JPH11165071A - Fluorine-containing compound-decomposing catalyst and fluorine-containing compound-decomposing method - Google Patents

Fluorine-containing compound-decomposing catalyst and fluorine-containing compound-decomposing method

Info

Publication number
JPH11165071A
JPH11165071A JP33149297A JP33149297A JPH11165071A JP H11165071 A JPH11165071 A JP H11165071A JP 33149297 A JP33149297 A JP 33149297A JP 33149297 A JP33149297 A JP 33149297A JP H11165071 A JPH11165071 A JP H11165071A
Authority
JP
Japan
Prior art keywords
catalyst
fluorine
containing compound
metal
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33149297A
Other languages
Japanese (ja)
Inventor
Takashi Atokuchi
隆 後口
Hirohide Yada
博英 矢田
Tsunemi Sugimoto
常実 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP33149297A priority Critical patent/JPH11165071A/en
Publication of JPH11165071A publication Critical patent/JPH11165071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously decompose a fluorine-containing compound containing also perfluoro-compound, which is difficult to decompose, by carrying a metal selected from group VIA, group VIII and group IIIB and an inorganic acid selected from sulfuric acid, phosphoric acid and boric acid on alumina. SOLUTION: The metal carried on the alumina is at least one or more kinds selected from group VIA, group VIII and group IIIB and Cr, Fe, Co, Ni, Pd and Pt, which are the transition metal elements, and B and Ga, which are the typical metal elements, among them produces good result. A preferable result is attained by controlling the quantity of the metal to be carried on the alumina carrier to 0.01-20 pts.wt. expressed in terms of metal per 100 pts.wt. carrier. The inorganic acid is limited to sulfuric acid, phosphoric acid and boric acid from the view point of the reaction condition and sulfuric acid having strong acidity and low splash property is most preferably used among them. The suitable result is attained by controlling the content of the inorganic acid in the catalyst to 0.1-20 pts.wt. per 100 pts.wt. alumina.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、含フッ素化合物特
に、フッ化炭素、フッ化窒素、フッ化硫黄等のパーフル
オロ化合物を接触分解する触媒および該触媒を使用する
含フッ素化合物の分解処理方法に関する。本発明の触媒
を使用により、オゾン層破壊の原因物質として問題とな
っているフロンの分解処理が可能であるだけでなく、代
替フロンを使用する工場、特に半導体製造工場から大気
に排出される、フロンに比して分解がより困難なパーフ
ルオロ化合物量の低減も可能となる。
The present invention relates to a catalyst for catalytically decomposing a fluorine-containing compound, particularly a perfluoro compound such as carbon fluoride, nitrogen fluoride and sulfur fluoride, and a method for decomposing a fluorine-containing compound using the catalyst. About. By using the catalyst of the present invention, not only is it possible to decompose chlorofluorocarbon, which is a problem as a substance causing ozone layer depletion, but it is also discharged into the atmosphere from plants that use alternative chlorofluorocarbons, especially semiconductor manufacturing plants. It is also possible to reduce the amount of perfluoro compounds which are more difficult to decompose than chlorofluorocarbons.

【0002】[0002]

【従来の技術】揮発性含フッ素化合物の内、塩素とフッ
素含むフロンは、オゾン層破壊の元凶としてその排出は
今後厳しく規制されることが確定している。揮発性含フ
ッ素化合物には、このフロンの他、フッ化炭素、フッ化
窒素、フッ化硫黄、フッ化炭化水素より成るパーフルオ
ロ化合物(以下PFCと称す)と呼ばれる揮発性含フッ
素化合物がある。このPFCは、フロンとは異なり塩素
を含まず且つ非常に安定であるためにオゾン層破壊には
関与しないものであり、未だ排出量の規制がないことか
ら、半導体製造現場で洗浄用途に良く使用されているも
のである。しかし、地球温暖化係数が二酸化炭素の10
00倍以上と大きく、その大気への排出はフロン同様、
今後規制される可能性が非常に高い化合物である。これ
等含フッ素化合物の内、エアコン等製品そのものに含ま
れ発生源が広範に分布しているためその排出抑制が非常
に困難な特定フロンガスの場合には、その製造・使用を
全面的に禁止するしか手はないかも知れないが、PFC
のように、製造工程で使用はされるものの製品に含まれ
て出荷されることはなく、発生源が工場に特定されるこ
とから、出口での排出抑制が比較的容易であるものにつ
いては、その本来の特性を活かしつつ使用するのが得策
である。勿論、その排出が、基準値が設定された場合に
は、それ以下に抑制されることが前提であることは言う
までもない。
2. Description of the Related Art Among volatile fluorine-containing compounds, Freon containing chlorine and fluorine has been determined to be severely regulated in the future as the cause of ozone layer destruction. In addition to this fluorocarbon, the volatile fluorine-containing compound includes a volatile fluorine-containing compound called a perfluoro compound (hereinafter, referred to as PFC) composed of carbon fluoride, nitrogen fluoride, sulfur fluoride, and fluorocarbon. Unlike PFC, this PFC does not contain chlorine and does not contribute to ozone layer destruction because it is very stable. Since there is no emission control yet, it is often used for cleaning in semiconductor manufacturing sites. Is what is being done. However, the global warming potential is 10
It is as large as 00 times and its emission to the atmosphere is
It is a compound that is very likely to be regulated in the future. Among these fluorine-containing compounds, the production and use of specific fluorocarbon gases, which are contained in products such as air conditioners themselves and whose emission is very difficult to control due to their wide distribution, are completely prohibited. You may only have a hand, but PFC
As mentioned above, although it is used in the manufacturing process, it is not included in the product and is not shipped, and since the source is specified by the factory, for those that are relatively easy to control at the exit, It is advisable to use it while taking advantage of its original characteristics. Of course, it is needless to say that when the reference value is set, the emission is suppressed to a value lower than the reference value.

