JPH10260356A - Variable power optical system with vibration-proof function - Google Patents

Variable power optical system with vibration-proof function

Info

Publication number
JPH10260356A
JPH10260356A JP9084429A JP8442997A JPH10260356A JP H10260356 A JPH10260356 A JP H10260356A JP 9084429 A JP9084429 A JP 9084429A JP 8442997 A JP8442997 A JP 8442997A JP H10260356 A JPH10260356 A JP H10260356A
Authority
JP
Japan
Prior art keywords
lens
optical system
image
variable power
power optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9084429A
Other languages
Japanese (ja)
Other versions
JP4095131B2 (en
Inventor
Hiroyuki Hamano
博之 浜野
Hiroki Yoshida
博樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP08442997A priority Critical patent/JP4095131B2/en
Priority to EP98104787A priority patent/EP0872751B1/en
Priority to DE69828215T priority patent/DE69828215T2/en
Priority to KR1019980009242A priority patent/KR100320280B1/en
Publication of JPH10260356A publication Critical patent/JPH10260356A/en
Priority to US09/251,415 priority patent/US6473231B2/en
Priority to US09/997,088 priority patent/US6606194B2/en
Application granted granted Critical
Publication of JP4095131B2 publication Critical patent/JP4095131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the variable power optical system with a vibrationproof function which obtains a still image by optically correcting the defocusing of a photographed image when the variable power optical system vibrates. SOLUTION: This variable power optical system has four lens groups, i.e., a 1st group L1 with positive refracting power fixed at the time of power variation and focusing, a 2nd group L2 which has a power varying function and negative refracting power, a 3rd group L3 with positive refracting power, and a 4th group L4 which has both a correcting function for an image plane varying owing to the power variation and a focusing function and also has positive refracting power in order from the object side, and the 3rd group L3 has a meniscus negative lens L3N having its concave surface on the imageplane side and one aspherical surface, and is moved at right angles to the optical axis to correct the defocusing of the photographed image when the variable power optical system vibrates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は防振機能を有した変
倍光学系に関し、特に変倍光学系の一部のレンズ群を光
軸と垂直方向に移動させることにより、該変倍光学系が
振動(傾動)したときの撮影画像のブレを光学的に補正
して静止画像を得るようにし撮影画像の安定化を図った
写真用カメラやビデオカメラ等に好適な防振機能を有し
た変倍光学系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable power optical system having an image stabilizing function, and more particularly to a variable power optical system by moving a part of a lens group of the variable power optical system in a direction perpendicular to an optical axis. A camera having a vibration reduction function suitable for a photographic camera, a video camera, or the like that stabilizes the captured image by optically correcting a blur of the captured image when the camera vibrates (tilts) to obtain a still image. It relates to a magnification optical system.

【0002】[0002]

【従来の技術】進行中の車や航空機等移動物体上から撮
影をしようとすると撮影系に振動が伝わり手振れとなり
撮影画像にブレが生じる。
2. Description of the Related Art When an image is taken from a moving object such as a car or an aircraft in progress, vibration is transmitted to an image taking system, resulting in camera shake and blurring of the taken image.

【0003】従来よりこのときの撮影画像のブレを防止
する機能を有した防振光学系が種々と提案されている。
Conventionally, various anti-vibration optical systems having a function of preventing blurring of a photographed image at this time have been proposed.

【0004】例えば特公昭56−21133号公報では
光学装置に振動状態を検知する検知手段からの出力信号
に応じて、一部の光学部材を振動による画像の振動的変
位を相殺する方向に移動させることにより画像の安定化
を図っている。
For example, in Japanese Patent Publication No. 56-21133, some optical members are moved in a direction to cancel the vibrational displacement of an image due to vibration in response to an output signal from a detecting means for detecting a vibration state in an optical device. This stabilizes the image.

【0005】特開昭61−223819号公報では最も
被写体側に屈折型可変頂角プリズムを配置した撮影系に
おいて、撮影系の振動に対応させて該屈折型可変頂角プ
リズムの頂角を変化させて画像を偏向させて画像の安定
化を図っている。
In Japanese Patent Application Laid-Open No. 61-223819, in a photographing system in which a refraction type variable apex angle prism is arranged closest to the subject, the apex angle of the refraction type variable apex angle prism is changed according to the vibration of the imaging system. The image is deflected to stabilize the image.

【0006】特公昭56−34847号公報、特公昭5
7−7414号公報等では撮影系の一部に振動に対して
空間的に固定の光学部材を配置し、この光学部材の振動
に対して生ずるプリズム作用を利用することにより撮影
画像を偏向させ結像面上で静止画像を得ている。
Japanese Patent Publication No. 56-34847, Japanese Patent Publication No. 5
In JP-A-7-7414, an optical member spatially fixed to vibration is arranged in a part of a photographing system, and a photographed image is deflected by utilizing a prism effect generated by vibration of the optical member. A still image is obtained on the image plane.

【0007】特開平1−116619号公報や特開平2
−124521号公報では加速度センサー等を利用して
撮影系の振動を検出し、このとき得られる信号に応じ、
撮影系の一部のレンズ群を光軸と直交する方向に振動さ
せることにより静止画像を得る方法も行なわれている。
[0007] Japanese Patent Application Laid-Open Nos.
In Japanese Patent Application Laid-Open No. -125211, vibration of a photographing system is detected using an acceleration sensor or the like, and according to a signal obtained at this time,
There is also a method of obtaining a still image by vibrating a part of a lens group of a photographing system in a direction orthogonal to an optical axis.

【0008】又、特開平7−128619号公報では、
物体側より順に変倍及び合焦の際に固定の正の屈折力の
第1群、変倍機能を有する負の屈折力の第2群、開口絞
り、正の屈折力の第3群、そして変倍により変動する像
面を補正する補正機能と合焦機能の双方の機能を有する
正の屈折力の第4群の4つのレンズ群を有した変倍光学
系であって、該第3群は負の屈折力の第31群と正の屈
折力の第32群の2つのレンズ群より成り、該第32群
を光軸と垂直方向に移動させて該変倍光学系が振動した
ときの撮影画像のブレを補正している。
[0008] In Japanese Patent Application Laid-Open No. Hei 7-128619,
A first group of positive refractive power fixed at the time of zooming and focusing in order from the object side, a second group of negative refractive power having a zooming function, an aperture stop, a third group of positive refractive power, and A variable power optical system having four lens units of a fourth group having a positive refractive power and having both a correction function of correcting an image plane that varies due to zooming and a focusing function, wherein the third group is Is composed of two lens units, a 31st lens unit having a negative refractive power and a 32nd lens unit having a positive refractive power. When the 32nd lens unit is moved in a direction perpendicular to the optical axis and the zoom optical system vibrates, The camera shake is corrected.

【0009】特開平7−199124号公報では、正、
負、正そして正の屈折力の4つのレンズ群より成る4群
構成の変倍光学系において、第3群全体を光軸と垂直方
向に振動させて防振を行っている。
In Japanese Patent Application Laid-Open No. 7-199124,
In a variable power optical system having a four-unit configuration including four lens units having negative, positive, and positive refractive power, the entire third unit is vibrated in a direction perpendicular to the optical axis to perform image stabilization.

【0010】一方、特開平5−60974号公報では、
正、負、正そして正の屈折力の4つのレンズ群より成る
4群構成の変倍光学系において、第3群を正レンズとメ
ニスカス状の負レンズのテレフォトタイプより構成して
レンズ全長の短縮化を図っている。
On the other hand, JP-A-5-60974 discloses that
In a four-unit variable magnification optical system including four lens units having positive, negative, positive, and positive refractive powers, a third unit includes a telephoto type of a positive lens and a meniscus-shaped negative lens, and the entire length of the lens is reduced. We are trying to shorten it.

