JPH11162989A - Epitaxial silicon wafer and its manufacture - Google Patents

Epitaxial silicon wafer and its manufacture

Info

Publication number
JPH11162989A
JPH11162989A JP34410097A JP34410097A JPH11162989A JP H11162989 A JPH11162989 A JP H11162989A JP 34410097 A JP34410097 A JP 34410097A JP 34410097 A JP34410097 A JP 34410097A JP H11162989 A JPH11162989 A JP H11162989A
Authority
JP
Japan
Prior art keywords
wafer
epitaxial
layer
osf
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34410097A
Other languages
Japanese (ja)
Other versions
JP4356039B2 (en
Inventor
Takeshi Nomachi
健 野町
Masataka Horai
正隆 宝来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP34410097A priority Critical patent/JP4356039B2/en
Publication of JPH11162989A publication Critical patent/JPH11162989A/en
Application granted granted Critical
Publication of JP4356039B2 publication Critical patent/JP4356039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epitaxial silicon wafer which is given gettering function to make the other than a device active region catch metallic impurities without fail in simple process, without adopting such a means as to apply complicated multistage heat treatment requiring long time before and after conventional epitaxial growth. SOLUTION: Thermal oxidation (1000-1200 deg.C) is applied to a wafer for epitaxial growth which has capability of producing oxidation inductive stacking fault or a wafer for epitaxial growth which has the above capability by performing processing such as sand blast method, ion implantation method, etc., so as to introduce distortion. Then, OSF(oxidation inductive stacking fault) is produced in the surface layer of the wafer, and in the case of the wafer where the sand blast method or the like is applied, specular processing is applied further to the surface so as to form a wafer mirror face where OSF is exposed, and then an epitaxial layer is formed. As a result, the gettering function can be simply given to it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、金属不純物をデ
バイス活性領域外に捕獲させるゲッタリング能を有した
エピタキシャルシリコンウェーハに係り、例えば、ウェ
ーハ表面に歪みを導入後に酸素含有雰囲気で熱処理して
酸化誘起積層欠陥を形成し、その後必要に応じて鏡面研
磨した後、エピタキシャル層を成膜することにより、簡
単な工程で確実な金属不純物のゲッタリング能を得たエ
ピタキシャルシリコンウェーハとその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epitaxial silicon wafer having a gettering ability for trapping metal impurities outside a device active region. The present invention relates to an epitaxial silicon wafer having a reliable gettering capability of metal impurities in a simple process by forming an induced stacking fault, and thereafter performing mirror polishing as needed, and then forming an epitaxial layer, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】現在シリコン半導体デバイスの高集積化
は急速に進行しており、シリコンウェーハに要求される
特性はますます厳しくなっている。高集積デバイスにお
いては、デバイスが形成される、いわゆるデバイス活性
領域に結晶欠陥、あるいはドーパント以外の金属不純物
が含まれていると、リーク電流の増大などの電気的特性
の劣化を招く。
2. Description of the Related Art At present, integration of silicon semiconductor devices is rapidly increasing, and characteristics required for silicon wafers are becoming more severe. In a highly integrated device, if a device is formed, that is, a so-called device active region contains a crystal defect or a metal impurity other than a dopant, electrical characteristics such as an increase in leak current are deteriorated.

【0003】従来、高集積化シリコン半導体デバイス
は、CZ法で育成されたCZ‐Si基板が用いられてき
たが、これらのCZ−Si基板には過飽和の格子間酸素
が約1018atoms/cm3のオーダーで含まれてお
り、デバイスプロセスにおいて酸素析出物や転位、積層
欠陥などの結晶欠陥が誘起されることは良く知られてい
る。
Conventionally, CZ-Si substrates grown by the CZ method have been used for highly integrated silicon semiconductor devices. These CZ-Si substrates contain supersaturated interstitial oxygen at about 10 18 atoms / cm 2. included in the third order, the oxygen precipitates and dislocation, the crystal defects such as stacking faults is induced are well known in the device process.

【0004】しかし、従来LOCOS形成やWELL拡
散層形成のために1100〜1200℃の高温で数時間
の熱処理が行われていたため、基板表面近傍では格子間
酸素の外方拡散によって表面近傍数10μmには結晶欠
陥のないいわゆるDZ(Denuded Zone)層
がデバイスプロセス中に形成され、ウェーハ表面のデバ
イス活性領域での結晶欠陥の発生が自然に抑制されてい
た。
However, in the past, heat treatment was performed at a high temperature of 1100 to 1200 ° C. for several hours to form a LOCOS and a WELL diffusion layer. In this method, a so-called DZ (Deluded Zone) layer having no crystal defects was formed during a device process, and generation of crystal defects in a device active region on a wafer surface was naturally suppressed.