【0003】上記ガスの排出を抑制する方法としては、
回収する方法と分解処理する方法の二通りが考えられ
が、回収する方法は、排出ガス中に含まれるPFC濃度
が本質的に低いことと、回収装置が複雑化することか
ら、分解処理が好ましい方法である。しかし、PFC、
中でもフッ化炭素は、フロンに比して化学的に安定であ
ることから、通常のフロンの分解に使用される分解方法
では処理は困難であり更に過酷な処理条件が必要であ
る。例えば、単純な燃焼処理に必要な温度は、フロンの
場合には800〜900℃であるが、フッ化炭素に於て
は1000℃以上となるだけでなく、燃焼装置の燃焼炉
やノズル等、高温下で腐蝕性ガスと接触する部分での腐
蝕の問題もあり、実用化には未だ解決すべ問題が残され
ているのが実情である。また、特開平7−116466
及び同平7−132211号公報には、シリカやゼオラ
イトを分解剤ないしはフッ素捕捉剤として使用し、フッ
化炭素を分解する技術が開示されているが、フッ化炭素
を実用的な速度で分解するにはやはり1000℃以上の
高温を要するだけでなく、分解剤の一部がフッ素捕捉剤
として消費されるため、粉体の分解剤を供給しながら反
応を行なう必要が在り、装置的に煩雑になる欠点を有し
たものである。PFCを含む含フッ素化合物の連続処理
には、触媒を用いる接触分解方法が最も有効であると考
えられるが、未だ十分な活性を示す触媒系が見出されて
いないのが実情である。
[0003] As a method of suppressing the above gas emission,
There are two methods, a recovery method and a decomposition method, but the recovery method is preferably a decomposition treatment because the concentration of PFC contained in the exhaust gas is essentially low and the recovery device is complicated. Is the way. However, PFC,
Above all, fluorocarbon is chemically stable as compared with chlorofluorocarbons, so that it is difficult to treat it with a normal decomposition method used for decomposition of chlorofluorocarbons, and further severe processing conditions are required. For example, the temperature required for a simple combustion process is 800 to 900 ° C. in the case of chlorofluorocarbon, but not only 1000 ° C. or more in the case of fluorocarbon, but also a combustion furnace or a nozzle of a combustion device. There is also a problem of corrosion at a portion that comes into contact with a corrosive gas at a high temperature, and there is still a problem to be solved for practical use. Also, Japanese Patent Application Laid-Open No.
Japanese Patent Application Laid-Open No. 7-132211, which discloses a technique for decomposing carbon fluoride by using silica or zeolite as a decomposing agent or a fluorine scavenger, decomposes fluorocarbon at a practical rate. Not only requires a high temperature of 1000 ° C. or more, but also requires a part of the decomposing agent to be consumed as a fluorine scavenger, so that it is necessary to carry out the reaction while supplying the decomposing agent in the form of a powder. It has the following disadvantages. For continuous treatment of a fluorine-containing compound containing PFC, a catalytic cracking method using a catalyst is considered to be the most effective, but a catalyst system showing a sufficient activity has not been found yet.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明の目的
は、実用的な処理条件下で従来技術では分解の困難なP
FCをも含む、含フッ素化合物の連続的分解処理を可能
にする触媒系および該触媒を使用する含フッ素化合物の
連続的分解処理方法を提供することに在る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a P which is difficult to decompose in the prior art under practical processing conditions.
It is an object of the present invention to provide a catalyst system capable of continuously decomposing a fluorine-containing compound, including FC, and a method for continuously decomposing a fluorine-containing compound using the catalyst.

