JPH1138319A - Lens optical system having vibration proof function - Google Patents

Lens optical system having vibration proof function

Info

Publication number
JPH1138319A
JPH1138319A JP9207227A JP20722797A JPH1138319A JP H1138319 A JPH1138319 A JP H1138319A JP 9207227 A JP9207227 A JP 9207227A JP 20722797 A JP20722797 A JP 20722797A JP H1138319 A JPH1138319 A JP H1138319A
Authority
JP
Japan
Prior art keywords
lens
optical system
refractive power
center
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9207227A
Other languages
Japanese (ja)
Inventor
Hiroki Yoshida
博樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9207227A priority Critical patent/JPH1138319A/en
Publication of JPH1138319A publication Critical patent/JPH1138319A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lens optical system that can be used even inside an image formation optical system, by lightening vibration-proof aberration inside a correction optical system. SOLUTION: The correction optical system B is constituted by arraying a lens B1 having negative refracting power and a lens B2 having positive refracting power by an adjacent positional relation in order from an object side. Also, at least one surface of the lenses B1 and B2 is made into an aspherical surface. The respective surfaces of the lens B1 and the lens B2 are set as B11 , B12 , B21 and B22 in order from the object side. The center of curvature of the surface B12 is set as B1c , and that of the surface B12 is set as B2c , and the center of rotation at the time of turning the lens B1 is set as B1r , and that at the time of turning the lens B2 is set as B1r , and the center of rotation B1r exists between the surface B12 and the center of curvature B1c , and the center of rotation B2r exists between the surface B21 and the center of curvature B2c . Then, the lens B1 or B2 is rotated by centering the center of rotation B1r or B2r by corresponding to the deflection angle of a camera, so that the vibration of a photographing image is corrected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、1枚のレンズを光
軸上の一点を中心として回動させることにより、光学系
が振動や傾動したときの撮影画像の振れを光学的に補正
して、撮影画像の安定化を図った防振機能を有するレン
ズ光学系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention optically corrects a shake of a photographed image when an optical system vibrates or tilts by rotating one lens about one point on an optical axis. The present invention relates to a lens optical system having an image stabilizing function for stabilizing a captured image.

【0002】[0002]

【従来の技術】走行中の車や飛行中の航空機等の移動物
体上から撮影を行おうとすると、撮影系に振動が伝わり
撮影画像に振れが生ずる。これに対し、従来から撮影画
像の振れを防止する機能を有する写真用カメラやビデオ
カメラ等の補正光学系が種々提案されている。
2. Description of the Related Art When an image is taken from a moving object such as a running car or an airplane in flight, vibration is transmitted to a photographing system, and the photographed image is shaken. On the other hand, conventionally, various correction optical systems such as a photographic camera and a video camera having a function of preventing a shake of a captured image have been proposed.

【0003】例えば、特開昭61−223819号公報
では、最も被写体側に屈折型可変頂角プリズムを配置し
た撮影系において、撮影系の振動に対応させて屈折型可
変頂角プリズムの頂角を変化させて、画像を偏向し画像
の安定化を図っている。
For example, in Japanese Patent Application Laid-Open No. Sho 61-223819, in a photographing system in which a refraction type variable apex angle prism is arranged closest to the subject, the apex angle of the refraction type variable apex angle prism is adjusted according to the vibration of the imaging system. By changing, the image is deflected to stabilize the image.

【0004】また、特開平2−239220号公報で
は、撮影系の前方に物体側から順にそれぞれ非球面を施
した負の屈折力の第1レンズ群と正の屈折力の第2レン
ズ群を有する光学系とし、第2レンズ群を回動すること
で撮影画像の振れの補正を行っている。
Japanese Patent Application Laid-Open No. 2-239220 discloses a first lens unit having a negative refractive power and a second lens unit having a positive refractive power, each having an aspheric surface in order from the object side in front of the photographing system. An optical system is used to correct the shake of the captured image by rotating the second lens group.

【0005】更に、特開平2−135408号公報で
は、正、負、正、正の屈折力を有するズームレンズにお
いて、結像光学系内の一部を光軸と直交する方向に移動
させることにより、撮影時の画像の振れの補正を行って
いる。
Further, Japanese Patent Application Laid-Open No. 2-135408 discloses a zoom lens having positive, negative, positive, and positive refractive powers by moving a part of an imaging optical system in a direction perpendicular to an optical axis. In addition, correction of image shake at the time of shooting is performed.

【0006】特開平3−83006号公報では、物体側
から順に第1正レンズ群、第2負レンズ群及び絞りを有
する第3正レンズ群を有するズームレンズとして、第3
正レンズ群の一部を回転させることで像振れの補正を行
っている。
JP-A-3-83006 discloses a zoom lens having a first positive lens unit, a second negative lens unit, and a third positive lens unit having a stop in order from the object side.
The image blur is corrected by rotating a part of the positive lens group.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上述の従
来例においては、補正光学系を結像光学系の前方に配置
し、補正光学系の可動レンズ群を振動させることによ
り、撮影画像の振れをなくし静止画像を得ようとすると
き、補正光学系で用いられる光学素子の径は一般に大き
なものとなり、装置全体が大きなものになるという問題
がある。例えば、特開平2−239220号公報の実施
例では、結像系で用いられているレンズの径に比べて補
正光学系のレンズの径は大きなものになっている。
However, in the above-mentioned prior art, the correction optical system is arranged in front of the image forming optical system, and the movable lens group of the correction optical system is vibrated to eliminate the shake of the photographed image. When trying to obtain a still image, the diameter of the optical element used in the correction optical system is generally large, and there is a problem that the entire apparatus becomes large. For example, in the embodiment of Japanese Patent Application Laid-Open No. 2-239220, the diameter of the lens of the correction optical system is larger than the diameter of the lens used in the imaging system.

【0008】従って、光学系全体を小型化するために
は、結像光学系の内部に補正光学系を持つことが望まし
い。しかしながら、このようなレンズ構成にすると、一
般に結像光学系の前方に防振光学系を持つ場合と比べ
て、防振を行うことによって発生する防振収差が現れ易
くなる。
Therefore, in order to reduce the size of the entire optical system, it is desirable to have a correction optical system inside the imaging optical system. However, with such a lens configuration, image stabilization aberrations generated by performing image stabilization are more likely to appear than in the case where an image stabilization optical system is generally provided in front of the imaging optical system.

【0009】本発明の目的は、上述の問題点を解消し、
補正光学系の内部で防振収差を改善できるようにし、結
像光学系内においても使用することができる防振機能を
有するレンズ光学系を提供することにある。
An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide a lens optical system having an image stabilizing function that can improve image stabilization aberration in a correction optical system and can be used in an imaging optical system.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る防振機能を有するレンズ光学系は、負の
屈折力を持つレンズと正の屈折力を持つレンズを隣り合
った位置関係で有する光学系において、前記2つのレン
ズの少なくとも1つの面を非球面とし、前記負の屈折力
を持つレンズと前記正の屈折力を持つレンズの内の一方
のレンズを回動させ、他方のレンズと向かい合う側の面
からその面の曲率中心までの間の光軸上の定点を中心と
して回動させることにより、前記光学系が傾動したとき
の撮影画像の振れを補正するようにしたことを特徴とす
る。
According to the present invention, there is provided a lens optical system having an anti-vibration function, wherein a lens having a negative refractive power and a lens having a positive refractive power are positioned adjacent to each other. In an optical system having a relationship, at least one surface of the two lenses is aspherical, and one of the lens having the negative refractive power and the lens having the positive refractive power is rotated, and the other is rotated. By rotating the optical system around a fixed point on the optical axis between the surface facing the lens and the center of curvature of the surface, the shake of the captured image when the optical system is tilted is corrected. It is characterized by.

