhaust gas at the outlet of the adsorption device is passed through a bubbler containing water,
As a result of analyzing the components dissolved in water, no fluorine compound was detected.
【0022】実施例2 ニッケル粉末30wt%、弗化ナトリウム粉末70wt
%をビニール袋の中で均一に混合し、そのまま打錠成型
して直径5mm、高さ5mmのタブレットを製造した。
このようにして得られたNi(30wt%)/NaF触
媒を粒径1〜2mmに粉砕し、そのうち40mlを用い
て、実施例1と同様に反応を行った。反応開始から1時
間後、5時間後、および100時間後にソーダライム充
填反応器(吸着装置)出口の排ガスをガスクロマトグラ
フで分析した結果、NF3は検出されなかった。Example 2 Nickel powder 30 wt%, sodium fluoride powder 70 wt
% Was uniformly mixed in a plastic bag, and was tableted as it was to produce a tablet having a diameter of 5 mm and a height of 5 mm.
The Ni (30 wt%) / NaF catalyst thus obtained was pulverized to a particle size of 1 to 2 mm, and a reaction was carried out in the same manner as in Example 1 using 40 ml of the pulverized powder. One hour, five hours, and 100 hours after the start of the reaction, the exhaust gas at the outlet of the soda lime-filled reactor (adsorber) was analyzed by gas chromatography, and as a result, NF 3 was not detected.
【0023】実施例3 弗化カルシウム成形体を粒径1〜2mmに粉砕した。塩
化パラジウム(PdCl2)1.67gを1N−KCl
水溶液100mlに溶解し、そこに前記弗化カルシウム
粉砕品100gを投入した。室温で1時間静置後水素化
ホウ素ナトリウム0.3gを添加してパラジウムを還元
した。還元終了後溶液を濾過で除き、120℃で1時間
乾燥し、次いで400℃、1時間焼成してPd(1wt
%)/CaF2触媒を製造した。この触媒40mlを内
径20mmの流通式反応器に充填した。また、粒径1〜
2mmのソーダライム500mlを内径20mmの流通
式反応器に充填し、前記触媒を充填した反応器の下流側
に接続した。NF31%、水素5%、残部窒素からなる
ガスを空間速度(SV)1200hr−1で反応器に供
給し、220℃で反応させた。反応開始から1時間後、
5時間後、および100時間後にソーダライム充填反応
器(吸着装置)出口の排ガスをガスクロマトグラフで分
析した結果、NF3は検出されなかった。Example 3 A calcium fluoride compact was pulverized to a particle size of 1 to 2 mm. 1.67 g of palladium chloride (PdCl 2 ) was added to 1N-KCl
It was dissolved in 100 ml of an aqueous solution, and 100 g of the pulverized calcium fluoride was added thereto. After standing at room temperature for 1 hour, 0.3 g of sodium borohydride was added to reduce palladium. After completion of the reduction, the solution was removed by filtration, dried at 120 ° C. for 1 hour, then calcined at 400 ° C. for 1 hour, and Pd (1 wt.
%) / CaF 2 catalyst was produced. 40 ml of this catalyst was charged into a flow reactor having an inner diameter of 20 mm. In addition, particle size 1
500 ml of 2 mm soda lime was charged into a flow reactor having an inner diameter of 20 mm, and connected to the downstream side of the reactor filled with the catalyst. A gas consisting of 1% of NF 3 , 5% of hydrogen and the balance of nitrogen was supplied to the reactor at a space velocity (SV) of 1200 hr −1 and reacted at 220 ° C. One hour after the start of the reaction,
After 5 hours and 100 hours, the exhaust gas at the outlet of the soda lime filling reactor (adsorber) was analyzed by gas chromatography, and as a result, NF 3 was not detected.
【0024】比較例1 弗化カルシウムに代えてγ−アルミナを用いた他は実施
例1と同様にしてNi(30wt%)/Al2O3触媒
を製造した。この触媒40mlを用いて実施例1と同じ
条件でNF3の還元分解実験を行ったところ、反応開始
から1時間後および5時間後ではソーダライム充填反応
器(吸着装置)出口の排ガス中にNF3は検出されなか
ったが、100時間後には0.17%のNF3が検出さ
れた。Comparative Example 1 A Ni (30 wt%) / Al 2 O 3 catalyst was produced in the same manner as in Example 1 except that γ-alumina was used instead of calcium fluoride. Using 40 ml of this catalyst, a reductive decomposition experiment of NF 3 was performed under the same conditions as in Example 1. One hour and 5 hours after the start of the reaction, NF 3 was contained in the exhaust gas at the outlet of the soda lime-filled reactor (adsorber). 3 was not detected, but after 100 hours, 0.17% of NF 3 was detected.