【0005】[0005]

【課題を解決するための手段】発明者等は、アルミナに
ある種の金属および無機酸を担持させた触媒が上記課題
を解決する触媒系となり、該触媒を適正に使用すれば上
記課題が解決された含フッ素化合物の連続的分解処理方
法となることを見出し本発明を完成した。すなわち、本
発明は、アルミナに6A族、8族、3B族から選ばれる
少なくとも一種以上の金属および硫酸、燐酸、ほう酸か
ら選ばれる少なくとも一種以上の無機酸を担持させた含
フッ素化合物分解処理触媒に関する。また、本発明は、
酸素および水共存下において、アルミナに6A族、8
族、3B族から選ばれる金属の少なくとも一種種以上及
び無機酸を担持させた触媒と接触させて行なう、ガス状
含フッ素化合物の分解処理方法に関する。
The present inventors have found that a catalyst in which alumina carries a certain metal and an inorganic acid is a catalyst system that solves the above-mentioned problems, and that the above-mentioned problems can be solved by using the catalyst properly. The present invention was found to be a method for continuously decomposing the obtained fluorine-containing compound, and the present invention was completed. That is, the present invention relates to a fluorine-containing compound decomposition treatment catalyst in which alumina carries at least one or more metals selected from 6A, 8 and 3B and at least one or more inorganic acids selected from sulfuric acid, phosphoric acid and boric acid. . Also, the present invention
In the coexistence of oxygen and water, group 6A, 8
The present invention relates to a method for decomposing a gaseous fluorine-containing compound, which is carried out by contacting a catalyst supporting at least one kind of metal selected from Group III and Group 3B and an inorganic acid.

【0006】[0006]

【発明の実施の形態】本発明に於ける触媒担体として
は、含フッ素化合物分解活性の非常に高い触媒を与える
ことからアルミナを使用する。アルミナは、触媒担体用
として一般に市販されているものをそのまま使用するこ
とが出来るが、形状については、粒状、粉末状、ハニカ
ム状等を反応器および反応方法に合せて夫々に相応しい
ものを選ぶことになる。
BEST MODE FOR CARRYING OUT THE INVENTION As a catalyst carrier in the present invention, alumina is used because it provides a catalyst having a very high activity of decomposing a fluorine-containing compound. Alumina, which is generally commercially available for use as a catalyst carrier, can be used as it is, but for the shape, granules, powders, honeycombs, etc. should be selected according to the reactor and reaction method. become.

【0007】アルミナ上に担持させる金属は、6A族、
8族、3B族から選ばれる金属の少なくとも一種以上で
あるが、中でも、遷移金属元素であるCr、Fe、C
o、Ni、Pd、Ptおよび典型金属元素であるB、G
aが好ましい結果を与える。金属の担持に当たっては、
これ等金属の塩化物、硝酸塩、硫酸塩、燐酸塩等の各種
塩または酸化物を適当な溶媒に溶解させた後、担体が成
形体である場合には一般的に行なわれている含浸法また
は蒸発乾固法で、また粉末状の場合には機械的混錬法ま
たは蒸発乾固法で、容易に担持させることができる。ま
た、アルミナゾルを用いた共沈法で調製することもでき
る。尚、出発物質として金属硫酸塩および/または燐酸
塩を用いれば金属と同時に硫酸根および/または燐酸基
も導入されることから、金属成分および無機酸を同時に
触媒に導入可能であり、簡便な触媒調製方法として採用
することができる。尚、金属硫酸塩および/または燐酸
塩を使用して硫酸根および/燐酸基を等量だけ導入する
よりも、更に過剰の硫酸根および/または燐酸基を導入
することで触媒活性を更に上げることができる。
The metal supported on alumina is Group 6A,
It is at least one or more metals selected from Group VIII and 3B, and among them, transition metal elements such as Cr, Fe and C
o, Ni, Pd, Pt and typical metal elements B, G
a gives favorable results. In carrying metal,
After dissolving various salts or oxides of these metals, such as chlorides, nitrates, sulfates, and phosphates, in an appropriate solvent, if the carrier is a molded article, a generally used impregnation method or It can be easily supported by an evaporation-to-drying method, or in the case of a powder, by a mechanical kneading method or an evaporation-to-dryness method. It can also be prepared by a coprecipitation method using alumina sol. If a metal sulfate and / or phosphate is used as a starting material, a sulfate group and / or a phosphate group are introduced simultaneously with the metal, so that the metal component and the inorganic acid can be introduced into the catalyst at the same time. It can be adopted as a preparation method. It is to be noted that the catalyst activity is further increased by introducing an excessive amount of sulfate groups and / or phosphate groups rather than introducing metal sulfates and / or phosphates in equal amounts of sulfate groups and / or phosphate groups. Can be.

【0008】本発明におけるアルミナ担体への金属の担
持量は、金属種にもよるが、担体100重量部当たり金
属換算で0.01〜20重量部とすることにより好まし
い結果を得ることができる。金属量が少なすぎると十分
な添加効果が発現しないことがあり、多すぎても資源の
無駄であるだけではなく、均一に分散した触媒が得られ
ず、再現性に乏しい触媒となる虞がある。尚、触媒中
の、特に反応条件下における金属の存在形態は現時点で
は不明であるため、本発明では「金属の担持」と表現し
ているが、これは0価の金属だけを意味するものではな
い。
In the present invention, the amount of metal supported on the alumina carrier depends on the type of metal, but a preferable result can be obtained by adjusting the amount of metal to 0.01 to 20 parts by weight per 100 parts by weight of the carrier. If the amount of the metal is too small, a sufficient effect of addition may not be exhibited.If the amount is too large, not only is the waste of resources, but a uniformly dispersed catalyst cannot be obtained, and the catalyst may have poor reproducibility. . Incidentally, since the form of the metal present in the catalyst, particularly under the reaction conditions, is unknown at this time, it is expressed as "support of metal" in the present invention, but this does not mean only a zero-valent metal. Absent.