【0011】[0011]

【発明の実施の形態】本発明を図示の実施例に基づいて
詳細に説明する。図1は光学系の基本構成の概略図を示
し、物体側から順に、負の屈折力を持つレンズB1 、正
の屈折力を持つレンズB2 が隣り合った位置関係で配列
され、補正光学系Bを構成している。また、レンズB
1 、B2 のそれぞれの少なくとも一面は非球面とされて
いる。B11、B12及びB21、B22は、物体側から順にレ
ンズB1 及びレンズB2 の各面である。B1cは面B12
曲率中心、B2cは面B12の曲率中心、B1rはレンズB1
を回動するときの回転中心、B2rはレンズB2 を回動す
るときの回転中心であり、回転中心B1rは面B12からそ
の曲率中心B1cの間に存在し、回転中心B2rは面B21
らその曲率中心B2cの間に存在する。そして、補正光学
系Bの前側及び横側には物体側の結像光学系Aの前部
A、像側の結像光学系Aの横部A2 が配置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiment. FIG. 1 is a schematic view of the basic configuration of an optical system. In order from the object side, a lens B 1 having a negative refractive power and a lens B 2 having a positive refractive power are arranged in an adjacent positional relationship. System B is configured. Also, lens B
At least one surface of each of 1 and B 2 is an aspheric surface. B 11 , B 12 and B 21 , B 22 are respective surfaces of the lens B 1 and the lens B 2 in order from the object side. B 1c is the center of curvature of the surface B 12 , B 2c is the center of curvature of the surface B 12 , and B 1r is the lens B 1
B 2r is the center of rotation when rotating the lens B 2 , the center of rotation B 1r exists between the surface B 12 and the center of curvature B 1c , and the center of rotation B 2r present from the surface B 21 between the center of curvature B 2c. The correction front A of the optical system front and lateral imaging optical system on the object side to the side A of B, transverse portion A 2 of the imaging optical system A on the image side is disposed.

【0012】この内、レンズB1 又はB2 をカメラの振
れ角に対応させて回転中心B1r又はB2rを中心に回転さ
せることで、撮影画像の振れを補正する。
Of these, the lens B 1 or B 2 is rotated about the rotation center B 1r or B 2r in accordance with the camera shake angle, thereby correcting the shake of the photographed image.

【0013】実施例のように、補正光学系B内の一部の
レンズを光軸上の定点を中心に回転させることにより撮
影画像の振れを補正する場合に、非球面の与え方と回転
中心位置を適切に決めることにより、この補正光学系B
内により防振時に発生する防振収差を相当に改善するこ
とができる。
As in the embodiment, when a part of the lens in the correction optical system B is rotated about a fixed point on the optical axis to correct the shake of the photographed image, the method of providing the aspherical surface and the rotation center are used. By properly determining the position, the correction optical system B
In this case, the image stabilization aberration generated during image stabilization can be considerably improved.

【0014】そこで、以下に非球面と回転中心の与え方
について考察する。3次の防振収差と防振収差係数との
関係は、以下のように表すことができる。 ΔΥ(ε)=−(ε/2)NA2 (2+ cos2φR) (IIε) −εNAY' [{2cos(φR +φω)}(IIIε) + cosφR ・cos φω(Pε)]−(ε/2)Y'2 {( 2+ cos2φω)(Vε1) − (Vε2)} …(1) ΔΖ(ε)=−(ε/2)NA2 sin2φR(IIε) −εNAY'tanω{sin( φR +φω)}(IIIε) + sinφR ・ cosφω(Pε)}−(ε/2)Y'2 sin2φω (Vε1) …(2)
Therefore, how to give the aspherical surface and the center of rotation will be considered below. The relationship between the third order image stabilization aberration and the image stabilization aberration coefficient can be expressed as follows. ΔΥ (ε) = - (ε / 2) NA 2 (2+ cos2φ R) (IIε) -εNAY '[{2cos (φ R + φω)} (IIIε) + cosφ R · cos φω (Pε)] - (ε / 2) Y ′ 2 {(2+ cos2φω) (Vε 1 ) − (Vε 2 )} (1) ΔΖ (ε) = − (ε / 2) NA 2 sin2φ R (IIε) −εNAY′tanω {sin (φ R + φω)} (IIIε) + sinφ R · cosφω (Pε)} − (ε / 2) Y ′ 2 sin2φω (Vε 1 ) (2)

【0015】ただし、εはレンズ群の回転角度[rad] ΔΥ(ε)は縦方向の防振収差 ΔΖ(ε)は横方向の防振収差 NAは開口数 Y' は理想像高 φR は物体側主平面上での光線のアジムス角 φωは評価方向とY軸とのなすアジムス角 IIεは1次のコマ収差係数 IIIεは1次の偏心非点収差係数 Pεは偏心時のペッツバール和 Vε1 は1次の偏心歪曲収差係数 Vε2 は1次の偏心歪曲付加収差係数Here, ε is the rotation angle of the lens group [rad] ΔΥ (ε) is the vertical image stabilization aberration ΔΖ (ε) is the horizontal image stabilization aberration NA is the numerical aperture Y ′ is the ideal image height φ R is Petzval sum upon azimuthal φω is azimuth angle IIε the first-order coma aberration coefficient IIIε primary decentering astigmatism coefficient Pε formed between evaluation direction and Y-axis eccentricity of the ray on the object side principal plane Vipushiron 1 Is the first-order eccentric distortion coefficient Vε 2 is the first-order eccentric distortion additional aberration coefficient

【0016】また、一般に補正光学系を結像光学系内に
配置したときに、Vε1 、Vε2 は、防振収差係数II
ε、 IIIεと比べ、十分小さく無視できる。また、Pε
の値は非球面や回転中心位置によらず変えることができ
ないので、以降では防振収差係数IIε及び IIIεについ
てのみ考察する。
In general, when a correction optical system is arranged in an image forming optical system, Vε 1 and Vε 2 are equal to the anti-vibration aberration coefficient II.
It is sufficiently small and negligible compared to ε and IIIε. Also, Pε
Cannot be changed irrespective of the aspherical surface or the position of the rotation center, and hence, only the anti-vibration aberration coefficients IIε and IIIε will be considered.

【0017】特に、理解を容易にするため、2枚のレン
ズでB1 、B2 から成る補正光学系Bを次のようにモデ
ル化する。 (1) レンズB1 、B2 は向かい合う面においてそれぞれ
同じ曲率を持つ。 (2) レンズB1 、B2 は曲面部において同じ非球面を持
つ。 (3) レンズB1 、B2 は同じ材料から成る。 (4) レンズB1 、B2 間の距離はない。 (5) レンズB2 を回動することで防振を行う。
In particular, in order to facilitate understanding, a correction optical system B composed of B 1 and B 2 is modeled as follows using two lenses. (1) The lenses B 1 and B 2 have the same curvature on the facing surfaces. (2) The lenses B 1 and B 2 have the same aspherical surface in the curved surface portion. (3) The lenses B 1 and B 2 are made of the same material. (4) There is no distance between the lenses B 1 and B 2 . (5) performing image stabilization by rotating the lens B 2.