【0011】[0011]

【発明が解決しようとする課題】一般に防振光学系を撮
影系の前方に配置し、該防振光学系の一部の可動レンズ
群を振動させて撮影画像のブレを無くし、静止画像を得
る方法は装置全体が大型化し、且つ該可動レンズ群を移
動させる為の移動機構が複雑化してくるという問題点が
あった。
In general, an anti-vibration optical system is disposed in front of a photographing system, and a part of the movable lens group of the anti-vibration optical system is vibrated to eliminate a blur of a photographed image and obtain a still image. The method has a problem that the whole apparatus becomes large and a moving mechanism for moving the movable lens group becomes complicated.

【0012】又、可動レンズ群を振動させたときの偏心
収差の発生量が多くなり光学性能が大きく低下してくる
という問題点もあった。
There is also a problem that the amount of eccentric aberration generated when the movable lens group is vibrated increases, and the optical performance is greatly reduced.

【0013】可変頂角プリズムを利用して防振を行なう
光学系では特に長焦点距離側(望遠側)において防振時
に偏心倍率色収差の発生量が多くなるという問題点があ
った。
An optical system that performs image stabilization using a variable apex angle prism has a problem that the amount of chromatic aberration of eccentric magnification increases during image stabilization, especially on the long focal length side (telephoto side).

【0014】一方、撮影系の一部のレンズを光軸に対し
て垂直方向に平行偏心させて防振を行なう光学系におい
ては、防振の為に特別な光学系は要しないという利点は
あるが、移動させるレンズの為の空間を必要とし、又防
振時における偏心収差の発生量が多くなってくるという
問題点があった。
On the other hand, an optical system that performs image stabilization by decentering some lenses of the photographing system in a direction perpendicular to the optical axis has the advantage that no special optical system is required for image stabilization. However, there is a problem that a space for the lens to be moved is required, and the amount of eccentric aberration generated during image stabilization increases.

【0015】又前述した正、負、正そして正の屈折力の
4つのレンズ群より成る4群構成の変倍光学系におい
て、第3群全体を光軸に垂直方向に移動させて防振を行
った場合、第3群をレンズ全長短縮のため正レンズとメ
ニスカス状の負レンズのテレフォトタイプで構成したと
き、偏心収差、特に偏心歪曲収差が多く発生する。これ
をビデオカメラ等の動画撮影を行うものに使った場合、
防振時の画像の変形が目立つといった問題点があった。
In the above-described four-unit variable magnification optical system including the four lens units having the positive, negative, positive and positive refractive powers, the entire third unit is moved in a direction perpendicular to the optical axis to reduce vibration. If this is done, when the third lens unit is made up of a telephoto type of a positive lens and a meniscus negative lens for shortening the overall length of the lens, a large amount of eccentric aberration, especially eccentric distortion, is generated. If you use this for video shooting such as a video camera,
There has been a problem that the image deformation during image stabilization is noticeable.

【0016】本発明は、変倍光学系の一部を構成する比
較的小型軽量のレンズ群を光軸と垂直方向に移動させ
て、該変倍光学系が振動(傾動)したときの画像のブレ
を補正する際、該レンズ群のレンズ構成を適切に構成す
ることにより、装置全体の小型化,機構上の簡素化及び
駆動手段の負荷の軽減化を図りつつ該レンズ群を偏心さ
せたときの偏心発生量を少なく抑え、偏心収差を良好に
補正した防振機能を有した変倍光学系の提供を目的とす
る。
According to the present invention, a relatively small and light lens group constituting a part of a variable power optical system is moved in a direction perpendicular to the optical axis, and an image obtained when the variable power optical system vibrates (tilts) is obtained. When correcting blur, when the lens group is decentered while appropriately reducing the load on the driving unit by reducing the load on the drive unit by reducing the size of the entire apparatus, simplifying the mechanism, and appropriately configuring the lens configuration of the lens group. It is an object of the present invention to provide a variable power optical system having an image stabilizing function in which the amount of occurrence of eccentricity is suppressed to a small value and eccentric aberration is corrected well.

【0017】[0017]

【課題を解決するための手段】本発明の防振機能を有し
た変倍光学系は、(1−1)物体側より順に変倍及び合
焦の際に固定の正の屈折力の第1群、変倍機能を有する
負の屈折力の第2群、正の屈折力の第3群、そして変倍
により変動する像面を補正する補正機能と合焦機能の双
方の機能を有する正の屈折力の第4群の4つのレンズ群
を有した変倍光学系であって、該第3群は像面側に凹面
を向けたメニスカス状の負レンズL3Nと1つの非球面
を有し、該第3群を光軸と垂直方向に移動させて該変倍
光学系が振動したときの撮影画像のブレを補正している
ことを特徴としている。
According to the present invention, there is provided a variable power optical system having an image stabilizing function comprising: (1-1) a first lens having a fixed positive refractive power which is fixed during zooming and focusing in order from the object side; Group, a second group having a negative refractive power having a zooming function, a third group having a positive refractive power, and a positive group having both a correcting function and a focusing function for correcting an image plane which fluctuates due to zooming. A variable power optical system including four lens units of a fourth unit having a refractive power, wherein the third unit includes a negative meniscus lens L3N having a concave surface facing the image surface side and one aspheric surface, It is characterized in that the third group is moved in a direction perpendicular to the optical axis to correct blurring of a photographed image when the variable magnification optical system vibrates.

【0018】[0018]

【発明の実施の形態】図1は本発明の後述する数値実施
例1〜3の近軸屈折力配置を示す概略図、図2〜図4は
本発明の数値実施例1〜3の広角端のレンズ断面図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view showing a paraxial refractive power arrangement of Numerical Embodiments 1 to 3 of the present invention to be described later, and FIGS. It is a lens sectional view of.

【0019】図中、L1は正の屈折力の第1群、L2は
負の屈折力の第2群、L3は正の屈折力の第3群であ
る。
In the figure, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, and L3 is a third group having a positive refractive power.

【0020】本実施形態では、第3群L3を光軸と垂直
方向に移動させて変倍光学系が振動(傾動)したときの
撮影画像のブレを補正している。
In this embodiment, the third lens unit L3 is moved in the direction perpendicular to the optical axis to correct the blur of the photographed image when the variable magnification optical system vibrates (tilts).

【0021】L4は正の屈折力の第4群である。SPは
開口絞りであり、第3群L3の前方に配置している。G
はフェースプレート等のガラスブロックである。IPは
像面である。
L4 is a fourth lens unit having a positive refractive power. SP denotes an aperture stop, which is arranged in front of the third lens unit L3. G
Is a glass block such as a face plate. IP is an image plane.

【0022】本実施形態では広角端から望遠端への変倍
に際して矢印のように第2群を像面側へ移動させると共
に、変倍に伴う像面変動を第4群を移動させて補正して
いる。
In this embodiment, when zooming from the wide-angle end to the telephoto end, the second lens unit is moved to the image plane side as indicated by an arrow, and the image plane fluctuation caused by zooming is corrected by moving the fourth lens unit. ing.

【0023】又、第4群を光軸上移動させてフォーカス
を行うリヤーフォーカス式を採用している。同図に示す
第4群の実線の曲線4aと点線の曲線4bは各々無限遠
物体と近距離物体にフォーカスしているときの広角端か
ら望遠端への変倍に伴う際の像面変動を補正する為の移
動軌跡を示している。尚、第1群と第3群は変倍及びフ
ォーカスの際固定である。
Also, a rear focus type is adopted in which the fourth unit is moved on the optical axis to perform focusing. A solid line curve 4a and a dotted line curve 4b of the fourth lens group shown in the same figure show the image plane fluctuation caused by zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at a short distance, respectively. The movement locus for correction is shown. The first and third units are fixed during zooming and focusing.