【0009】本発明では、アルミナに金属種および無機
酸を担持させることにより高い含フッ素化合物分解活性
を有する触媒を得たことに特徴がある。無機酸の働きに
ついては現時点では不明であるが、担体のAlイオンの
回りに配位して、電気陰性度の高いFが結合しδ+に分
極した反応物分子内C、N、S原子の吸着、反応性を高
めると考えられる。尚、本発明で使用される無機酸は、
反応条件から、硫酸、燐酸、ほう酸に限られるが、中で
も強酸性で且つ飛散性の低い硫酸の使用が最も好まし
い。
The present invention is characterized in that a catalyst having a high activity of decomposing a fluorine-containing compound is obtained by supporting a metal species and an inorganic acid on alumina. Although the function of the inorganic acid is unknown at this time, it is coordinated around the Al ion of the carrier, and the F, which has a high electronegativity, is bound and the C, N, and S atoms in the reactant molecule polarized to δ + are adsorbed. It is thought to increase reactivity. Incidentally, the inorganic acid used in the present invention,
From the reaction conditions, it is limited to sulfuric acid, phosphoric acid and boric acid. Among them, the use of sulfuric acid which is strongly acidic and has low scattering property is most preferable.

【0010】無機酸の担持は、フリーの酸だけでなく、
硫安等のアンモニウム塩またはエステル等の使用条件下
または使用に先立って行なう前処理で分解して、フリー
の酸を出発原料とした場合と本質的に同じ担持物を与え
る前駆体も使用できる。これ等フリーの酸またはその前
駆体は、金属成分担持の場合と同様、水その他の適当な
溶媒に溶解させた後、担体が成形体である場合には一般
的に行なわれている含浸法または蒸発乾固法で、また粉
末状の場合には機械的混錬法または蒸発乾固法で容易に
担持させることができる。担持無機酸量が多い場合、高
い濃度の溶液から一度に担持させても良いし、また、低
濃度の溶液を数回に分けて担持させても良いが、無機酸
が均一に担持された触媒が容易に得られることから、低
濃度の溶液を2〜4回に分けて担持させる方が好ましい
方法である。尚、担体に金属と酸を担持させる際の添加
順序は特に制限されず、どちらを先に担持させても、ま
たは同時に担持させても構わない。
[0010] The support of the inorganic acid is not only free acid,
Precursors that can be decomposed by use conditions such as ammonium salts such as ammonium sulfate or esters or by a pretreatment performed prior to use to give essentially the same support as when a free acid is used as a starting material can also be used. These free acids or their precursors are dissolved in water or other suitable solvent, as in the case of supporting the metal component, and then, when the carrier is a molded body, a commonly used impregnation method or The support can be easily carried out by an evaporation-drying method, or in the case of a powder, by a mechanical kneading method or an evaporation-drying method. When the amount of the supported inorganic acid is large, a high-concentration solution may be supported at once, or a low-concentration solution may be supported several times. Therefore, it is preferable to carry the low-concentration solution in two to four portions, since the solution is easily obtained. The order of addition of the metal and the acid on the carrier is not particularly limited, and either one may be carried first or the other may be carried simultaneously.

【0011】触媒中の無機酸の含有量は、使用する酸の
種類によって異なるが、少なすぎると添加効果が十分に
発現せず、また、多すぎると担持されている金属種によ
っては、金属の効果が抑制される事がある。本発明に於
ては、担体であるγ−アルミナ100重量部当たり0.
1〜20重量部とすることにより好適な結果を得ること
ができる。
The content of the inorganic acid in the catalyst varies depending on the kind of the acid to be used. If the amount is too small, the effect of addition is not sufficiently exhibited. If the amount is too large, the content of the metal depends on the type of metal supported. The effect may be suppressed. In the present invention, 0.1 parts by weight per 100 parts by weight of the carrier γ-alumina is used.
A suitable result can be obtained by using 1 to 20 parts by weight.

【0012】触媒中酸量の低減に伴う触媒活性の低下が
生じた場合には、酸を添加して触媒を再賦活することが
できる。酸の添加方法は、反応系に必須成分である水を
供給する際に、これ等無機酸を水溶液の形態で反応ガス
と共に反応系に供給する方法または、無機酸エステル等
の揮発性前駆体をガス状で反応ガスに同伴させる方法が
採用できる。この場合における酸の添加は、間欠的また
は定常的どちらの方法によって行なっても構わないが、
定常的に行なえば、酸量の低減に伴う触媒活性の低下を
防止することができる。
When the catalytic activity is reduced due to the decrease in the amount of acid in the catalyst, the catalyst can be reactivated by adding an acid. The method of adding the acid is a method of supplying these inorganic acids to the reaction system together with the reaction gas in the form of an aqueous solution when supplying water which is an essential component to the reaction system, or a method of adding a volatile precursor such as an inorganic acid ester. It is possible to adopt a method of entraining the reaction gas in a gaseous state. In this case, the acid may be added either intermittently or constantly.
If it is carried out regularly, it is possible to prevent a decrease in catalytic activity due to a decrease in the amount of acid.