【0018】このとき、防振収差係数IIε、 IIIεはそ
れぞれ次のように表される。 IIε={Δ(hcr)+Lcr α'cr}( ΣIp+Icf12) −{Δ(gcr) +Lcr α'cr}( ΣIIp +IIcf12) +(h'cr +Lcr α'cr)I cr12−(g'cr +Lcr α'cr)IIcr12 +δcr{Δ(αcr)(ΣIIp +IIcf12) −Δ(αcr)(ΣIIp +IIcf12) +α'crIcr12−α'cr IIcr12} −δcrb(( αcrk1−αcrk2) …(3) IIIε={Δ(hcr)+Lcr α'cr}( ΣIIp +IIcf12) −{Δ(gcr) +Lcr α'cr}( ΣIIIp+ IIIcf12) +(h'cr +Lcr α'cr)IIcr12−(g'cr +Lcr α'cr)IIIcr12 +δcr{Δ(αcr)(ΣIIp +IIcf12) −Δ (αcr)(ΣIIIp+IIIcf12) +α'crIIcr12 −α'crIIIcr12}−δcrb(αcrk2−αcrk3) …(4)
At this time, the anti-vibration coefficients IIε and IIIε are expressed as follows, respectively. IIε = {Δ (h cr ) + L cr α ′ cr } (ΣI p + I cf12 ) − {Δ (g cr ) + L cr α ′ cr } (} II p + II cf12 ) + (h ′ cr + L cr α ′ cr ) I cr12 − (g ′ cr + L cr α ′ cr ) II cr12 + δ cr {Δ (α cr ) (ΣII p + II cf12 ) −Δ (α cr ) (ΣII p + II cf12 ) + α ′ cr I cr12 −α ′ cr II cr12 } −δ cr b ((α cr k 1 −α cr k 2 )… (3) IIIε = {Δ (h cr ) + L cr α ′ cr } (ΣII p + II cf12 ) − {Δ (g cr ) + L cr α ′ cr } (ΣIII p + III cf12 ) + (h ′ cr + L cr α ′ cr ) II cr12 − (g ′ cr + L cr α ′ cr ) III cr12 + δ cr {Δ (α cr ) (ΣII p + II cf12 ) −Δ (α cr ) (ΣIII p + III cf12 ) + α ′ cr II cr12 −α ′ cr III cr12 } −δ cr b (α cr k 2 −α cr k 3 )… (4)

【0019】ただし、bは4次の非球面係数 δcrは面B21から回動中心B2rまでの距離 Lcr はレンズB2 のレンズ厚 αcrは面B21における軸上光線の入射角 α'cr は面B22における軸上光線の射出角 αcrは面B22における軸外光線の入射角 α'cr は面B22における軸外光線の射出角 Δ(αcr)はα'cr −αcr Δ(αcr)はα'cr −αcr gcr は面B21における軸上光線の入射高 g'crは面B22における軸上光線の射出高 hcr は面B21における軸外光線の入射高 h'crは面B22における軸外光線の射出高 Δ(gcr) はg'cr−gcr Δ(hcr) はh'cr−hcr ΣIpは防振レンズよりも物体側のレンズ群A1 の球面収
差係数 ΣIIp は防振レンズよりも物体側のレンズ群A1 のコマ
収差係数 ΣIIIpは防振レンズよりも物体側のレンズ群A1 の非点
収差係数 Icf12 は4次の非球面係数b=0の場合のレンズB1
球面収差係数 IIcf12は4次の非球面係数b=0の場合のレンズB1
コマ収差係数 IIIcf12 は4次の非球面係数b=0の場合のレンズB1
の非点収差係数 Icr12 は4次の非球面係数b=0の場合のレンズB2
球面収差係数 IIcr12は4次の非球面係数b=0の場合のレンズB2
コマ収差係数 IIIcr12 は4次の非球面係数b=0の場合のレンズB2
の非点収差係数 k1は4次の非球面係数に対する球面収差係数の変化の割
合 k2は4次の非球面係数に対するコマ収差係数の変化の割
合 k3は4次の非球面係数に対する非点収差係数の変化の割
[0019] However, b is a fourth order aspheric coefficient [delta] c r is a distance L c r from the surface B 21 to the rotational center B 2r lens thickness of the lens B 2 alpha cr is the axial ray on the surface B 21 cr 'incidence angle alpha of the off-axis ray at the exit angle alpha cr terms B 22 of the axial ray in cr is the surface B 22' incident angle alpha is the angle of emergence of the off-axis ray in the plane B 22 Δ (α cr) is alpha ' crcr Δ (α cr ) is α' crcr g cr is the incident height of an axial ray on the surface B 21 g ' cr is the exit height of the axial ray on the surface B 22 h cr is the surface B 21 'the cr exit height of off-axis rays in the plane B 22 Δ (g cr) is g' incident height h of the axial ray in cr -g cr delta (h cr) is h 'cr -h cr .SIGMA.I p anti-vibration spherical aberration coefficient of the lens group a 1 on the object side than the lens ShigumaII p coma aberration coefficient of the lens group a 1 of the object side of the vibration reduction lens ShigumaIII p non lens group a 1 of the object side of the vibration-proof lens astigmatism coefficient I CF12 fourth order aspheric coefficient b Coma aberration coefficient of the lens B 1 in the case of the spherical aberration coefficient II CF12 fourth order aspheric coefficient b = 0 of the lens B 1 For 0 III CF12 is a case of aspherical coefficients of fourth-order b = 0 Lens B 1
Astigmatism coefficient I cr12 fourth order aspheric coefficient b = spherical aberration coefficients of the lens B 2 For 0 II cr12 fourth order aspheric coefficient b = coma aberration coefficient of the lens B 2 in the case of the 0 III of cr12 is a lens B 2 when the fourth order aspheric coefficient b = 0.
Astigmatism coefficient k 1 is non-relative proportion k 3 is the fourth-order aspheric coefficient of variation of the coma aberration coefficient for the ratio k 2 is the fourth-order aspheric coefficient of variation of the spherical aberration coefficient for the fourth order aspheric coefficient Rate of change of astigmatism coefficient

【0020】従って、上記の式から防振収差係数IIε、
IIIεの目標値に対し、4次の非球面係数bと距離δの
値を一意に決めることができる。また、レンズB1 を回
動することによって防振を行う場合も、4次の非球面係
数bと距離δの値をほぼ同様に求めることができる。た
だし、実際にはレンズB1 とB2 は回転するための距離
を幾分かを必要とするため、上記で求めた解に対し実際
に防振収差を改善できる値は或る領域を持つことにな
る。
Therefore, from the above equation, the anti-vibration aberration coefficient IIε,
The value of the fourth order aspherical coefficient b and the distance δ can be uniquely determined with respect to the target value of IIIε. Also, when performing the image stabilization by rotating the lens B 1, it is possible to obtain the fourth order of the values of aspherical coefficients b and the distance δ in substantially the same manner. However, since the lens B 1 and B 2 are actually in need of somewhat a distance to rotate, the value that can be actually improved image stabilization aberration to solutions obtained above are to have a certain area become.

【0021】そして、防振収差を改善できる回転中心B
2rの位置は回動するレンズB2 の面B21からその曲率中
心B2cまでの間に存在する。逆に、この領域に回転中心
2rを有しないときは、防振を行うことにより生ずるコ
マ収差や像面倒れが発生し、補正光学系B内で防振収差
は軽減することは困難になる。
Further, the rotation center B which can improve the image stabilization aberration
Position of 2r is present between the lens B 2 faces B 21 to pivot to its center of curvature B 2c. Conversely, when the rotation center B 2r is not provided in this area, coma aberration and image plane tilt caused by performing image stabilization occur, and it becomes difficult to reduce the image stabilization aberration in the correction optical system B. .