【0005】しかしながら、半導体デバイスの微細化に
伴い、WELL形成に高エネルギーイオン注入法が用い
られ、デバイスプロセスが1050℃以下の低温で行わ
れるようになると、上記の酸素外方拡散が充分に起こら
ず、表面近傍でのデバイスプロセス中におけるDZ層の
形成が困難となってきた。このために基板の低酸素化が
行われてきたが、結晶欠陥の発生を完全に抑制すること
は困難であった。
However, with the miniaturization of semiconductor devices, high-energy ion implantation is used for WELL formation, and when the device process is performed at a low temperature of 1050 ° C. or less, the above-described oxygen outward diffusion occurs sufficiently. However, it has become difficult to form a DZ layer near the surface during device processing. For this reason, oxygen reduction of the substrate has been performed, but it has been difficult to completely suppress generation of crystal defects.

【0006】このようなことから、結晶欠陥をほぼ完全
に含まないエピタキシャル層を基板上に成長させたエピ
タキシャルウェーハが、今日の高集積化デバイスに多く
用いられている。ところが結晶の完全性が高いエピタキ
シャルウェーハを用いても、その後のデバイス工程にお
けるエピタキシャル膜の金属不純物汚染がデバイスの特
性を悪化させるため、金属不純物をデバイス活性領域か
ら離れた場所(シンク)に捕獲させるゲッタリング技術
が必要となる。
For these reasons, epitaxial wafers in which an epitaxial layer substantially free of crystal defects is grown on a substrate are widely used in today's highly integrated devices. However, even when an epitaxial wafer having high crystal integrity is used, metal impurity contamination of the epitaxial film in the subsequent device process deteriorates the characteristics of the device, so that the metal impurity is captured at a location (sink) remote from the device active region. Gettering technology is required.

【0007】従来のゲッタリング技術としては、デバイ
スプロセスにおける熱処理中に自然に誘起される酸素起
因の結晶欠陥をシンクとするイントリンシックゲッタリ
ング(IG)や、ウェーハ裏面へのサンドブラストによ
る裏面歪付けや、LPCVDによる多結晶シリコン膜の
裏面コートなどに代表されるエクストリンシックゲッタ
リング(EG)が用いられてきた。
[0007] Conventional gettering techniques include intrinsic gettering (IG) using a crystal defect caused by oxygen naturally induced during heat treatment in a device process as a sink, back surface distortion by sand blast on the back surface of the wafer, and the like. Extrinsic gettering (EG) typified by the backside coating of a polycrystalline silicon film by LPCVD has been used.

【0008】[0008]

【発明が解決しようとする課題】エピタキシャル工程に
おいては、1050℃〜1200℃の高温熱処理が施さ
れるためにCZ‐Si基板に内在する酸素析出核が縮
小、消滅するために、その後のデバイスプロセスにおい
て基板内に充分な結晶欠陥を誘起することが困難であ
る。従って、デバイスプロセスの初期においてはもちろ
んのこと、プロセス全体にわたり金属不純物に対するI
G効果が低減するという新たな問題が生じた。
In the epitaxial process, a high-temperature heat treatment at 1050 ° C. to 1200 ° C. is performed to reduce or eliminate oxygen precipitation nuclei existing in the CZ-Si substrate. In this case, it is difficult to induce a sufficient crystal defect in the substrate. Therefore, not only at the beginning of the device process but also throughout the process, the I
There is a new problem that the G effect is reduced.

【0009】この問題を解決するために、エピタキシャ
ル工程の前後にウェーハに熱処理を施すことにより故意
に生成させた結晶欠陥をシンクとするIGが用いられて
きた。
In order to solve this problem, an IG has been used in which a crystal defect intentionally generated by subjecting a wafer to a heat treatment before and after the epitaxial process is used as a sink.

【0010】この熱処理は、基本的に酸素の外方拡散に
よりウェーハ表面の酸素濃度を減少させ、デバイス活性
領域における酸素析出物の生成を抑制する高温熱処理
(1000〜1200℃)、欠陥核生成のための低温熱
処理(600〜800℃)および成長のための中温熱処
理(800〜1000℃)から構成されており、これら
の処理には多くの時間を要するため、コスト増大の問題
があった。
This heat treatment is basically a high-temperature heat treatment (1000-1200 ° C.) for reducing the oxygen concentration on the wafer surface by outward diffusion of oxygen and suppressing the formation of oxygen precipitates in the device active region, and for forming defect nuclei. And a medium temperature heat treatment (800-1000 ° C.) for growth, and these processes require a lot of time, and thus have a problem of cost increase.