【0013】アルミナに必要成分を担持させて調製した
触媒前駆体は100℃前後で乾燥後、空気または窒素気
流中で加熱前処理を行ない触媒とする。この賦活処理
は、マッフル炉等を用いて行なっても良いし、必要量の
乾燥後物を含フッ素化合物分解反応用反応器に充填した
後、使用に先立って空気または不活性ガスを流通させな
がら加熱して賦活しても良い。加熱温度は、担持する金
属種、担持に使用する前駆体種に依存するが、処理温度
が高すぎるアルミナ担体または担持金属の表面積の低下
を招く事があり、また、低すぎると触媒が安定化せず、
反応初期に触媒活性の経時変化を招き何れも好ましくな
い結果につながる。従って、本発明に於ては、200〜
1000℃、好ましくは400〜800℃の範囲で加熱
処理を行なう。
The catalyst precursor prepared by supporting the necessary components on alumina is dried at about 100 ° C., and then subjected to a heating pretreatment in a stream of air or nitrogen to obtain a catalyst. This activation treatment may be performed using a muffle furnace or the like, or after filling a necessary amount of the dried product in a reactor for decomposition reaction of a fluorine-containing compound, and circulating air or an inert gas prior to use. It may be activated by heating. The heating temperature depends on the type of the metal to be supported and the type of the precursor used for the support. However, the treatment temperature may cause a decrease in the surface area of the alumina carrier or the supported metal, which is too high. Without
In the early stage of the reaction, a change in the catalytic activity with the lapse of time is caused, which leads to undesirable results. Therefore, in the present invention, 200 to
The heat treatment is performed at 1000 ° C, preferably in the range of 400 to 800 ° C.

【0014】含フッ素化合物の分解反応は、含フッ素化
合物、酸素及び水の混合ガスを触媒上に供給しながら、
300〜1000℃、好ましくは400〜900℃の温
度範囲で行なう。混合ガスの供給速度は、50000/
時間以下、好ましくは100〜100000/時間であ
る。
The decomposition reaction of the fluorine-containing compound is performed by supplying a mixed gas of the fluorine-containing compound, oxygen and water onto the catalyst.
It is carried out in a temperature range of 300 to 1000 ° C, preferably 400 to 900 ° C. The supply rate of the mixed gas is 50,000 /
Or less, preferably 100 to 100000 / hour.

【0015】本発明の反応ガス中に含まれる含フッ素化
合物の濃度は、3容量%以下とするのが良い。反応ガス
中に含まれる含フッ素化合物濃度が高すぎると、触媒寿
命に悪い影響を与えることがあるからである。一般に半
導体製造工場から排出される排ガス中のPFC濃度は1
容量%以下であり問題にならないが、3容量%以上含ま
れる場合には、空気、窒素等の希釈ガス添加して、濃度
3容量%以下となるようにするのが良い。また、反応ガ
スにはPFCに加えて酸素および水を含ませるが、この
うち酸素は、PFCの炭素をCO2 およびCOに変換す
るために必要な成分であり、水は、分解反応で生成する
ハロゲンをHFとして触媒系外に排出するのに必要な成
分であるだけでなく、担体中のAlがフッ化アルミニウ
ムとして触媒系外に逃散するのを抑制する働きをも有す
る。
The concentration of the fluorine-containing compound contained in the reaction gas of the present invention is preferably 3% by volume or less. If the concentration of the fluorine-containing compound contained in the reaction gas is too high, the life of the catalyst may be adversely affected. Generally, the PFC concentration in the exhaust gas discharged from a semiconductor manufacturing plant is 1
This is not a problem because it is not more than 3% by volume, but when it is contained at 3% by volume or more, it is preferable to add a diluent gas such as air or nitrogen so that the concentration becomes 3% by volume or less. The reaction gas contains oxygen and water in addition to PFC. Among them, oxygen is a component necessary for converting carbon of PFC into CO 2 and CO, and water is generated by a decomposition reaction. In addition to being a component necessary for discharging halogen as HF out of the catalyst system, it also has a function of preventing Al in the carrier from escaping out of the catalyst system as aluminum fluoride.