【0022】また、回動するレンズB2 の曲率半径rが
大きくなるにつれ、像面を補正するために回動するレン
ズB2 の回転角は大きくなり、また回転中心B2rもレン
ズから遠去かってゆく。このとき、回動するレンズB2
の径も大きくする必要があるため、光学系全体の望遠端
における焦点距離をfとしたとき、次の式(5) を満たさ
なくなると実用に耐えられなくなる。 |r|/|f|≦15.5 ・・・(5)
Further, Tosa as the radius of curvature r of the lens B 2 which rotates increases, the rotation angle of the lens B 2 which rotates in order to correct image plane becomes large, and from the center of rotation B 2r also lens I'll go. At this time, the rotating lens B 2
Since it is necessary to increase the diameter of the optical system, when the focal length at the telephoto end of the entire optical system is f, if the following expression (5) is not satisfied, the optical system cannot be practically used. | R | / | f | ≦ 15.5 (5)

【0023】一般に、結像光学系よりも物体側に補正光
学系を配置すると、補正光学系内のレンズは回動して用
いることを前提としているため、結像光学系内の最も物
体側のレンズよりも大きな径のレンズを必要とし、必然
的に補正光学系内のレンズ径はかなり大きなものにな
る。これに対し、補正光学系を結像光学系の中に配置す
ると、レンズ径の増大を回避することができ、これによ
り光学系も含めたカメラ全体の小型化を図ることができ
る。
In general, if the correction optical system is disposed closer to the object side than the imaging optical system, it is assumed that the lens in the correction optical system is rotated and used. A lens having a larger diameter than the lens is required, and the lens diameter in the correction optical system is inevitably considerably large. On the other hand, if the correction optical system is arranged in the image forming optical system, it is possible to avoid an increase in the lens diameter, and to reduce the size of the entire camera including the optical system.

【0024】しかし、結像光学系よりも物体側に補正光
学系を配置する場合と比較し、実施例のように結像光学
系A内に補正光学系Bを配置すると、防振を行うことに
より収差が発生し易くなり、その改善は困難なものとな
る。そして、この防振収差の改善のために、本来の結像
光学系Aの性能を損ないかねない。従って、補正光学系
B内で防振収差の改善を行うことが望ましい。
However, when the correction optical system B is disposed in the image forming optical system A as in the embodiment as compared with the case where the correction optical system is disposed closer to the object side than the image forming optical system, image stabilization is performed. As a result, aberrations are likely to occur, and its improvement is difficult. In order to improve the image stabilization aberration, the original performance of the imaging optical system A may be impaired. Therefore, it is desirable to improve the image stabilization aberration in the correction optical system B.

【0025】このような要望に対し、本実施例の補正光
学系Bはかなり有効である。しかしながら、レンズB
1 、B2 間の距離をd、回動するレンズの他方のレンズ
と向い合う側の面の曲率半径をrとした場合に、これら
が次の式(6) を満たさなくなると、補正光学系B内で球
面収差に代表される各収差を打ち消し合うことができな
くなり、結果として高次の収差が発生する。 |d|/|r|≦0.12 …(6)
In response to such a demand, the correction optical system B of this embodiment is very effective. However, lens B
If the distance between 1 and B 2 is d and the radius of curvature of the surface of the rotating lens facing the other lens is r, if these do not satisfy the following equation (6), the correction optical system In B, aberrations typified by spherical aberration cannot be canceled each other, resulting in higher-order aberrations. | D | / | r | ≦ 0.12 (6)

【0026】また、補正光学系Bを構成するレンズB1
の屈折力をφ1 、レンズB2 の屈折力をφ2 としたと
き、次の式(7) を満たさなくなると、補正光学系B自体
がかなりの収差を高次収差に限らず生じさせるため、静
止時における本来の結像光学系の性能は保証されなくな
る。 −1.25≦φ1 /φ2 ≦ −0.80 …(7)
The lens B 1 constituting the correction optical system B
If the refracting power of the lens B 2 is φ 1 and the refracting power of the lens B 2 is φ 2 , if the following equation (7) is not satisfied, the correction optical system B itself causes considerable aberrations not limited to high-order aberrations. However, the original performance of the imaging optical system at rest cannot be guaranteed. −1.25 ≦ φ 1 / φ 2 ≦ −0.80… (7)

【0027】光学系全体の広角端における焦点距離をf
w としたとき、レンズ面B11、面B22の形状が次の式
(8) を満たさなくなるほどの屈折力を持つとき、上記の
傾向はより生じ易くなる。 4.1≦|r11| / |fw| 4.1≦|r22| / |fw| …(8)
The focal length at the wide-angle end of the entire optical system is represented by f
When w is given, the shape of the lens surfaces B 11 and B 22 is given by the following equation.
The above tendency is more likely to occur when the lens has a refractive power that does not satisfy (8). 4.1 ≦ | r 11 | / | f w | 4.1 ≦ | r 22 | / | f w | (8)

【0028】特に、光学系が変倍光学系のときは望遠端
時の焦点距離防振レンズに同じ材料を用いることでも、
静止時のレンズの性能の劣化を避け易い補正光学系Bを
構成することができ、逆に異なる材料を用いたとき、静
止時のレンズの性能の劣化を避け易い補正光学系Bを構
成することが困難になる。
In particular, when the optical system is a variable magnification optical system, the same material can be used for the focal length anti-vibration lens at the telephoto end.
A correction optical system B that can easily avoid deterioration of the performance of the lens at rest can be configured. Conversely, when different materials are used, a correction optical system B that can easily avoid deterioration of the performance of the lens at rest can be configured. Becomes difficult.

【0029】本実施例の補正光学系Bは、同程度の大き
さの屈折力を持つ正負のレンズB1、B2 から構成され
ているため、ガラスに比べて周囲の影響を受け易いプラ
スチックを補正光学系Bの材料に選択しても性能を維持
し易い。更に、プラスチックレンズはガラスレンズに比
べて安価に製造することが可能なため、補正光学系Bに
要するコストを抑えることができる。
The correction optical system B of this embodiment is composed of positive and negative lenses B 1 and B 2 having approximately the same refractive power. Even if the material of the correction optical system B is selected, the performance can be easily maintained. Further, since the plastic lens can be manufactured at a lower cost than the glass lens, the cost required for the correction optical system B can be suppressed.

【0030】図2は第1の実施例の光学系の構成図であ
り、L1及びL3は共に正の屈折力を有し、変倍及び合焦時
において固定の第1レンズ群及び第3レンズ群であり、
L3は補正光学系Bを有している。L2は負の屈折力を有す
る変倍用の第2レンズ群、L4は合焦及び変動する像面の
補正をする第4レンズ群であり、変倍時において第2レ
ンズ群L2及び第3レンズ群L3は矢印の方向へ動くことに
より、広角端から望通端への変倍を行っている。なお、
SPは固定の絞りである。
FIG. 2 is a diagram showing the construction of the optical system according to the first embodiment. Both L1 and L3 have a positive refractive power, and are fixed at the time of zooming and focusing. Group
L3 has a correction optical system B. L2 is a second lens unit having a negative refractive power for zooming, L4 is a fourth lens unit for correcting the in-focus and fluctuating image plane, and the second lens unit L2 and the third lens during zooming. The group L3 moves from the wide-angle end to the telephoto end by moving in the direction of the arrow. In addition,
SP is a fixed stop.