【0025】比較例2 弗化カルシウムに代えてチタニアを用いた他は実施例1
と同様にしてNi(30wt%)/TiO2触媒を製造
した。この触媒40mlを用いて実施例1と同じ条件で
NF3の還元分解実験を行ったところ、反応開始から1
時間後ではソーダライム充填反応器(吸着装置)出口の
排ガス中にNF3は検出されなかったが、5時間後には
0.01%、100時間後には0.20%のNF3が検
出された。Comparative Example 2 Example 1 except that titania was used in place of calcium fluoride.
A Ni (30 wt%) / TiO 2 catalyst was produced in the same manner as described above. An experiment of reductive decomposition of NF 3 was carried out under the same conditions as in Example 1 using 40 ml of this catalyst.
Soda lime filled reactor in the time after it NF 3 was detected in the exhaust gas (adsorption apparatus) outlet, 0.01% after 5 hours, after 100 hours was detected 0.20% of NF 3 .
【0026】比較例3 弗化カルシウムに代えて粒径1〜2mmのγ−アルミナ
を用いた他は実施例3と同様にしてPd(1wt%)/
Al2O3触媒を製造した。この触媒40mlを用いて
実施例3と同じ条件でNF3の還元分解実験を行ったと
ころ、反応開始から1時間後および5時間後ではソーダ
ライム充填反応器(吸着装置)出口の排ガス中にNF3
は検出されなかったが、100時間後には0.25%の
NF3が検出された。Comparative Example 3 In the same manner as in Example 3 except that γ-alumina having a particle size of 1 to 2 mm was used instead of calcium fluoride, Pd (1 wt%) /
An Al 2 O 3 catalyst was produced. Using 40 ml of this catalyst, a reductive decomposition experiment of NF 3 was performed under the same conditions as in Example 3. One hour and 5 hours after the start of the reaction, NF 3 was contained in the exhaust gas at the outlet of the soda lime-filled reactor (adsorber). 3
Was not detected, but 0.25% of NF 3 was detected after 100 hours.
【0027】実施例4〜7 ニッケル粉末に代えて鉄、コバルト、銅、亜鉛の粉末を
用いた他は実施例1と同様にして、Fe(30wt%)
/CaF2、Co(30wt%)/CaF2、Cu(3
0wt%)/CaF2、およびZn(30wt%)/C
aF2触媒を調製した。実施例1と同じ条件でNF3の
還元分解実験を行った結果を表1に示す。Examples 4-7 Fe (30 wt%) was obtained in the same manner as in Example 1 except that powders of iron, cobalt, copper and zinc were used instead of nickel powder.
/ CaF 2 , Co (30 wt%) / CaF 2 , Cu (3
0 wt%) / CaF 2 , and Zn (30 wt%) / C
the aF 2 catalyst was prepared. Table 1 shows the results of a reductive decomposition experiment of NF 3 performed under the same conditions as in Example 1.
【0028】実施例8〜10 塩化パラジウムPdCl2に代えて塩化ルテニウムRu
Cl3、塩化ロジウムRhCl3、および塩化白金酸H
2PtCl6の所定量を用いた他は実施例3と同様にし
て、それぞれRu(1wt%)/CaF2、Rh(1w
t%)/CaF2、Pt(1wt%)/CaF2触媒を
調製した。実施例3と同じ条件でNF3の還元分解実験
を行った結果を表1に示す。Examples 8 to 10 Ruthenium chloride Ru instead of palladium chloride PdCl 2
Cl 3 , rhodium chloride RhCl 3 , and chloroplatinic acid H
Ru (1 wt%) / CaF 2 , Rh (1w) in the same manner as in Example 3 except that a predetermined amount of 2 PtCl 6 was used.
t%) / CaF 2 , Pt (1 wt%) / CaF 2 catalyst were prepared. Table 1 shows the results of a reductive decomposition experiment of NF 3 performed under the same conditions as in Example 3.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【発明の効果】本発明は特定の金属とアルカリ金属ある
いはアルカリ土類金属の弗化物を担体とする触媒を用い
ることにより、NF3の除害が長時間にわたって安定的
に行うことが可能となった。すなわち、本発明の比較例
は比較的短時間にNF3の除害ができなくなる。これに
対し、本発明の実施例は100時間を超えてもNF3の
除害が可能となり長時間にわたって安定的に除害を行う
ことができるのである。According to the present invention by using a catalyst for a specific metal and an alkali metal or alkaline earth metal fluoride with a carrier, it is possible abatement of NF 3 is stably performed over a long period of time Was. That is, the comparative example of the present invention cannot remove NF 3 in a relatively short time. On the other hand, in the embodiment of the present invention, it is possible to remove NF 3 even if it exceeds 100 hours, and it is possible to stably remove the NF 3 for a long time.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 和知 浩子 山口県下関市彦島迫町七丁目1番1号 三 井東圧化学株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroko Wachi 7-1-1, Hikoshimasako-cho, Shimonoseki-shi, Yamaguchi Pref.