【0016】反応ガス中に含まれる酸素量は、PFCの
炭素をCO2 およびCOに変換するのに十分な量であれ
ば特に制限はないが、反応ガス中のPFC濃度が上記し
た範囲内であれば、空気が使用可能であるだけでなく、
最も好ましい酸素源である。一方、反応ガス中に含まれ
る水の量は、反応ガス中に含まれるハロゲン量と同量以
上10倍以内すなわち、CF4 であれば4〜40モル
倍、C2 6 であれば6〜60モル倍とすれば好適な結
果を得ることができる。水の供給は、一般的に用いられ
ている方法すなわち、液体用ポンプを用いて液体状で反
応器に供給する方法、または、サーチュレーターを用い
てガス状で反応ガスに同伴させる方法が問題なく適用で
きる。
The amount of oxygen contained in the reaction gas is not particularly limited as long as it is an amount sufficient to convert PFC carbon into CO 2 and CO, but the PFC concentration in the reaction gas is within the above range. If not only air is available,
It is the most preferred oxygen source. On the other hand, the amount of water contained in the reaction gas is equal to or more than 10 times the amount of halogen contained in the reaction gas, that is, 4 to 40 mole times for CF 4 and 6 to 40 times for C 2 F 6 . If it is 60 mole times, a favorable result can be obtained. The problem with water supply is that it is a commonly used method, that is, a method of supplying a liquid state to a reactor using a liquid pump, or a method of entraining a gaseous state with a reaction gas using a saturator. Applicable without.

【0017】含フッ素化合物の接触分解反応は、流通
式、或いはバッチ式の何れでも行ない得るが、装置の簡
便性および処理能力の高さから、流通式が好ましい。
尚、流通式の場合、固定床、流動床の何れでも適用可能
である。
The catalytic decomposition reaction of the fluorine-containing compound can be carried out by a flow system or a batch system, but the flow system is preferred in view of the simplicity of the apparatus and the high processing capacity.
In the case of a flow type, any of a fixed bed and a fluidized bed can be applied.

【0018】反応器を出た後の排ガスは、アルカリ水溶
液を充填したスクラバーを通したり、固体アルカリを充
填した吸着器を通す一般的に行なわれている方法で、分
解反応で生成したHFを除去した後、大気中に放出され
る。
Exhaust gas after leaving the reactor is passed through a scrubber filled with an alkaline aqueous solution or through an adsorber filled with solid alkali to remove HF produced by the decomposition reaction. After being released into the atmosphere.

【0019】[0019]

【実施例】以下、具体的例を示し、本発明を更に詳しく
説明する。 実施例1 市販の粒状γ−アルミナ(粒径1〜1.5mm)10.
0gに、NiSO4 ・6H2 O0.5gを蒸留水30g
に溶かした溶液を加え、ロータリーエバポレ−タ−を用
いて60℃で減圧乾固した後、100℃で一晩乾燥し
た。室温まで冷却した乾燥をガラス皿上に平らに並べ、
1規定硫酸水溶液10ミリリットルをピペットで均等に
滴下した後、再度100℃で一晩乾燥した。硫酸担持工
程を3回繰り返し、γ−アルミナ10.0gに略1.5
×10-2モルの硫酸を担持させた触媒を調製した。得ら
れた触媒5.0ミリリットルを石英製の内径1.0cm
の反応管に充填し、窒素気流中700℃で1時間前焼成
を行なった。次いで同温度下、1容量%C2 6 /空気
混合ガス及び水を夫々20ミリリットル(N.T.
P.)/分および0.36g/時間の速度で供給しなが
ら反応を行ない、反応開始後2時間の時点に於ける出口
ガス中のC2 6 濃度をガスクロマトグラフィ−で分析
し、触媒活性の評価を行なった。その結果、次式で表わ
されるC2 6 転化率は90%であった。尚、生成物と
しては、二酸化炭素がガスクロマトグラフィー及びFT
IRで確認された。 転化率=[(原料ガス中のC2 6 量−出口ガス中のC
2 6 量)÷原料ガス中のC2 6 量]×100
Now, the present invention will be described in further detail with reference to specific examples. Example 1 Commercially available granular γ-alumina (particle size: 1 to 1.5 mm)
0 g, NiSO 4 .6H 2 O 0.5 g and distilled water 30 g
Was dried at 60 ° C. under reduced pressure using a rotary evaporator, and then dried at 100 ° C. overnight. Drying cooled to room temperature is laid flat on a glass dish,
After 10 ml of a 1 N aqueous sulfuric acid solution was evenly dropped with a pipette, the solution was dried again at 100 ° C. overnight. The sulfuric acid supporting step was repeated three times, and approximately 1.5 g of γ-alumina was added to 10.0 g.
A catalyst supporting × 10 -2 mol of sulfuric acid was prepared. The obtained catalyst (5.0 ml) was made of quartz having an inner diameter of 1.0 cm.
And baked at 700 ° C. for 1 hour in a nitrogen stream. Then, at the same temperature, 20 ml each of a 1% by volume C 2 F 6 / air mixed gas and water (NTT) was used.
P. ) / Min and the reaction was carried out at a rate of 0.36 g / hour, and the concentration of C 2 F 6 in the outlet gas at 2 hours after the start of the reaction was analyzed by gas chromatography to evaluate the catalytic activity. Was performed. As a result, the conversion of C 2 F 6 represented by the following formula was 90%. As a product, carbon dioxide was subjected to gas chromatography and FT.
Confirmed by IR. Conversion rate = [(C 2 F 6 amount in raw material gas−C in outlet gas)
2 F 6 amount) ÷ C 2 F 6 amount in raw material gas] × 100