【0031】第3レンズ群L3は正の屈折力を有するレン
ズ群Lと殆ど屈折力を持たない補正光学系Bを有し、補
正光学系Bは物体側から順に負の屈折力を持つ単レンズ
1と正の屈折力を持つ単レンズB2 で構成されてい
る。そして、図1に示すように面B12とその面の曲率中
心B2Cの間にある光軸上の回動中心B2rを中心にレンズ
2 が回転するように構成されている。逆に、レンズB
1 が回転するときは、面B12とその面の曲率中心B1c
間にある光軸上の回動中心B2rを中心に回転するように
構成されている。また、レンズB1 は面B12が非球面化
され、レンズB2は両面が非球面化されている。
The third lens unit L3 includes a lens unit L having a positive refractive power and a correcting optical system B having almost no refractive power. The correcting optical system B is a single lens having a negative refractive power in order from the object side. It is composed of a single lens B 2 with B 1 and positive refractive power. Then, the lens B 2 around the rotation center B 2r on the optical axis lying between the center of curvature B 2C surface B 12 and its surface, as shown in FIG. 1 is configured to rotate. Conversely, lens B
When 1 rotates, it is configured to rotate about a rotation center B 2r on the optical axis between the surface B 12 and the curvature center B 1c of the surface. The lens B 1 represents the surface B 12 is an aspherical surface, lens B 2 both surfaces is an aspherical surface.

【0032】このとき、カメラの振れに応じてレンズB
2 を回転させることにより、防振時に発生する収差を抑
えながら、像面の位置ずれの補正を行う。また、補正光
学系Bに屈折力を殆ど持たせないことで、静止時におけ
る性能も補正レンズを加える前と同程度の性能を維持し
ている。
At this time, depending on the camera shake, the lens B
By rotating 2 , the positional deviation of the image plane is corrected while suppressing the aberration generated during image stabilization. In addition, since the correction optical system B has almost no refractive power, the performance at the time of standing still maintains the same performance as before the addition of the correction lens.

【0033】図3は第1の実施例の広角端での無限遠合
焦状態における諸収差図、図4は望遠端での無限遠合焦
状態における諸収差図、図5はこの状態における軸上横
収差図、図6はレンズB2 で0.5度の振れ角を補正し
た時の軸上横収差図、図7はレンズB1 で0.5度の振
れ角を補正した時の軸上横収差図を示している。なお、
球面収差において実線はd線、2点鎖線はg線、点線は
正弦条件、非点収差において実線はサジタル像面、点線
はメリディオナル像面を表している。
FIG. 3 is a diagram showing various aberrations of the first embodiment at the wide-angle end when focused on infinity, FIG. 4 is a diagram showing various aberrations at the telephoto end when focused on infinity, and FIG. upper lateral aberration diagram, FIG. 6 is axial lateral aberration view when correcting the deflection angle of 0.5 degrees lens B 2, the axis of the case 7 is obtained by correcting the deflection angle of 0.5 degrees lens B 1 It shows an upper lateral aberration diagram. In addition,
In spherical aberration, a solid line represents a d line, a two-dot chain line represents a g line, a dotted line represents a sine condition, and a solid line represents a sagittal image plane and a dotted line represents a meridional image plane in astigmatism.

【0034】図8は第2の実施例に係る光学系の構成図
である。図2で示したものと同一の要素のものは同じ符
号を付している。この第2の実施例では第1の実施例と
異なり、補正光学系Bを構成するレンズの順番が逆にな
っており、補正光学系Bは物体側から順に正の屈折力を
持つ単レンズB3 と負の屈折力を持つ単レンズB4 によ
り構成されている。そして、レンズB4 の面B41とその
面の曲率中心B4cの間にある光軸上の回動中心B4rを中
心にレンズB4 が回転するように構成されている。逆
に、レンズB3 が回転するときは、面B32とその面の曲
率中心B3cの間にある光軸上の回動中心B3rを中心に回
転するように構成されている。また、レンズB3 の面B
32は非球面化され、レンズB4 は両面が非球面化されて
いる。このとき、回転中心位置は補正光学系の像面側か
ら物体側へ位置が変わる。従って、何らかの都合によ
り、回転中心位置を補正光学系Bの前後に変える必要が
生じても、本実施例の補正光学系Bであれば対応が容易
である。
FIG. 8 is a block diagram of an optical system according to the second embodiment. The same elements as those shown in FIG. 2 are denoted by the same reference numerals. In the second embodiment, unlike the first embodiment, the order of the lenses constituting the correction optical system B is reversed, and the correction optical system B is a single lens B having a positive refractive power in order from the object side. It is constituted by a single lens B 4 with 3 and a negative refractive power. The lens B 4 about the rotational center B 4r on the optical axis in the plane B 41 of the lens B 4 and between the center of curvature B 4c of the surface is configured to rotate. Conversely, when the lens B 3 is rotated is configured to rotate about the rotation center B 3r on the optical axis, between the surface B 32 and the center of curvature B 3c of the surface. The surface B of the lens B 3
32 is aspherical, lens B 4 are both sides are aspherical. At this time, the position of the rotation center changes from the image plane side of the correction optical system to the object side. Therefore, even if it is necessary to change the rotation center position before or after the correction optical system B for some reason, the correction optical system B of this embodiment can easily cope with the need.

【0035】図9は第2の実施例の広角端での無限遠合
焦状態における諸収差図、図10は望遠端での無限遠合
焦状態における諸収差図、図11はこの状態の軸上横収
差図、図12はレンズB4 で0.5度の振れ角を補正し
た時の軸上横収差図、図13はレンズB3 で0.5度の
振れ角を補正した時の軸上横収差図を示している。
FIG. 9 is a diagram showing various aberrations of the second embodiment at the wide-angle end when focused on infinity, FIG. 10 is a diagram showing various aberrations at the telephoto end when focused on infinity, and FIG. upper lateral aberration diagram, FIG. 12 is a lens B 4 at 0.5 degrees axial lateral aberration diagram when the corrected deflection angle of 13 axes when correcting the deflection angle of 0.5 degrees lens B 3 It shows an upper lateral aberration diagram.

【0036】次に、本発明に係る変倍光学系の第1、第
2の実施例の具体的な数値実施例を示す。
Next, concrete numerical examples of the first and second embodiments of the variable power optical system according to the present invention will be described.

【0037】この数値実施例において、fは全体の焦点
距離、FnoはFナンバ、ωは半画角である。また、δは
補正光学系の回動する方のレンズの他方と向かい合う側
の面から回転中心までの距離、Riは物体側より順に第i
番目のレンズ面の曲率半径、Diは物体側より第i番目の
レンズ厚又は空気間隔、Niとνi はそれぞれ物体側より
順に第i番目のレンズのガラスの屈折率とアッベ数であ
る。
In this numerical example, f is the overall focal length, Fno is the F number, and ω is the half angle of view. Δ is the distance from the surface of the correction optical system that faces the other of the rotating lens to the center of rotation, and Ri is the i-th lens in order from the object side.
The radius of curvature of the second lens surface, Di is the i-th lens thickness or air gap from the object side, and Ni and νi are the refractive index and Abbe number of the glass of the i-th lens in order from the object side.

【0038】非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正として、Rを近軸曲率半
径、k、b、c、dをそれぞれ非球面係数としたとき、
次式で表している。
Assuming that the aspherical surface shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, and k, b, c, and d are the aspherical surface coefficients. And when
It is represented by the following equation.