【0024】本実施形態においては第4群を移動させて
変倍に伴う像面変動の補正を行うと共に第4群を移動さ
せてフォーカスを行うようにしている。特に同図の曲線
4a,4bに示すように広角端から望遠端への変倍に際
して物体側へ凸状の軌跡を有するように移動させてい
る。これにより第3群と第4群との空間の有効利用を図
りレンズ全長の短縮化を効果的に達成している。
In the present embodiment, the fourth lens unit is moved to correct the image plane fluctuation accompanying zooming, and the fourth lens unit is moved to perform focusing. In particular, as shown by curves 4a and 4b in the same figure, the zoom lens is moved so as to have a convex locus toward the object side when zooming from the wide-angle end to the telephoto end. Thereby, the space between the third and fourth units is effectively used, and the overall length of the lens is effectively reduced.

【0025】本実施形態において、例えば望遠端におい
て無限遠物体から近距離物体へフォーカスを行う場合は
同図の直線4cに示すように第4群を前方へ繰り出すこ
とにより行っている。
In this embodiment, for example, when focusing from an object at infinity to an object at a short distance at the telephoto end, the fourth unit is moved forward as shown by a straight line 4c in FIG.

【0026】本実施形態におけるズームレンズは第1群
と第2群の合成系で形成した虚像を第3群と第4群で感
光面上に結像するズーム方式をとっている。
The zoom lens according to the present embodiment employs a zoom system in which a virtual image formed by a combined system of the first and second units is formed on the photosensitive surface by the third and fourth units.

【0027】本実施形態では従来の所謂4群ズームレン
ズにおいて第1群を繰り出してフォーカスを行う場合に
比べて前述のようなリヤーフォーカス方式を採ることに
より第1群の偏心誤差による性能劣化を防止しつつ第1
群のレンズ有効径の増大化を効果的に防止している。
In the present embodiment, the rear focus method is used to prevent the performance degradation due to the eccentric error of the first group, as compared with the conventional so-called four-group zoom lens in which the first group is extended and focused. First while doing
This effectively prevents the effective lens diameter of the group from increasing.

【0028】そして開口絞りを第3群の直前に配置する
ことにより可動レンズ群による収差変動を少なくし、開
口絞りより前方のレンズ群の間隔を短くすることにより
前玉レンズ径の縮少化を容易に達成している。
By arranging the aperture stop immediately before the third lens unit, aberration fluctuations caused by the movable lens unit can be reduced, and the distance between the lens units in front of the aperture stop can be reduced to reduce the diameter of the front lens. Achieved easily.

【0029】本発明の数値実施例1〜3においては第3
群L3を光軸と垂直方向に移動させて変倍光学系が振動
したときの像ブレを補正している。これにより従来の防
振光学系に比べて防振の為のレンズ群や可変頂角プリズ
ム等の光学部材を新たに付加することなく防振を行なっ
ている。
In the first to third numerical embodiments of the present invention, the third
The group L3 is moved in the direction perpendicular to the optical axis to correct image blurring when the variable magnification optical system vibrates. As a result, compared to the conventional anti-vibration optical system, anti-vibration is performed without newly adding an optical member such as a lens group or a variable apex prism for anti-vibration.

【0030】次に本発明に係る変倍光学系においてレン
ズ群を光軸と垂直方向に移動させて撮影画像のブレを補
正する防振系の光学的原理を図14を用いて説明する。
Next, the optical principle of an image stabilizing system for correcting blurring of a photographed image by moving a lens group in a direction perpendicular to the optical axis in a variable power optical system according to the present invention will be described with reference to FIG.

【0031】図14(A)に示すように光学系が固定群
Y1・偏心群Y2そして固定群Y3の3つの部分から成
り立っており、レンズから充分に離れた光軸上の物点P
が撮像面IPの中心に像点pとして結像しているものと
する。
As shown in FIG. 14A, the optical system is composed of three parts, a fixed group Y1, an eccentric group Y2, and a fixed group Y3, and an object point P on the optical axis sufficiently far from the lens.
Is formed as an image point p at the center of the imaging plane IP.

【0032】今、撮像面IPを含めた光学系全体が図1
4(B)のように手振れにより瞬間的に傾いたとする
と、物点Pは像点p′にやはり瞬間的に移動し、ブレた
画像となる。
Now, the entire optical system including the imaging plane IP is shown in FIG.
Assuming that the object point P is instantaneously tilted due to camera shake as shown in FIG. 4B, the object point P also instantaneously moves to the image point p ', resulting in a blurred image.

【0033】一方、偏心群Y2を光軸と垂直方向に移動
させると図14(C)のように、像点pはp″に移動
し、その移動量・方向はパワー配置に依存し、そのレン
ズ群の偏心敏感度として表される。
On the other hand, when the eccentric group Y2 is moved in the direction perpendicular to the optical axis, the image point p moves to p ″ as shown in FIG. 14C, and the amount and direction of the movement depends on the power arrangement. It is expressed as the eccentric sensitivity of the lens group.

【0034】そこで図14(B)で手振れによってズレ
た像点p′を偏心群Y2を適切な量だけ光軸と垂直方向
に移動させることによってもとの結像位置pに戻すこと
で図14(D)に示すとおり、手振れ補正つまり防振を
行っている。
In FIG. 14B, the image point p 'shifted due to camera shake is returned to the original image forming position p by moving the eccentric group Y2 by an appropriate amount in the direction perpendicular to the optical axis. As shown in (D), camera shake correction, that is, image stabilization is performed.

【0035】今、光軸をθ°補正するために必要なシフ
トレンズ群(偏心群)の移動量(シフト量)をΔ、光学
系全体の焦点距離をf、シフトレンズ群Y2の偏心敏感
度をTSとすると、移動量Δは、 Δ=f・tan(θ)/TS の式で与えられる。
Now, the amount of movement (shift amount) of the shift lens group (eccentric group) required to correct the optical axis by θ ° is Δ, the focal length of the entire optical system is f, and the eccentric sensitivity of the shift lens group Y2. Is the TS, the movement amount Δ is given by the following equation: Δ = f · tan (θ) / TS.

【0036】今、シフトレンズ群の偏心敏感度TSが大
きすぎると移動量Δは小さな値となり、防振に必要なシ
フトレンズ群の移動量は小さくできるが、適切に防振を
行う為の制御が困難になり、補正残りが生じてしまう。
If the eccentricity sensitivity TS of the shift lens group is too large, the moving amount Δ becomes small, and the moving amount of the shift lens group necessary for image stabilization can be reduced. Becomes difficult, and the correction remains.

【0037】特にビデオカメラやデジタルスチルカメラ
ではCCD等の撮像素子のイメージサイズが銀塩フィル
ムと比べて小さく、同一画角に対する焦点距離が短いた
め、同一角度を補正する為のシフトレンズ群のシフト量
Δが小さくなる。
In particular, in a video camera or a digital still camera, the image size of an image pickup device such as a CCD is smaller than that of a silver halide film, and the focal length for the same angle of view is short, so that a shift lens group for correcting the same angle is shifted. The quantity Δ becomes smaller.

【0038】従って、メカ(機構)の精度が同程度だと
画面上での補正残りが相対的に大きくなることになって
しまう。
Therefore, if the accuracy of the mechanism (mechanism) is almost the same, the remaining correction on the screen will be relatively large.

【0039】一方、偏心敏感度TSが小さすぎると制御
のために必要なシフトレンズ群の移動量が大きくなって
しまい、シフトレンズ群を駆動する為のアクチュエータ
ー等の駆動手段も大きくなってしまう。
On the other hand, if the eccentric sensitivity TS is too small, the amount of movement of the shift lens group necessary for control becomes large, and the driving means such as an actuator for driving the shift lens group also becomes large.

【0040】本発明では各レンズ群の屈折力配置を適切
な値に設定することで、第3群の偏心敏感度TSを適正
な値とし、メカの制御誤差による防振の補正残りが少な
く、アクチュエーター等の駆動手段の負荷も少ない光学
系を達成している。
In the present invention, by setting the refractive power arrangement of each lens group to an appropriate value, the eccentricity sensitivity TS of the third group is set to an appropriate value, and there is little remaining vibration compensation due to mechanical control errors. An optical system in which the load of driving means such as an actuator is small is achieved.