【0020】参考例1 硫酸担持を行なわなかった以外は実施例1と同様の方法
でNiのみを担持させた触媒を調製し、実施例1と同じ
反応条件でC2 6 分解反応を行なった。その結果、反
応開始後2時間に於けるC2 6 転化率は68%であっ
た。
Reference Example 1 A catalyst supporting only Ni was prepared in the same manner as in Example 1 except that sulfuric acid was not supported, and a C 2 F 6 decomposition reaction was performed under the same reaction conditions as in Example 1. . As a result, the C 2 F 6 conversion two hours after the start of the reaction was 68%.

【0021】参考例2 NiSO4 ・6H2 Oの担持工程を省いた他は実施例1
と同様に行ない、硫酸のみを担持させた触媒を調製し、
実施例1と同じ反応条件でC2 6 分解反応を行なっ
た。その結果、反応開始後2時間に於けるC2 6 転化
率は81%であった。
[0021] Other omitting Reference Example 2 NiSO 4 · 6H 2 O in supporting step Example 1
To prepare a catalyst supporting only sulfuric acid,
A C 2 F 6 decomposition reaction was performed under the same reaction conditions as in Example 1. As a result, the C 2 F 6 conversion two hours after the start of the reaction was 81%.

【0022】γ−アルミナに金属及び無機酸を担持させ
た触媒は、γ−アルミナに金属または無機酸のみを担持
させた触媒に比して高いC2 6 分解活性を有している
ことが分かる。
A catalyst in which a metal and an inorganic acid are supported on γ-alumina has a higher C 2 F 6 decomposition activity than a catalyst in which only a metal or an inorganic acid is supported on γ-alumina. I understand.

【0023】[0023]

【発明の効果】本発明の触媒により、含フッ素化合物の
内のフロンは勿論のこと、フロンに比べて分解の困難な
PFCをも1000℃以下の反応温度で分解することが
可能となった。産業の米とも言われる半導体製造工程に
おいてその使用が不可欠であるにも拘らず、その地球温
暖化係数の大きさから環境への排出が今後規制されるこ
との確実なPFCの分解処理を可能にした技術的、社会
的意義は大きい。
According to the catalyst of the present invention, not only chlorofluorocarbon but also PFC which is difficult to decompose as compared with chlorofluorocarbon can be decomposed at a reaction temperature of 1000 ° C. or less. Despite the fact that its use is indispensable in the semiconductor manufacturing process, which is also referred to as rice in the industry, it enables the decomposition of PFC, whose emission to the environment will be regulated in the future due to its large global warming potential. It has great technical and social significance.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】アルミナに6A族、8族、3B族から選ば
れる少なくとも一種以上の金属および硫酸、燐酸、ほう
酸から選ばれる少なくとも一種以上の無機酸を担持させ
た含フッ素化合物分解処理触媒。
1. A fluorine-containing compound decomposition treatment catalyst comprising alumina carrying at least one metal selected from the group 6A, 8 and 3B and at least one inorganic acid selected from sulfuric acid, phosphoric acid and boric acid.
【請求項2】金属種が、Cr、Fe、Co、Ni、P
d、Pt、BおよびGaから選ばれる金属の少なくとも
一種以上である、請求項1に記載の、含フッ素化合物分
解処理触媒。
2. The method according to claim 1, wherein the metal species is Cr, Fe, Co, Ni, P.
The fluorine-containing compound decomposition treatment catalyst according to claim 1, wherein the catalyst is at least one metal selected from d, Pt, B, and Ga.
【請求項3】触媒中の金属含有量が、アルミナ100重
量部当たり金属換算で0.01〜20重量部である、請
求項1または2の何れかに記載の、含フッ素化合物分解
処理触媒。
3. The catalyst according to claim 1, wherein the metal content in the catalyst is 0.01 to 20 parts by weight in terms of metal per 100 parts by weight of alumina.
【請求項4】触媒中の無機酸の含有量がアルミナ100
重量部当たり0.1〜20重量部である、請求項1から
3までの何れかに記載の含フッ素化合物分解処理触媒。
4. The catalyst according to claim 1, wherein the content of the inorganic acid in the catalyst is 100% alumina.
The catalyst for treating a fluorine-containing compound according to any one of claims 1 to 3, wherein the amount is 0.1 to 20 parts by weight per part by weight.
【請求項5】被反応物である含フッ素化合物が、パーフ
ルオロ化合物、フロンから選ばれる1種または混合物で
ある、請求項1から4までの何れかに記載の、ガス状含
フッ素化合物の分解処理触媒。
5. The decomposition of a gaseous fluorine-containing compound according to any one of claims 1 to 4, wherein the fluorine-containing compound to be reacted is one or a mixture selected from a perfluoro compound and a fluorocarbon. Processing catalyst.
【請求項6】酸素および水共存下において、請求項1か
ら4までの何れかに記載の含フッ素化合物分解処理触媒
と接触させて行なう含フッ素化合物の分解処理方法。
6. A method for decomposing a fluorine-containing compound, which is carried out by bringing the catalyst into contact with the catalyst for decomposing a fluorine-containing compound according to any one of claims 1 to 4 in the presence of oxygen and water.
【請求項7】被反応物である含フッ素化合物が、パーフ
ルオロ化合物、フロンから選ばれる1種または混合物で
ある、請求項6に記載の、ガス状含フッ素化合物の分解
処理方法。
7. The method for decomposing a gaseous fluorine-containing compound according to claim 6, wherein the fluorine-containing compound to be reacted is one or a mixture selected from a perfluoro compound and a fluorocarbon.
JP33149297A 1997-12-02 1997-12-02 Fluorine-containing compound-decomposing catalyst and fluorine-containing compound-decomposing method Pending JPH11165071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33149297A JPH11165071A (en) 1997-12-02 1997-12-02 Fluorine-containing compound-decomposing catalyst and fluorine-containing compound-decomposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33149297A JPH11165071A (en) 1997-12-02 1997-12-02 Fluorine-containing compound-decomposing catalyst and fluorine-containing compound-decomposing method