【0039】 X= (1/R)H2/[1+ {1−(1+k)(H/R)2}1/2] +bH4 +cH6 +dH8 …(9) X = (1 / R) H 2 / [1+ {1- (1 + k) (H / R) 2 } 1/2 ] + bH 4 + cH 6 + dH 8 (9)

【0040】 第1の実施例 f = 1〜12.28 Fno=1.91〜2.76 2ω=58.2°〜5.2 ° レンズB1 : δ=1.871 レンズB2 : δ=1.936 R 1 =8.415 D 1=0.24 N 1=1.846660 ν 1=23.8 R 2 =4.584 D 2=0.99 N 2=1.603112 ν 2=60.6 R 3 =-1050.742 D 3=0.05 R 4 =4.219 D 4=0.59 N 3=1.712995 ν 3=53.8 R 5 =11.354 D 5=可変 R 6 =10.522 D 6=0.14 N 4=1.772499 ν 4=49.6 R 7 =1.088 D 7=0.53 R 8 =-2.961 D 8=0.14 N 5=1.696797 ν 5=55.5 R 9 =2.960 D 9=0.17 R10 =2.512 D10=0.30 N 6=1.846660 ν 6=23.8 R11 =11.778 D11=可変 R12 =絞り D12=0.25 R13 =4.307 D13=0.80 N 7=1.583126 ν 7=59.4 R14 =-1.873 D14=0.14 N 8=1.824000 ν 8=37.2 R15 =-3.266 D15=0.11 R16 =-64.610 D16=0.23 N 9=1.530410 ν 9=55.5 R17 =1.873 D17=0.14 R18 =2.009 D18=0.76 N10=1.530410 ν10=55.5 R19 =-16.646 D19=可変 R20 =3.342 D20=0.14 N11=1.805181 ν11=25.4 R21 =1.637 D21=0.75 N12=1.583126 ν12=59.4 R22 =-11.251 D22=0.68 R23 =∞ D23=0.80 N13=1.516330 ν13=64.2 R24 =∞ 焦点距離 1.00 3.38 12.28 D 5 0.20 2.49 4.01 D11 4.09 1.80 0.27 D19 1.95 1.05 1.79 非球面係数 R13 k=-4.28970 B=4.42310・10-4 C=-2.07446・10-3 D=1.65039・10-3 R17 k=0.00000 B=-2.00225・10-3 C=-3.54799・10-3 D=0.00000 R18 k=0.00000 B=-1.18625・10-4 C=-2.32790・10-3 D=0.00000 R19 k=0.00000 B=6.61803・10-4 C=6.29501・10-4 D=0.00000 R22 k=2.95945 B=1.07503・10-3 C=1.26569 ・10-2 D=-6.51939・10-3 First Embodiment f = 1 to 12.28 Fno = 1.91 to 2.76 2ω = 58.2 ° to 5.2 ° Lens B 1 : δ = 1.873 Lens B 2 : δ = 1.936 R 1 = 8.415 D 1 = 0.24 N 1 = 1.846660 ν 1 = 23.8 R 2 = 4.584 D 2 = 0.99 N 2 = 1.603112 ν 2 = 60.6 R 3 = -105.742 D 3 = 0.05 R 4 = 4.219 D 4 = 0.59 N 3 = 1.712995 ν 3 = 53.8 R 5 = 11.354 D 5 = variable R 6 = 10.522 D 6 = 0.14 N 4 = 1.772499 v 4 = 49.6 R 7 = 1.088 D 7 = 0.53 R 8 = -2.961 D 8 = 0.14 N 5 = 1.696797 v 5 = 55.5 R 9 = 2.960 D 9 = 0.17 R10 = 2.512 D10 = 0.30 N 6 = 1.846660 ν 6 = 23.8 R11 = 11.778 D11 = Variable R12 = Aperture D12 = 0.25 R13 = 4.307 D13 = 0.80 N 7 = 1.583126 ν 7 = 59.4 R14 = -1.773 D14 = 0.14 N 8 = 1.824000 ν 8 = 37.2 R15 =-3.266 D15 = 0.11 R16 = -64.610 D16 = 0.23 N 9 = 1.530410 ν 9 = 55.5 R17 = 1.873 D17 = 0.14 R18 = 2.009 D18 = 0.76 N10 = 1.530410 ν10 = 55.5 R19 = -16.646 D19 = Variable R20 = 3.342 D20 = 0.14 N11 = 1.805181 ν11 = 25.4 R21 = 1.637 D21 = 0.75 N12 = 1.583126 ν12 = 59.4 R22 = -11.251 D22 = 0.68 R23 = ∞ D23 = 0.80 N13 = 1.516330 ν13 = 64.2 R24 = ∞ Focal length 1.00 3.38 12.28 D5 0.20 2.49 4.01 D11 4.09 1.80 0.27 D19 1.95 1.05 1.79 Aspheric coefficient R13 k = -4.28970 B = 4.42310 ・ 10 -4 C = -2.07446 ・ 10 -3 D = 1.65039 ・ 10 -3 R17 k = 0.00000 B = -2.00225 ・ 10 -3 C = -3.54799 ・ 10 -3 D = 0.00000 R18 k = 0.00000 B =- 1.18625 ・ 10 -4 C = -2.32790 ・ 10 -3 D = 0.00000 R19 k = 0.00000 B = 6.61803 ・ 10 -4 C = 6.29501 ・ 10 -4 D = 0.00000 R22 k = 2.995945 B = 1.07503 ・ 10 -3 C = 1.26569 ・ 10 -2 D = -6.51939 ・ 10 -3