【0041】本実施形態では第3群を物体側から順に両
レンズ面が凸面の正レンズL31、像面側に強い凹面を
向けたメニスカス状の負レンズL32、物体側面に凸面
を向けたメニスカス状の正レンズL33より構成してい
る。
In the present embodiment, the third lens unit includes, in order from the object side, a positive lens L31 having both convex lens surfaces, a negative meniscus lens L32 having a strong concave surface facing the image surface, and a meniscus lens having a convex surface facing the object side surface. And the positive lens L33.

【0042】図2,図3に示す数値実施例1,2では、
正レンズL31の物体側のレンズ面と正レンズL33の
像面側のレンズ面を非球面形状としている。
In numerical embodiments 1 and 2 shown in FIGS. 2 and 3,
The object-side lens surface of the positive lens L31 and the image surface-side lens surface of the positive lens L33 are aspheric.

【0043】第3群中に像面側に凹面を向けたメニスカ
ス状の負レンズを設けることにより第3群全体をテレフ
ォト構成として、第2群と第3群の主点間隔を短縮し、
レンズ全長の短縮化を達成している。
By providing a meniscus-shaped negative lens having a concave surface facing the image surface side in the third lens unit, the entire third lens unit has a telephoto configuration, and the distance between the principal points of the second lens unit and the third lens unit is reduced.
The overall length of the lens has been shortened.

【0044】このようなメニスカス状の負レンズを設け
た場合、そのレンズ面で正の歪曲収差が発生する。
When such a meniscus negative lens is provided, positive distortion occurs on the lens surface.

【0045】今、第3群全体で正の歪曲収差を持ってい
たとする。防振のために第3群全体が図3(A)に示す
ように上方向に偏心したとする。このとき点S1に来る
軸外光線が第3群を通過する高さが小さくなり、正の歪
曲が減少する。逆に点S2の側へ来る光線では正の歪曲
が増加する。従って、4角形の物体は像面上で図3
(B)の実線に示すような形に変形する。
Now, suppose that the entire third lens unit has a positive distortion. It is assumed that the entire third lens unit is eccentric upward as shown in FIG. At this time, the height at which the off-axis ray coming to the point S1 passes through the third lens unit decreases, and the positive distortion decreases. Conversely, a light beam coming to the side of the point S2 increases the positive distortion. Therefore, a quadrilateral object is shown in FIG.
The shape is deformed as shown by the solid line in FIG.

【0046】逆に第3群が下方向に移動した場合、図3
(B)の点線のような形に変形するため、振動が加わっ
た場合、それに伴って画像が変形し、特に動画像では観
る人に違和感を与える。この減少を低減させるには第3
群全体で発生する歪曲収差を少なくしてやればよい。
Conversely, when the third lens unit moves downward, FIG.
Since the image is deformed into a shape as indicated by the dotted line in (B), when vibration is applied, the image is deformed in accordance with the vibration, and the viewer is particularly uncomfortable with a moving image. To reduce this decrease a third
What is necessary is just to reduce the distortion generated in the entire group.

【0047】数値実施例1,2ではメニスカス状の負レ
ンンズL32の像面側に正レンズL33を配置し、その
像面側に非球面を設けることによってテレフォト構成を
維持しつつ、第3群内で歪曲収差を補正し、第3群をシ
フトして防振を行う際に発生する偏心歪曲収差の発生を
低減している。
In the first and second numerical embodiments, the positive lens L33 is disposed on the image side of the negative meniscus lens L32, and an aspherical surface is provided on the image side. To correct the distortion, and reduce the occurrence of the eccentric distortion generated when performing the image stabilization by shifting the third lens unit.

【0048】また数値実施例1,2ではレンズL31の
物体側のレンズ面に非球面を設けることにより、第3群
で球面収差を抑制し、防振時に発生する偏心コマ収差を
低減している。
In Numerical Examples 1 and 2, the aspherical surface is provided on the lens surface of the lens L31 on the object side, so that spherical aberration is suppressed in the third lens unit and eccentric coma generated during image stabilization is reduced. .

【0049】図4に示す数値実施例3では、メニスカス
状の負レンズL32の像面側のレンズ面に非球面を設け
ることによってテレフォト構成を維持しつつ、第3群内
で歪曲収差を補正し、第3群をシフトして防振を行う際
に発生する偏心歪曲収差の発生を低減している。またレ
ンズL31の物体側のレンズ面に非球面を導入して、第
3群内の球面収差やコマ収差を小さくして防振時に発生
する偏心コマ収差の発生を抑制している。
In Numerical Example 3 shown in FIG. 4, the aspheric surface is provided on the image surface side of the meniscus negative lens L32 to correct the distortion in the third lens unit while maintaining the telephoto configuration. In addition, the occurrence of eccentric distortion occurring when the third group is shifted to perform image stabilization is reduced. In addition, an aspheric surface is introduced into the lens surface on the object side of the lens L31 to reduce spherical aberration and coma aberration in the third lens unit, thereby suppressing occurrence of eccentric coma aberration generated during image stabilization.

【0050】本発明の防振機能を有した変倍光学系は以
上のような条件を満足することにより実現されるが、更
にレンズ全長の短縮を図りつつ、良好な光学性能を達成
する為には、以下の条件のうち少なくとも1つを満足す
ることが望ましい。
The variable power optical system having the image stabilizing function of the present invention is realized by satisfying the above conditions. However, in order to further reduce the overall length of the lens and achieve good optical performance. Preferably satisfies at least one of the following conditions.

【0051】(イ−1)前記負レンズL3Nと前記第3
群の焦点距離を各々f3N,f3としたとき、 1.0<|f3N/f3|<1.6 ・・・・・・(1) なる条件を満足することである。
(A-1) The negative lens L3N and the third lens L3N
Assuming that the focal lengths of the groups are f3N and f3, respectively, the following condition is satisfied: 1.0 <| f3N / f3 | <1.6 (1)

【0052】条件式(1) は第3群をテレフォトタイプと
して光学系全体の小型化を達成する為のものである。条
件式(1) の下限値を越えて第3群中の負レンズの屈折力
が強くなるとレンズ全長の短縮化には有利だが、ペッツ
ヴァール和が負に増大してしまい像面湾曲の補正が困難
になるので良くない。逆に上限値を越えてしまうとレン
ズ全長短縮が不十分になってしまう。
Conditional expression (1) is used to reduce the size of the entire optical system by using the third lens unit as a telephoto type. Increasing the refractive power of the negative lens in the third lens group beyond the lower limit of conditional expression (1) is advantageous for shortening the overall length of the lens, but the Petzval sum increases negatively and the correction of the field curvature becomes difficult. Not good because it becomes difficult. Conversely, if the value exceeds the upper limit, the reduction of the overall length of the lens becomes insufficient.

【0053】(イ−2)前記第3群の焦点距離をf3、
全系の広角端の焦点距離をfWとしたとき、 2.3<f3/fW<4.0 ・・・・・・(2) なる条件を満足することである。
(A-2) The focal length of the third lens unit is f3,
Assuming that the focal length at the wide angle end of the entire system is fW, the following condition is satisfied: 2.3 <f3 / fW <4.0 (2)

【0054】条件式(2) はレンズ全長の短縮化を図りつ
つ、防振のためのシフトレンズ群の敏感度を適切に設定
し、防振性能を良好に維持する為のものである。条件式
(2)の下限値を越えて第3群の屈折力を強くすると、シ
フトレンズ群の敏感度が大きくなりすぎ、メカ精度を厳
しくしないと防振時の補正残りが大きくなってしまうの
で良くない。逆に上限値を越えて第3群の屈折力を弱く
してしまうと、防振のために必要な第3群のシフト量が
大きくなったり、レンズ全長が大きくなったりするので
良くない。
Conditional expression (2) is intended to appropriately set the sensitivity of the shift lens group for image stabilization and to maintain good image stabilization performance while shortening the overall length of the lens. Conditional expression
If the refractive power of the third lens group is increased beyond the lower limit of (2), the sensitivity of the shift lens group becomes too large, and if the mechanical precision is not strict, the correction remaining during image stabilization increases, which is not good. . Conversely, if the refractive power of the third lens unit is weakened beyond the upper limit, the amount of shift of the third lens unit required for image stabilization is increased, and the overall length of the lens is undesirably increased.