Publications (1)

Publication Number Publication Date
JPH11165071A true JPH11165071A (en) 1999-06-22

Family

ID=18244256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33149297A Pending JPH11165071A (en) 1997-12-02 1997-12-02 Fluorine-containing compound-decomposing catalyst and fluorine-containing compound-decomposing method

Country Status (1)

Country Link
JP (1) JPH11165071A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306736A (en) * 2005-04-26 2006-11-09 National Institute Of Advanced Industrial & Technology Method of hydrothermally decomposing fluorinated organic compound
JP2006341185A (en) * 2005-06-08 2006-12-21 Tokyo Institute Of Technology Decomposition treatment method of chlorofluorocarbon, and decomposition treating agent therefor
JP5402920B2 (en) * 2008-03-07 2014-01-29 旭硝子株式会社 Method for decomposing water-soluble fluorine-containing organic compounds
KR20190005662A (en) * 2017-07-07 2019-01-16 한국에너지기술연구원 Catalyst comprising aluminum phosphate and metal for decomposing perfluorinated compounds and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306736A (en) * 2005-04-26 2006-11-09 National Institute Of Advanced Industrial & Technology Method of hydrothermally decomposing fluorinated organic compound
JP2006341185A (en) * 2005-06-08 2006-12-21 Tokyo Institute Of Technology Decomposition treatment method of chlorofluorocarbon, and decomposition treating agent therefor
JP5402920B2 (en) * 2008-03-07 2014-01-29 旭硝子株式会社 Method for decomposing water-soluble fluorine-containing organic compounds
KR20190005662A (en) * 2017-07-07 2019-01-16 한국에너지기술연구원 Catalyst comprising aluminum phosphate and metal for decomposing perfluorinated compounds and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0885648B1 (en) A treatment method for decomposing fluorine compounds, and apparatus and use of a catalyst therefor
US7347980B2 (en) Process for treating fluorine compound-containing gas
JP3269456B2 (en) Method for decomposing fluorine-containing compound, catalyst and decomposition apparatus
US20090022642A1 (en) Treatment method for decomposing perfluorocompound, decomposing catalyst and treatment apparatus
EP0793995B1 (en) Method of treating gases containing organohalogen compounds
JPS5982930A (en) Reduction of nitrogen oxide
US6682710B1 (en) Catalytic reduction of nitrous oxide content in gases
JPH11165071A (en) Fluorine-containing compound-decomposing catalyst and fluorine-containing compound-decomposing method
KR101651220B1 (en) Preparing method of platinum/vanadium/titania catalyst for removing ammonia
JPH11179201A (en) Catalyst for decomposition of fluorine-containing compound and fluorine-containing compound
JP3376789B2 (en) Method for treating organic halogen compounds with a catalyst
JP2000015060A (en) Method for decomposing fluorine compound by using catalyst
JP4596432B2 (en) Method and apparatus for decomposing fluorine-containing compounds
JP3931563B2 (en) Method and apparatus for decomposing fluorine-containing compounds
JP3327099B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JP2000225342A (en) Catalyst for decomposing fluorine-containing compound and method for decomposing fluorine-containing compound
JP3570136B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
KR20200033024A (en) Selective oxidation catalyst for converting gaseous ammonia into nitrogen and its production method
JPH10286438A (en) Decomposing method of fluorine-containing compound
JP3236031B2 (en) Method for decomposing and removing nitrous oxide
JPH11197509A (en) Waste gas treating agent
JPH0523598A (en) Catalyst for decomposing methyl bromide and treatment of exhaust gas containing methyl bromide
JP2001232152A (en) Decomposition treating method of fluorine-containing compound, catalyst and decomposition treating device
JPS6372343A (en) Catalyst for removing nitrogen oxide
JPH05192538A (en) Method for making nf3 harmless