【0041】 第2の実施例 f = 1〜12.36 Fno=1.85〜2.74 2ω=58.8°〜5.2 ° レンズB1 : δ=9.781 レンズB2 : δ=9.780 R 1 =8.513 D 1=0.24 N 1=1.846660 ν 1=23.8 R 2 =4.638 D 2=1.00 N 2=1.603112 ν 2=60.6 R 3 =-1062.989 D 3=0.05 R 4 =4.268 D 4=0.60 N 3=1.712995 ν 3=53.8 R 5 =11.486 D 5=可変 R 6 =10.644 D 6=0.14 N 4=1.772499 ν 4=49.6 R 7 =1.101 D 7=0.54 R 8 =-2.995 D 8=0.14 N 5=1.696797 ν 5=55.5 R 9 =2.995 D 9=0.17 R10 =2.542 D10=0.30 N 6=1.846660 ν 6=23.8 R11 =11.915 D11=可変 R12 =絞り D12=0.25 R13 =4.230 D13=0.80 N 7=1.583126 ν 7=59.4 R14 =-2.004 D14=0.14 N 8=1.824000 ν 8=37.2 R15 =-4.602 D15=0.11 R16 =10.306 D16=0.49 N 9=1.530410 ν 9=55.5 R17 =-11.542 D17=0.11 R18 =-11.913 D18=0.39 N10=1.530410 ν10=55.5 R19 =10.288 D19=可変 R20 =2.859 D20=0.14 N11=1.805181 ν11=25.4 R21 =1.771 D21=0.76 N12=1.583126 ν12=59.4 R22 =-7.089 D22=0.69 R23 =∞ D23=0.80 N13=1.516330 ν13=64.2 R24 =∞ 焦点距離 1.00 3.58 12.36 D 5 0.20 2.52 4.06 D11 4.14 1.82 0.28 D19 0.05 -0.88 -0.09 非球面係数 R13 k=-2.73773 B=1.27285・10-3 C=4.26883・10-4 D=4.28795・10-4 R17 k=0.00000 B=-1.91351・10-5 C=5.35427・10-4 D=0.00000 R18 k=0.00000 B=-1.15145・10-3 C=7.25640・10-5 D=0.00000 R19 k=0.00000 B=0.00000 C=0.00000 D=0.00000 R22 k=9.22143 B=7.15761・10-3 C=6.94862・10-3 D=-3.7042・10-3 The second embodiment f = 1~12.36 Fno = 1.85~2.74 2ω = 58.8 ° ~5.2 ° Lens B 1: δ = 9.781 Lens B 2: δ = 9.780 R 1 = 8.513 D 1 = 0.24 N 1 = 1.846660 ν 1 = 23.8 R 2 = 4.638 D 2 = 1.00 N 2 = 1.603112 ν 2 = 60.6 R 3 = -1062.989 D 3 = 0.05 R 4 = 4.268 D 4 = 0.60 N 3 = 1.712995 ν 3 = 53.8 R 5 = 11.486 D 5 = Variable R 6 = 10.644 D 6 = 0.14 N 4 = 1.772499 ν 4 = 49.6 R 7 = 1.101 D 7 = 0.54 R 8 = -2.995 D 8 = 0.14 N 5 = 1.696797 ν 5 = 55.5 R 9 = 2.995 D 9 = 0.17 R10 = 2.542 D10 = 0.30 N 6 = 1.846660 ν 6 = 23.8 R11 = 11.915 D11 = Variable R12 = Aperture D12 = 0.25 R13 = 4.230 D13 = 0.80 N 7 = 1.583126 ν 7 = 59.4 R14 = -2.004 D14 = 0.14 N 8 = 1.824000 ν 8 = 37.2 R15 = -4.602 D15 = 0.11 R16 = 10.306 D16 = 0.49 N 9 = 1.530410 ν 9 = 55.5 R17 = -11.542 D17 = 0.11 R18 = -11.913 D18 = 0.39 N10 = 1.530410 ν10 = 55.5 R19 = 10.288 D19 = variable R20 = 2.859 D20 = 0.14 N11 = 1.805181 ν11 = 25.4 R21 = 1.772 D21 = 0.76 N12 = 1.58126 ν12 = 59 .4 R22 = -7.089 D22 = 0.69 R23 = ∞ D23 = 0.80 N13 = 1.516330 ν13 = 64.2 R24 = ∞ Focal length 1.00 3.58 12.36 D5 0.20 2.52 4.06 D11 4.14 1.82 0.28 D19 0.05 -0.88 -0.09 Aspheric coefficient R13 k = -2.73773 B = 1.27285 ・ 10 -3 C = 4.26883 ・ 10 -4 D = 4.28795 ・ 10 -4 R17 k = 0.00000 B = -1.91351 ・ 10 -5 C = 5.35427 ・ 10 -4 D = 0.00000 R18 k = 0.00000 B = -1.15145 / 10-3 C = 7.25640 / 10-5 D = 0.00000 R19 k = 0.00000 B = 0.00000 C = 0.00000 D = 0.00000 R22 k = 9.22143 B = 7.15761 / 10-3 C = 6.94862 / 10-3 D = -3.7042 ・ 10 -3

【0042】 回動するレンズ B1234 内側の曲率半径 1.873 2.009 -11.542 -11.913. The radius of curvature inside the rotating lens B 1 B 2 B 3 B 4 1.873 2.009 -11.542 -11.913 .

【0043】 回転中心距離 1.871 1.936 -9.781 -9.780 |r| /|f| 0.155 0.167 0.934 0.893 |d| /|r| 0.074 0.069 0.0095 0.0092 φ1 /φ2 -1.000 -1.000 -1.000 -1.000 |r| /|fW| 64.61 16.646 10.306 10.28 The center of rotation distance 1.871 1.936 -9.781 -9.780 | r | / | f | 0.155 0.167 0.934 0.893 | d | / | r | 0.074 0.069 0.0095 0.0092 φ 1 / φ 2 -1.000 -1.000 -1.000 -1.000 | r | / | F W | 64.61 16.646 10.306 10.28

【0044】[0044]

【発明の効果】以上説明したように本発明に係る防振機
能を有するレンズ光学系は、静止時の性能を損うことな
く補正レンズ群で防振時に発生する収差を改善すること
ができ、また結像光学系内部に補正光学系を構成するこ
とができるため、小型化を図ることができる。
As described above, the lens optical system having the image stabilizing function according to the present invention can improve the aberration generated during image stabilization by the correction lens group without impairing the performance at rest. In addition, since a correction optical system can be configured inside the imaging optical system, downsizing can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】基本構成の概略図である。FIG. 1 is a schematic diagram of a basic configuration.

【図2】第1の実施例のレンズ断面図である。FIG. 2 is a lens cross-sectional view of the first embodiment.

【図3】第1の実施例の広角端での無限遠合焦状態にお
ける諸収差図である。
FIG. 3 is a diagram illustrating various aberrations of the first embodiment at a wide-angle end in an infinity in-focus state.

【図4】望遠端での無限遠合焦状態における諸収差図で
ある。
FIG. 4 is a diagram illustrating various aberrations at the telephoto end in a focused state at infinity;

【図5】望遠端での無限遠合焦状態における軸上横収差
図である。
FIG. 5 is an axial lateral aberration diagram in an infinity in-focus condition at the telephoto end.

【図6】望遠端での無限遠合焦状態におけるB2 で0.
5度の振れ角を補正した時の軸上横収差図である。
[6] In B 2 in the infinity in-focus state in the telephoto end 0.
It is an axial transverse aberration figure at the time of correcting the deflection angle of 5 degrees.

【図7】望遠端での無限遠合焦状態におけるレンズB1
で0.5度の振れ角を補正した時の軸上横収差図であ
る。
FIG. 7 shows a lens B 1 in an infinity in-focus condition at the telephoto end.
FIG. 7 is a view showing an on-axis lateral aberration when a shake angle of 0.5 degree is corrected by using FIG.

【図8】第2の実施例のレンズ断面図である。FIG. 8 is a sectional view of a lens according to a second embodiment.

【図9】第2の実施例の広角端での無限遠合焦状態にお
ける諸収差図である。
FIG. 9 is a diagram illustrating various aberrations of the second embodiment at a wide-angle end in an infinity in-focus condition;

【図10】望遠端での無限遠合焦状態における諸収差図
である。
FIG. 10 is a diagram illustrating various aberrations at a telephoto end when focused on an object at infinity;

【図11】望遠端での無限遠合焦状態における軸上横収
差図である。
FIG. 11 is an axial lateral aberration diagram in an infinity in-focus condition at the telephoto end.

【図12】望遠端での無限遠合焦状態におけるレンズB
4 で0.5度の振れ角を補正した時の軸上横収差図であ
る。
FIG. 12 shows a lens B in an infinity in-focus condition at the telephoto end.
4 is a axial lateral aberration view when correcting the deflection angle of 0.5 degrees.

【図13】望遠端での無限遠合焦状態におけるレンズB
3 で0.5度の振れ角を補正した時の軸上横収差図であ
る。
FIG. 13 shows a lens B in an infinity in-focus condition at the telephoto end.
FIG. 7 is a view showing an on-axis lateral aberration when a deflection angle of 0.5 degree is corrected in 3 .