【0055】(イ−3)前記第2群の焦点距離をf2、
全系の広角端と望遠端の焦点距離を各々fW,fTとし
たとき、
(A-3) The focal length of the second lens unit is f2,
When the focal lengths at the wide-angle end and the telephoto end of the entire system are fW and fT, respectively,

【0056】[0056]

【数3】 なる条件を満足することである。(Equation 3) Satisfying the following conditions.

【0057】条件式(3) の下限値を越えて第2レンズ群
の屈折力が強くなりすぎるとレンズ全長の短縮化には有
利だが、像面湾曲や歪曲の変倍全域にわたる変動を補正
するのが困難になるので良くない。また条件式(3) の上
限値を越えて第2群の屈折力が弱くなりすぎると変倍に
必要な第2群の移動量が大きくなりすぎるので良くな
い。
If the refractive power of the second lens unit becomes too strong beyond the lower limit value of the conditional expression (3), it is advantageous for shortening the entire length of the lens. However, the variation of the field curvature and distortion over the entire zoom range is corrected. It is not good because it becomes difficult. If the refractive power of the second lens unit becomes too weak beyond the upper limit of conditional expression (3), the amount of movement of the second lens unit required for zooming becomes too large.

【0058】又、本発明の防振光学系において、防振の
ために十分な補正角を確保しつつ防振時の光学性能を維
持するには前記第3レンズ群,第4レンズ群のレンズ群
の望遠端における近軸横倍率を各々β3t,β4t、防
振時における第3レンズ群の最大移動量をDmとすると
Further, in the image stabilizing optical system of the present invention, in order to maintain a sufficient correction angle for image stabilization and maintain optical performance during image stabilization, the lenses of the third lens unit and the fourth lens unit are required. When the paraxial lateral magnification at the telephoto end of the group is β3t and β4t, respectively, and the maximum amount of movement of the third lens group during vibration reduction is Dm

【0059】[0059]

【数4】 なる条件を満足するようにするのが良い。(Equation 4) It is better to satisfy the following conditions.

【0060】条件式(4) の下限を越えると防振の補正角
が小さくなり、防振効果が小さくなってしまう。又上限
を越えると防振時に光学性能の劣化や光量変化等が目立
ってしまうので良くない。
If the lower limit of conditional expression (4) is exceeded, the correction angle of the image stabilization becomes small, and the image stabilization effect becomes small. On the other hand, if the upper limit is exceeded, deterioration of optical performance and change in light amount during vibration proof are conspicuous, which is not good.

【0061】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。
Next, numerical examples of the present invention will be described. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing from the object side, and Ni and νi are the i-th lens surfaces in order from the object side. The refractive index and Abbe number of glass.

【0062】又前述の各条件式と数値実施例における諸
数値との関係を表−1に示す。
Table 1 shows the relationship between the above-mentioned conditional expressions and various numerical values in the numerical examples.

【0063】非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正としRを近軸曲率半径、
A,B,C,D,Eを各々非球面係数としたとき、
The aspheric surface has an X-axis in the optical axis direction, an H-axis in a direction perpendicular to the optical axis, a positive traveling direction of light, R is a paraxial radius of curvature,
When A, B, C, D, and E are aspheric coefficients, respectively,

【0064】[0064]

【数5】 なる式で表わしている。又「e-0X」は10-Xを意味してい
る。 (数値実施例1) F= 1〜9.75 FNO= 1.85 〜 2.46 2ω= 60.5°〜 6.8° R 1= 12.404 D 1= 0.18 N 1=1.84666 ν 1= 23.8 R 2= 4.052 D 2= 1.21 N 2=1.71299 ν 2= 53.8 R 3= -17.341 D 3= 0.04 R 4= 3.150 D 4= 0.60 N 3=1.77249 ν 3= 49.6 R 5= 6.789 D 5=可変 R 6= 4.605 D 6= 0.14 N 4=1.88299 ν 4= 40.8 R 7= 1.042 D 7= 0.54 R 8= -1.239 D 8= 0.12 N 5=1.71299 ν 5= 53.8 R 9= 1.474 D 9= 0.44 N 6=1.84666 ν 6= 23.8 R10= -10.154 D10=可変 R11= 絞り D11= 0.33 R12= 1.589非球面 D12= 0.86 N 7=1.66910 ν 7= 55.4 R13= -20.729 D13= 0.04 R14= 2.119 D14= 0.14 N 8=1.84666 ν 8= 23.8 R15= 1.189 D15= 0.21 R16= 2.082 D16= 0.40 N 9=1.58312 ν 9= 59.4 R17= 4.282非球面 D17=可変 R18= 2.376非球面 D18= 0.64 N10=1.58312 ν10= 59.4 R19= -1.744 D19= 0.12 N11=1.84666 ν11= 23.8 R20= -3.655 D20= 0.71 R21= ∞ D21= 0.88 N12=1.51633 ν12= 64.1 R22= ∞ 非球面係数 R12 K=-3.068e+00 B= 6.133e-02 C=-1.048e-02 D=-4.205e-03 E= 2.843e-03 R17 K=-5.948e+01 B= 7.172e-02 C=-5.099e-02 D= 5.965e-03 E= 0 R18 K=-4.437e+00 B= 3.052e-02 C=-6.496e-03 D= 9.474e-03 E=-1.915e-03
(Equation 5) It is represented by the following equation. "E-0X" means 10- X . (Numerical Example 1) F = 1 to 9.75 FNO = 1.85 to 2.46 2ω = 60.5 ° to 6.8 ° R 1 = 12.404 D 1 = 0.18 N 1 = 1.84666 ν 1 = 23.8 R 2 = 4.052 D 2 = 1.21 N 2 = 1.71299 ν 2 = 53.8 R 3 = -17.341 D 3 = 0.04 R 4 = 3.150 D 4 = 0.60 N 3 = 1.77249 ν 3 = 49.6 R 5 = 6.789 D 5 = variable R 6 = 4.605 D 6 = 0.14 N 4 = 1.88299 ν 4 = 40.8 R 7 = 1.042 D 7 = 0.54 R 8 = -1.239 D 8 = 0.12 N 5 = 1.71299 ν 5 = 53.8 R 9 = 1.474 D 9 = 0.44 N 6 = 1.84666 ν 6 = 23.8 R10 = -10.154 D10 = Variable R11 = Aperture D11 = 0.33 R12 = 1.589 Aspherical surface D12 = 0.86 N 7 = 1.66910 ν 7 = 55.4 R13 = -20.729 D13 = 0.04 R14 = 2.119 D14 = 0.14 N 8 = 1.84666 ν 8 = 23.8 R15 = 1.189 D15 = 0.21 R16 = 2.082 D16 = 0.40 N 9 = 1.58312 ν 9 = 59.4 R17 = 4.282 Aspheric surface D17 = Variable R18 = 2.376 Aspheric surface D18 = 0.64 N10 = 1.58312 ν10 = 59.4 R19 = -1.744 D19 = 0.12 N11 = 1.84666 ν11 = 23.8 R20 = -3.655 D20 = 0.71 R21 = ∞ D21 = 0.88 N12 = 1.51633 ν12 = 64.1 R22 = ∞ Aspherical coefficient R12 K = -3.068e + 00 B = 6.133e-02 C = -1.048e-02 D = -4.205 e-03 E = 2.843e-03 R17 K = -5.948e + 01 B = 7.172e-02 C = -5.099e-02 D = 5.965e-03 E = 0 R18 K = -4.437 e + 00 B = 3.052e-02 C = -6.496e-03 D = 9.474e-03 E = -1.915e-03