Claims (2)
u、Rh、Pd、Ag、Ir、Pt、Auよりなる群か
ら選ばれる第1成分およびアルカリ金属弗化物、アルカ
リ土類金属弗化物のうち少なくとも1種以上よりなる第
2成分を含有する触媒の存在下、三弗化窒素を含む排ガ
スと水素とを反応させることを特徴とする三弗化窒素の
除害方法。1. Fe, Co, Ni, Cu, Zn, R
of a catalyst containing a first component selected from the group consisting of u, Rh, Pd, Ag, Ir, Pt, and Au and a second component consisting of at least one of alkali metal fluorides and alkaline earth metal fluorides A method for removing nitrogen trifluoride, comprising reacting an exhaust gas containing nitrogen trifluoride with hydrogen in the presence of hydrogen.
u、Rh、Pd、Ag、Ir、Pt、Auよりなる群か
ら選ばれる第1成分とアルカリ金属弗化物、アルカリ土
類金属弗化物のうち少なくとも1種以上よりなる第2成
分を含有することを特徴とする三弗化窒素を除害するた
めの触媒。2. Fe, Co, Ni, Cu, Zn, R
u, Rh, Pd, Ag, Ir, Pt, Au, containing a first component selected from the group consisting of at least one of alkali metal fluorides and alkaline earth metal fluorides. Characteristic catalyst for removing nitrogen trifluoride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9219761A JPH1147555A (en) | 1997-08-01 | 1997-08-01 | Detoxification process for nitrogen trifluoride and detoxification catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9219761A JPH1147555A (en) | 1997-08-01 | 1997-08-01 | Detoxification process for nitrogen trifluoride and detoxification catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1147555A true JPH1147555A (en) | 1999-02-23 |
Family
ID=16740596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9219761A Pending JPH1147555A (en) | 1997-08-01 | 1997-08-01 | Detoxification process for nitrogen trifluoride and detoxification catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1147555A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6921519B2 (en) | 2001-01-24 | 2005-07-26 | Ineos Fluor Holdings Limited | Decomposition of fluorine containing compounds |
-
1997
- 1997-08-01 JP JP9219761A patent/JPH1147555A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6921519B2 (en) | 2001-01-24 | 2005-07-26 | Ineos Fluor Holdings Limited | Decomposition of fluorine containing compounds |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090142244A1 (en) | Treatment method for decomposing perfluorocompound, decomposing catalyst and treatment apparatus | |
US20090200207A1 (en) | Absorption Composition and Process for Removing Mercury | |
CN116635132A (en) | Catalyst for decomposing chlorine gas, exhaust gas treatment device, and method for decomposing chlorine gas | |
JP3688314B2 (en) | Ammonia decomposition method | |
JP4913271B2 (en) | Halogen gas treatment agent | |
UA61975C2 (en) | Catalyst for production of vinyl acetate containing metal palladium and gold and cupric acetate (ii) | |
EP0739236B1 (en) | Metallo-oxomeric scrubber compositions, and method of gas purification utilizing same | |
JPH1147555A (en) | Detoxification process for nitrogen trifluoride and detoxification catalyst | |
JPH11179204A (en) | Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production | |
TW524720B (en) | Cleaning agent for hazardous gas | |
EP1205230B1 (en) | Method for removing a halogen-containing gas | |
JP2007054714A (en) | Decomposition catalyst of nitrous oxide and decomposition method of nitrous oxide using the catalyst | |
JPH11128675A (en) | Removal of chlorine or chlorine compound and apparatus therefor | |
JP3376789B2 (en) | Method for treating organic halogen compounds with a catalyst | |
JP3701741B2 (en) | Hazardous gas purification agent | |
JPH10216479A (en) | Detoxifying method of gaseous nitrogen trifluoride | |
JPH1190180A (en) | Method for detoxifying nitrogen trifluoride | |
JPH1119472A (en) | Method and device of removing nitrogen trifluoride | |
JPH06106027A (en) | Decomposition removal method for nitrous oxide | |
JPH06106028A (en) | Treatment of nitrous oxide containing gas | |
JPWO2005018807A1 (en) | Ammonia decomposition catalyst and ammonia decomposition method using the catalyst | |
JPH1066985A (en) | Treatment of nitrogen compound-containing waste water | |
JPH11179201A (en) | Catalyst for decomposition of fluorine-containing compound and fluorine-containing compound | |
JPH11165071A (en) | Fluorine-containing compound-decomposing catalyst and fluorine-containing compound-decomposing method | |
JPS59115745A (en) | Catalyst for wet oxydation treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060418 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060808 |