【符号の説明】[Explanation of symbols]

I 第1レンズ群 L2 第2レンズ群 L3 第3レンズ群 L4 第4群 A 線像光学系 B 補正光学系 B1 、B2 、B3 、B4 補正光学系を構成するレンズI first lens group L2 second lens unit L3 third lens unit L4 fourth group A linear image optical system B correction optical system B 1, B 2, B 3, B 4 lenses of the correction optical system

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 負の屈折力を持つレンズと正の屈折力を
持つレンズを隣り合った位置関係で有する光学系におい
て、前記2つのレンズの少なくとも1つの面を非球面と
し、前記負の屈折力を持つレンズと前記正の屈折力を持
つレンズの内の一方のレンズを回動させ、他方のレンズ
と向かい合う側の面からその面の曲率中心までの間の光
軸上の定点を中心として回動させることにより、前記光
学系が傾動したときの撮影画像の振れを補正するように
したことを特徴とする防振機能を有するレンズ光学系。
1. An optical system having a lens having a negative refractive power and a lens having a positive refractive power in an adjacent positional relationship, wherein at least one surface of the two lenses is aspherical, and One of the lens having power and the lens having positive refracting power is rotated, and a fixed point on the optical axis between the surface facing the other lens and the center of curvature of the surface is centered. A lens optical system having an image stabilizing function, wherein the lens system is rotated to correct a shake of a captured image when the optical system is tilted.
【請求項2】 前記回動するレンズの他方のレンズと向
かい合う側の面の曲率半径rが次式を満たすようにした
請求項1に記載の防振機能を有するレンズ光学系。 |r|/|f|≦15.5 ただし、fは前記光学系全体の焦点距離、前記光学系が
変倍光学系の場合は望遠端時の焦点距離である。
2. The lens optical system according to claim 1, wherein a radius of curvature r of a surface of the rotating lens facing the other lens satisfies the following expression. | R | / | f | ≦ 15.5 where f is the focal length of the entire optical system, and when the optical system is a variable magnification optical system, is the focal length at the telephoto end.
【請求項3】 前記負の屈折力を持つレンズと前記正の
屈折力を持つレンズを結像系内に配置し、前記負の屈折
力を持つレンズと前記正の屈折力を持つレンズ間の距離
dが次式を満たすようにした請求項1又は2に記載の防
振機能を有するレンズ光学系。 |d|/|r|≦0.12 ただし、rは前記回動するレンズの他方のレンズと向か
い合う側の面の曲率半径である。
3. A lens having a negative refractive power and a lens having a positive refractive power are arranged in an imaging system, and a lens having a negative refractive power and a lens having a positive refractive power are arranged between the lens having the negative refractive power and the lens having the positive refractive power. The lens optical system according to claim 1, wherein the distance d satisfies the following expression. | D | / | r | ≦ 0.12 where r is the radius of curvature of the surface of the rotating lens facing the other lens.
【請求項4】 前記負の屈折力を持つレンズと前記正の
屈折力を持つレンズの屈折力の大きさはほぼ等しいよう
にした請求項1〜3の何れか1つの請求項に記載の防振
機能を有するレンズ光学系。
4. The protection according to claim 1, wherein the magnitude of the refractive power of the lens having the negative refractive power is substantially equal to that of the lens having the positive refractive power. Lens optical system with vibration function.
【請求項5】 前記負の屈折力を持つレンズと前記正の
屈折力を持つレンズの互いに向き合わない面がそれぞれ
殆ど屈折力を持たないようにした請求項4に記載の防振
機能を有するレンズ光学系。
5. The lens having an anti-vibration function according to claim 4, wherein the surfaces of the lens having the negative refractive power and the lens having the positive refractive power that do not face each other have almost no refractive power. Optical system.
【請求項6】 前記負の屈折力を持つレンズと前記正の
屈折力を持つレンズは同じ材料を用いて製造した請求項
1〜5の何れか1つの請求項に記載の防振機能を有する
レンズ光学系。
6. The anti-vibration function according to claim 1, wherein the lens having the negative refractive power and the lens having the positive refractive power are manufactured using the same material. Lens optics.
【請求項7】 前記負の屈折力を持つレンズと前記正の
屈折力を持つレンズの材料をプラスチックとした請求項
6に記載の防振機能を有するレンズ光学系。
7. The lens optical system according to claim 6, wherein a material of the lens having the negative refractive power and a material of the lens having the positive refractive power are plastic.
JP9207227A 1997-07-15 1997-07-15 Lens optical system having vibration proof function Pending JPH1138319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9207227A JPH1138319A (en) 1997-07-15 1997-07-15 Lens optical system having vibration proof function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9207227A JPH1138319A (en) 1997-07-15 1997-07-15 Lens optical system having vibration proof function

Publications (1)

Publication Number Publication Date
JPH1138319A true JPH1138319A (en) 1999-02-12

Family

ID=16536354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9207227A Pending JPH1138319A (en) 1997-07-15 1997-07-15 Lens optical system having vibration proof function

Country Status (1)

Country Link
JP (1) JPH1138319A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242380A (en) * 2000-02-25 2001-09-07 Olympus Optical Co Ltd Photographing lens and zoom lens having image blurring correcting function
JP2007256604A (en) * 2006-03-23 2007-10-04 Olympus Imaging Corp Zoom lens and imaging apparatus having the same
EP2325688A3 (en) * 2004-10-01 2011-09-07 Nikon Corporation Zoom lens system with vibration reduction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242380A (en) * 2000-02-25 2001-09-07 Olympus Optical Co Ltd Photographing lens and zoom lens having image blurring correcting function
EP2325688A3 (en) * 2004-10-01 2011-09-07 Nikon Corporation Zoom lens system with vibration reduction
EP3444654A3 (en) * 2004-10-01 2020-12-16 Nikon Corporation Zoom lens system with vibration reduction
JP2007256604A (en) * 2006-03-23 2007-10-04 Olympus Imaging Corp Zoom lens and imaging apparatus having the same

Similar Documents

Publication Publication Date Title
JP3359131B2 (en) Variable power optical system with anti-vibration function
JP5332169B2 (en) Zoom lens and optical apparatus having the same
JP4146977B2 (en) Zoom lens
JP4447704B2 (en) Variable magnification optical system and camera having the same
EP0387723A2 (en) Image-stabilizing optical device
US6392816B1 (en) Variable magnification optical system and optical apparatus having the same
JPH11231220A (en) Optical magnification system having vibration proofing function
US5521758A (en) Variable-magnification optical system capable of image stabilization
JPH1164728A (en) Zoom lens having camera shake correction function
JPH11237550A (en) Variable power optical system provided with vibration proof function
JP4545849B2 (en) Variable magnification optical system
JP3003368B2 (en) Variable power optical system with anti-vibration function
JPH11316342A (en) Variable power optical system having vibration-proof function
JP2001042217A (en) Zoom lens
JPH0882743A (en) Zoom lens of rear focus type
JPH1164732A (en) Zoom lens
JP4533437B2 (en) Zoom lens
JPH0862541A (en) Variable power optical system having vibration damping function
JPH10260355A (en) Variable power optical system with vibration-proof function
JP3352248B2 (en) Zoom lens
JPH10260356A (en) Variable power optical system with vibration-proof function
JPH08179214A (en) Zoom lens
JPH1138319A (en) Lens optical system having vibration proof function
JP2998434B2 (en) Variable power optical system with anti-vibration function
JPH07151972A (en) Rear focus type zoom lens