【0065】[0065]

【表1】 (数値実施例2) F= 1〜9.77 FNO= 1.85 〜 2.57 2ω= 59.4°〜 6.7° R 1= 12.041 D 1= 0.17 N 1=1.80518 ν 1= 25.4 R 2= 3.662 D 2= 1.19 N 2=1.69679 ν 2= 55.5 R 3= -15.896 D 3= 0.04 R 4= 2.995 D 4= 0.59 N 3=1.77249 ν 3= 49.6 R 5= 6.384 D 5=可変 R 6= 4.213 D 6= 0.14 N 4=1.88299 ν 4= 40.8 R 7= 0.999 D 7= 0.52 R 8= -1.184 D 8= 0.12 N 5=1.69679 ν 5= 55.5 R 9= 1.425 D 9= 0.42 N 6=1.84666 ν 6= 23.8 R10= -14.838 D10=可変 R11= 絞り D11= 0.33 R12= 1.485非球面 D12= 0.70 N 7=1.66910 ν 7= 55.4 R13= -15.967 D13= 0.03 R14= 2.006 D14= 0.14 N 8=1.84666 ν 8= 23.8 R15= 1.169 D15= 0.24 R16= 2.449 D16= 0.35 N 9=1.58312 ν 9= 59.4 R17= 4.140非球面 D17=可変 R18= 2.346非球面 D18= 0.63 N10=1.58913 ν10= 61.2 R19= -1.584 D19= 0.12 N11=1.84666 ν11= 23.8 R20= -3.394 D20= 0.70 R21= ∞ D21= 0.86 N12=1.51633 ν12= 64.1 R22= ∞ 非球面係数 R12 K=-2.933e+00 B= 7.010e-02 C=-1.269e-02 D=-4.760e-03 E= 3.375e-03 R17 K=-4.936e+01 B= 7.490e-02 C=-3.698e-02 D= 7.116e-03 E= 0 R18 K=-4.241e+00 B= 3.389e-02 C=-9.367e-03 D= 1.652e-02 E=-5.909e-03[Table 1] (Numerical Example 2) F = 1 to 9.77 FNO = 1.85 to 2.57 2ω = 59.4 ° to 6.7 ° R 1 = 12.041 D 1 = 0.17 N 1 = 1.80518 ν 1 = 25.4 R 2 = 3.662 D 2 = 1.19 N 2 = 1.69679 ν 2 = 55.5 R 3 = -15.896 D 3 = 0.04 R 4 = 2.995 D 4 = 0.59 N 3 = 1.77249 ν 3 = 49.6 R 5 = 6.384 D 5 = Variable R 6 = 4.213 D 6 = 0.14 N 4 = 1.88299 ν 4 = 40.8 R 7 = 0.999 D 7 = 0.52 R 8 = -1.184 D 8 = 0.12 N 5 = 1.69679 ν 5 = 55.5 R 9 = 1.425 D 9 = 0.42 N 6 = 1.84666 ν 6 = 23.8 R10 = -14.838 D10 = Variable R11 = Aperture D11 = 0.33 R12 = 1.485 Aspherical surface D12 = 0.70 N 7 = 1.66910 ν 7 = 55.4 R13 = -15.967 D13 = 0.03 R14 = 2.006 D14 = 0.14 N 8 = 1.84666 ν 8 = 23.8 R15 = 1.169 D15 = 0.24 R16 = 2.449 D16 = 0.35 N 9 = 1.58312 ν 9 = 59.4 R17 = 4.140 Aspheric D17 = Variable R18 = 2.346 Aspheric D18 = 0.63 N10 = 1.58913 ν10 = 61.2 R19 = -1.584 D19 = 0.12 N11 = 1.84666 ν11 = 23.8 R20 = -3.394 D20 = 0.70 R21 = ∞ D21 = 0.86 N12 = 1.51633 ν12 = 64.1 R22 = ∞ Aspherical coefficient R12 K = -2.933e + 00 B = 7.010e-02 C = -1.269e-02 D = -4.760 e-03 E = 3.375e-03 R17 K = -4.936e + 01 B = 7.490e-02 C = -3.698e-02 D = 7.116e-03 E = 0 R18 K = -4.241 e + 00 B = 3.389e-02 C = -9.367e-03 D = 1.652e-02 E = -5.909e-03

【0066】[0066]

【表2】 (数値実施例3) F= 1〜9.76 FNO= 1.85 〜 2.44 2ω= 60.5°〜 6.8° R 1= 13.534 D 1= 0.18 N 1=1.84666 ν 1= 23.8 R 2= 4.112 D 2= 1.21 N 2=1.71299 ν 2= 53.8 R 3= -16.831 D 3= 0.04 R 4= 3.173 D 4= 0.60 N 3=1.77249 ν 3= 49.6 R 5= 6.780 D 5=可変 R 6= 4.370 D 6= 0.14 N 4=1.83480 ν 4= 42.7 R 7= 1.013 D 7= 0.57 R 8= -1.234 D 8= 0.12 N 5=1.69679 ν 5= 55.5 R 9= 1.525 D 9= 0.44 N 6=1.84666 ν 6= 23.8 R10= -11.259 D10=可変 R11= 絞り D11= 0.33 R12= 1.649非球面 D12= 0.76 N 7=1.67790 ν 7= 55.3 R13= -13.084 D13= 0.04 R14= 2.280 D14= 0.14 N 8=1.84666 ν 8= 23.8 R15= 1.243非球面 D15= 0.18 R16= 2.016 D16= 0.40 N 9=1.58312 ν 9= 59.4 R17= 4.117 D17=可変 R18= 2.391非球面 D18= 0.64 N10=1.58913 ν10= 61.2 R19= -1.763 D19= 0.12 N11=1.84666 ν11= 23.8 R20= -3.732 D20= 0.60 R21= ∞ D21= 0.88 N12=1.51633 ν12= 64.1 R22= ∞ 非球面係数 R12 K=-3.240e+00 B= 6.578e-02 C=-1.729e-02 D=-8.774e-04 E= 1.601e-03 R15 K= 1.204e-01 B=-2.688e-03 C= 1.003e-02 D=-2.891e-02 E= 0 R18 K=-3.069e+00 B= 2.134e-02 C=-4.778e-03 D= 1.123e-02 E=-4.209e-03[Table 2] (Numerical Example 3) F = 1 to 9.76 FNO = 1.85 to 2.44 2ω = 60.5 ° to 6.8 ° R 1 = 13.534 D 1 = 0.18 N 1 = 1.84666 ν 1 = 23.8 R 2 = 4.112 D 2 = 1.21 N 2 = 1.71299 ν 2 = 53.8 R 3 = -16.831 D 3 = 0.04 R 4 = 3.173 D 4 = 0.60 N 3 = 1.77249 ν 3 = 49.6 R 5 = 6.780 D 5 = Variable R 6 = 4.370 D 6 = 0.14 N 4 = 1.83480 ν 4 = 42.7 R 7 = 1.013 D 7 = 0.57 R 8 = -1.234 D 8 = 0.12 N 5 = 1.69679 ν 5 = 55.5 R 9 = 1.525 D 9 = 0.44 N 6 = 1.84666 ν 6 = 23.8 R10 = -11.259 D10 = Variable R11 = Aperture D11 = 0.33 R12 = 1.649 Aspherical surface D12 = 0.76 N 7 = 1.67790 ν 7 = 55.3 R13 = -13.084 D13 = 0.04 R14 = 2.280 D14 = 0.14 N 8 = 1.84666 ν 8 = 23.8 R15 = 1.243 Aspherical surface D15 = 0.18 R16 = 2.016 D16 = 0.40 N 9 = 1.58312 ν 9 = 59.4 R17 = 4.117 D17 = Variable R18 = 2.391 Aspherical surface D18 = 0.64 N10 = 1.58913 ν10 = 61.2 R19 = -1.763 D19 = 0.12 N11 = 1.84666 ν11 = 23.8 R20 = -3.732 D20 = 0.60 R21 = ∞ D21 = 0.88 N12 = 1.51633 ν12 = 64.1 R22 = ∞ Aspherical coefficient R12 K = -3.240e + 00 B = 6.578e-02 C = -1.729e-02 D = -8.774 e-04 E = 1.601e-03 R15 K = 1.204e-01 B = -2.688e-03 C = 1.003e-02 D = -2.891e-02 E = 0 R18 K = -3.069 e + 00 B = 2.134e-02 C = -4.778e-03 D = 1.123e-02 E = -4.209e-03

【0067】[0067]

【表3】 [Table 3]

【0068】[0068]

【表4】 [Table 4]

【0069】[0069]

【発明の効果】本発明によれば以上のように、変倍光学
系の一部を構成する比較的小型軽量のレンズ群を光軸と
垂直方向に移動させて、該変倍光学系が振動(傾動)し
たときの画像のブレを補正する際、該レンズ群のレンズ
構成を適切に構成することにより、装置全体の小型化,
機構上の簡素化及び駆動手段の負荷の軽減化を図りつつ
該レンズ群を偏心させたときの偏心発生量を少なく抑
え、偏心収差を良好に補正した防振機能を有した変倍光
学系を達成することができる。
As described above, according to the present invention, by moving the relatively small and light lens group constituting a part of the variable power optical system in the direction perpendicular to the optical axis, the variable power optical system is vibrated. When correcting image blurring caused by (tilting), by appropriately configuring the lens configuration of the lens group, the overall size of the apparatus can be reduced,
A vari-focal optical system having a vibration reduction function in which the amount of eccentricity generated when the lens group is decentered is reduced while the eccentricity of the lens group is reduced while simplification of the mechanism and reduction of the load on the driving means is achieved. Can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る変倍光学系の近軸屈折力配置の
概略図
FIG. 1 is a schematic diagram of a paraxial refractive power arrangement of a variable power optical system according to the present invention.

【図2】 本発明の数値実施例1の広角端のレンズ断面
FIG. 2 is a sectional view of a lens at a wide-angle end according to Numerical Embodiment 1 of the present invention.

【図3】 本発明の数値実施例2の広角端のレンズ断面
FIG. 3 is a sectional view of a lens at a wide-angle end according to a second numerical embodiment of the present invention;

【図4】 本発明の数値実施例3の広角端のレンズ断面
FIG. 4 is a sectional view of a lens at a wide-angle end according to a third numerical embodiment of the present invention.

【図5】 本発明の数値実施例1の広角端の諸収差図FIG. 5 is a diagram illustrating various aberrations at a wide-angle end according to Numerical Embodiment 1 of the present invention.

【図6】 本発明の数値実施例1の望遠端の諸収差図FIG. 6 is a diagram illustrating various aberrations at the telephoto end according to Numerical Embodiment 1 of the present invention.

【図7】 本発明の数値実施例1の望遠端の諸収差図FIG. 7 is a diagram showing various aberrations at the telephoto end according to Numerical Embodiment 1 of the present invention.

【図8】 本発明の数値実施例2の広角端の諸収差図FIG. 8 is a diagram illustrating various aberrations at the wide-angle end according to Numerical Example 2 of the present invention.

【図9】 本発明の数値実施例2の望遠端の諸収差図FIG. 9 is a diagram showing various aberrations at the telephoto end according to Numerical Example 2 of the present invention.

【図10】 本発明の数値実施例2の望遠端の諸収差図FIG. 10 is a diagram showing various aberrations at the telephoto end according to Numerical Example 2 of the present invention;

【図11】 本発明の数値実施例3の広角端の諸収差図FIG. 11 is a diagram illustrating various aberrations at a wide angle end according to Numerical Example 3 of the present invention.

【図12】 本発明の数値実施例3の望遠端の諸収差図FIG. 12 is a diagram illustrating various aberrations at the telephoto end according to Numerical Example 3 of the present invention.

【図13】 本発明の数値実施例3の望遠端の諸収差図FIG. 13 is a diagram illustrating various aberrations at the telephoto end according to Numerical Example 3 of the present invention.

【図14】 本発明に係る防振系の光学的原理の説明図FIG. 14 is an explanatory diagram of the optical principle of the vibration isolation system according to the present invention.

【符号の説明】[Explanation of symbols]

L1 第1群 L2 第2群 L3 第3群 L4 第4群 SP 絞り IP 像面 d d線 g g線 ΔM メリディオナル像面 ΔS サジタル像面 L1 First lens unit L2 Second lens unit L3 Third lens unit L4 Fourth lens unit SP Aperture IP image plane d d line g g line ΔM Meridional image plane ΔS Sagittal image plane

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に変倍及び合焦の際に固定
の正の屈折力の第1群、変倍機能を有する負の屈折力の
第2群、正の屈折力の第3群、そして変倍により変動す
る像面を補正する補正機能と合焦機能の双方の機能を有
する正の屈折力の第4群の4つのレンズ群を有した変倍
光学系であって、該第3群は像面側に凹面を向けたメニ
スカス状の負レンズL3Nと1つの非球面を有し、該第
3群を光軸と垂直方向に移動させて該変倍光学系が振動
したときの撮影画像のブレを補正していることを特徴と
する防振機能を有した変倍光学系。
1. A first lens unit having a fixed positive refractive power, a second lens unit having a negative refractive power having a zooming function, and a third lens unit having a positive refractive power during zooming and focusing in order from the object side. A variable power optical system having four lens units of a fourth lens unit having a positive refractive power and having both a correction function and a focusing function of correcting an image plane that fluctuates due to zooming; The third unit has a meniscus-shaped negative lens L3N having a concave surface facing the image surface side and one aspheric surface. When the third unit is moved in a direction perpendicular to the optical axis and the variable power optical system vibrates. A variable power optical system having an image stabilizing function characterized by correcting blurring of a photographed image.
【請求項2】 前記負レンズL3Nと前記第3群の焦点
距離を各々f3N,f3としたとき、 1.0<|f3N/f3|<1.6 なる条件を満足することを特徴とする請求項1の防振機
能を有した変倍光学系。
2. The condition that 1.0 <| f3N / f3 | <1.6 is satisfied, where f3N and f3 are the focal lengths of the negative lens L3N and the third lens unit, respectively. Item 6. A variable power optical system having the image stabilizing function according to item 1.
【請求項3】 前記負レンズL3N又はその像面側配置
されたレンズに非球面を有するレンズが配置されている
ことを特徴とする請求項1又は2の防振機能を有した変
倍光学系。
3. A variable power optical system having an anti-vibration function according to claim 1, wherein a lens having an aspherical surface is disposed on said negative lens L3N or a lens disposed on the image side thereof. .
【請求項4】 前記第3群は物体側に強い凸面を有する
正レンズL31、像面側に凹面を向けたメニスカス状の
負レンズL32、物体側に凸面を向けたメニスカス状の
正レンズL33を有していることを特徴とする請求項1
又は2の防振機能を有した変倍光学系。
4. The third lens group includes a positive lens L31 having a strong convex surface on the object side, a negative meniscus lens L32 having a concave surface facing the image side, and a positive meniscus lens L33 having a convex surface facing the object side. 2. The device according to claim 1, wherein
Or a variable power optical system having an anti-vibration function.
【請求項5】 前記正レンズL31又は正レンズL33
のうち少なくとも1つのレンズ面を非球面より構成した
ことを特徴とする請求項4の防振機能を有した変倍光学
系。
5. The positive lens L31 or the positive lens L33.
5. A variable power optical system having an image stabilizing function according to claim 4, wherein at least one of the lens surfaces comprises an aspherical surface.
【請求項6】 前記第3群の焦点距離をf3、全系の広
角端の焦点距離をfWとしたとき、 2.3<f3/fW<4.0 なる条件を満足することを特徴とする請求項1又は2の
防振機能を有した変倍光学系。
6. The condition that 2.3 <f3 / fW <4.0 is satisfied, where f3 is the focal length of the third lens unit and fW is the focal length at the wide-angle end of the entire system. 3. A variable power optical system having the image stabilizing function according to claim 1.
【請求項7】 前記第2群の焦点距離をf2、全系の広
角端と望遠端の焦点距離を各々fW,fTとしたとき、 【数1】 なる条件を満足することを特徴とする請求項1,2又は
6の防振機能を有した変倍光学系。
7. When the focal length of the second lens unit is f2, and the focal lengths at the wide-angle end and the telephoto end of the entire system are fW and fT, respectively. 7. A variable power optical system having an image stabilizing function according to claim 1, wherein the following conditions are satisfied.
【請求項8】 前記第3レンズ群,第4レンズ群の望遠
端における近軸横倍率を各々β3t,β4t、防振時に
おける第3レンズ群の最大移動量をDmとするとき 【数2】 なる条件を満足することを特徴とする請求項1,2又は
6の防振機能を有した変倍光学系。
8. When the paraxial lateral magnifications of the third lens unit and the fourth lens unit at the telephoto end are β3t and β4t, respectively, and the maximum movement amount of the third lens unit during image stabilization is Dm. 7. A variable power optical system having an image stabilizing function according to claim 1, wherein the following conditions are satisfied.
JP08442997A 1997-03-18 1997-03-18 Variable magnification optical system having anti-vibration function and imaging apparatus having the same Expired - Lifetime JP4095131B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP08442997A JP4095131B2 (en) 1997-03-18 1997-03-18 Variable magnification optical system having anti-vibration function and imaging apparatus having the same
EP98104787A EP0872751B1 (en) 1997-03-18 1998-03-17 Variable magnification optical system having image stabilizing function
DE69828215T DE69828215T2 (en) 1997-03-18 1998-03-17 Optical system of variable magnification with image stabilization
KR1019980009242A KR100320280B1 (en) 1997-03-18 1998-03-18 Variable magnification optical system having image stabilizing function
US09/251,415 US6473231B2 (en) 1997-03-18 1999-02-17 Variable magnification optical system having image stabilizing function
US09/997,088 US6606194B2 (en) 1997-03-18 2001-11-30 Variable magnification optical system having image stabilizing function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08442997A JP4095131B2 (en) 1997-03-18 1997-03-18 Variable magnification optical system having anti-vibration function and imaging apparatus having the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006107880A Division JP4314248B2 (en) 2006-04-10 2006-04-10 Variable magnification optical system having anti-vibration function and imaging apparatus having the same

Publications (2)

Publication Number Publication Date
JPH10260356A true JPH10260356A (en) 1998-09-29
JP4095131B2 JP4095131B2 (en) 2008-06-04

Family

ID=13830349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08442997A Expired - Lifetime JP4095131B2 (en) 1997-03-18 1997-03-18 Variable magnification optical system having anti-vibration function and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP4095131B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040889A1 (en) * 2003-10-22 2005-05-06 Matsushita Electric Industrial Co., Ltd. Zoom lens system, imaging device, and camera
JP2005134548A (en) * 2003-10-29 2005-05-26 Sony Corp Zoom lens
JP2005157279A (en) * 2003-10-29 2005-06-16 Sony Corp Zoom lens
US7057818B2 (en) 2002-04-04 2006-06-06 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
US7199940B2 (en) 2004-09-15 2007-04-03 Nikon Corporation Zoom lens system
US7227699B2 (en) 2005-07-22 2007-06-05 Canon Kabushiki Kaisha Zoom lens system and image pick-up apparatus including same
US7336419B2 (en) 1998-06-01 2008-02-26 Matsushita Electric Industrial Co., Ltd. Zoom lens, still image camera comprising the zoom lens, and video camera comprising the zoom lens
CN100437193C (en) * 2005-04-01 2008-11-26 佳能株式会社 Zoom lens system and image pickup apparatus including the same
JP2010286855A (en) * 2010-08-20 2010-12-24 Sony Corp Zoom lens
US7940472B2 (en) 2007-02-27 2011-05-10 Nikon Corporation Zoom lens and optical apparatus equipped therewith
US9470904B2 (en) 2013-12-26 2016-10-18 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586683B2 (en) 1998-06-01 2009-09-08 Panasonic Corporation Zoom lens, still image camera comprising the zoom lens, and video camera comprising the zoom lens
US7336419B2 (en) 1998-06-01 2008-02-26 Matsushita Electric Industrial Co., Ltd. Zoom lens, still image camera comprising the zoom lens, and video camera comprising the zoom lens
US7057818B2 (en) 2002-04-04 2006-06-06 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
US7139130B2 (en) 2003-10-22 2006-11-21 Matsushita Electric Industrial Co., Ltd. Zoom lens, and optical apparatus using the same
CN100386661C (en) * 2003-10-22 2008-05-07 松下电器产业株式会社 Zoom lens system, imaging device, and camera
WO2005040889A1 (en) * 2003-10-22 2005-05-06 Matsushita Electric Industrial Co., Ltd. Zoom lens system, imaging device, and camera
JP2005134548A (en) * 2003-10-29 2005-05-26 Sony Corp Zoom lens
JP2005157279A (en) * 2003-10-29 2005-06-16 Sony Corp Zoom lens
US7336425B2 (en) 2004-09-15 2008-02-26 Nikon Corporation Zoom lens system
US7218456B2 (en) 2004-09-15 2007-05-15 Nikon Corporation Zoom lens system
US7502173B2 (en) 2004-09-15 2009-03-10 Nikon Corporation Zoom lens system
US7199940B2 (en) 2004-09-15 2007-04-03 Nikon Corporation Zoom lens system
CN100437193C (en) * 2005-04-01 2008-11-26 佳能株式会社 Zoom lens system and image pickup apparatus including the same
US7227699B2 (en) 2005-07-22 2007-06-05 Canon Kabushiki Kaisha Zoom lens system and image pick-up apparatus including same
US7940472B2 (en) 2007-02-27 2011-05-10 Nikon Corporation Zoom lens and optical apparatus equipped therewith
JP2010286855A (en) * 2010-08-20 2010-12-24 Sony Corp Zoom lens
US9470904B2 (en) 2013-12-26 2016-10-18 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same

Also Published As

Publication number Publication date
JP4095131B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP3359131B2 (en) Variable power optical system with anti-vibration function
JP4447704B2 (en) Variable magnification optical system and camera having the same
JP5100411B2 (en) Zoom lens and imaging apparatus having the same
JP3352240B2 (en) High zoom ratio zoom lens
JP3072815B2 (en) Variable power optical system
JP4109884B2 (en) Zoom lens and optical apparatus having the same
JPH11174329A (en) Variable power optical system having vibration-proof function
JP2009175324A5 (en)
JP2008152190A (en) Zoom lens and imaging apparatus with same
JP3814406B2 (en) Variable magnification optical system having anti-vibration function and camera having the same
JP2002244037A (en) Variable power optical system having vibrationproof function and optical equipment using it
JPH11231220A (en) Optical magnification system having vibration proofing function
JP3919580B2 (en) Zoom lens and optical apparatus having the same
JP4545849B2 (en) Variable magnification optical system
JP4095131B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP4829445B2 (en) Zoom lens and optical apparatus having the same
JP4447706B2 (en) Variable magnification optical system having anti-vibration function and optical apparatus including the same
JPH10260355A (en) Variable power optical system with vibration-proof function
JP4314248B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP2001356270A (en) Variable power optical system having vibration-proof function and optical equipment using the same
JP2006189627A (en) Zoom lens and imaging apparatus having the same
JP3927684B2 (en) Variable magnification optical system with anti-vibration function
JP4324175B2 (en) Variable magnification optical system with anti-vibration function
JP3927730B2 (en) Variable magnification optical system with anti-vibration function
JP4764524B2 (en) Variable magnification optical system and camera having the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060905

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

EXPY Cancellation because of completion of term