【0011】また、これら結晶中の酸素起因結晶欠陥の
生成、成長を制御するためには、上記熱処理方法による
制御の他に、基板中の酸素濃度をCZ結晶引き上げ時に
おいて厳密に制御する必要がある。CZ結晶成長時にお
いて、酸素濃度を厳密に制御するための技術としてMC
Z法などが用いられるため、コスト増大の問題があっ
た。
In order to control the generation and growth of oxygen-induced crystal defects in these crystals, it is necessary to strictly control the oxygen concentration in the substrate when pulling the CZ crystal, in addition to the control by the above-mentioned heat treatment method. is there. As a technique for strictly controlling the oxygen concentration during CZ crystal growth, MC
Since the Z method is used, there is a problem of an increase in cost.

【0012】EG処理については、サンドブラスト処理
では歪みを付けた面からのパーティクル発生の問題があ
る。また裏面に多結晶シリコン膜を付ける方法ではコス
トの問題の他に、多結晶膜形成後に鏡面加工を行うため
膜厚のばらつきによるフラットネスの低下が生じる問題
がある。さらに、デバイス熱プロセス中において多結晶
膜の再結晶化が起こり、デバイスプロセス中におけるゲ
ッタリング能力の低下が起こるといった問題がある。
Regarding the EG processing, there is a problem in the sand blast processing that particles are generated from a distorted surface. In addition, in the method of attaching a polycrystalline silicon film to the back surface, there is a problem that the flatness is reduced due to a variation in film thickness because mirror processing is performed after the polycrystalline film is formed, in addition to the problem of cost. Further, there is a problem that the polycrystalline film is recrystallized during the device heat process, and the gettering ability is reduced during the device process.

【0013】この発明は、従来のエピタキシャル成長前
後に複雑かつ長時間を要する多段の熱処理を施す等の手
段を採用することなく、簡単な工程で確実に、金属不純
物をデバイス活性領域外に捕獲させるゲッタリング能を
付与したエピタキシャルシリコンウェーハの提供を目的
としている。
According to the present invention, a getter for reliably capturing metal impurities outside a device active region by a simple process without employing a conventional multi-step heat treatment requiring a complicated and long time before and after epitaxial growth is adopted. The purpose is to provide an epitaxial silicon wafer with a ring ability.

【0014】[0014]

【課題を解決するための手段】発明者は、エピタキシャ
ルシリコンウェーハに金属不純物をデバイス活性領域外
に捕獲させるゲッタリング能を簡単に付与できる製造方
法を目的に種々検討した結果、鏡面側に酸化誘起積層欠
陥(以下OSFと記す)を有するシリコンエピタキシャ
ル成長基板ウェーハ上に、エピタキシャル層が成長する
に伴い、基板表面に露呈していたOSFがエピタキシャ
ル層に伝搬し、あるエピタキシャル厚みで完全に閉じる
という現象を知見した。
The inventors of the present invention have conducted various studies on a manufacturing method capable of easily providing a gettering ability for capturing metal impurities outside the device active region on an epitaxial silicon wafer. As the epitaxial layer grows on a silicon epitaxial growth substrate wafer having stacking faults (hereinafter referred to as OSF), the OSF exposed on the substrate surface propagates to the epitaxial layer and is completely closed at a certain epitaxial thickness. I learned.

【0015】そこで発明者は、上記現象を利用すべくさ
らに検討を加えた結果、自ら酸化誘起積層欠陥を発生さ
せる能力を有するエピタキシャル成長用ウェーハ、ある
いはサンドブラスト法やイオン注入法などの処理を行い
歪みを導入して前記能力を有するエピタキシャル成長用
ウェーハに、高温熱酸化(1000〜1200℃)を施
し、ウェーハ表層にOSFを発生させ、サンドブラスト
法などを施したウェーハの場合はさらに表面に鏡面加工
を施し、OSFの露呈したウェーハ鏡面を形成した後、
エピタキシャル層を形成することにより、ゲッタリング
能を簡単に付与できることを知見し、この発明を完成し
た。
The inventor has further studied to utilize the above phenomenon, and as a result, has performed a process such as an epitaxial growth wafer having a capability of generating oxidation-induced stacking faults by itself, or a sandblast method or an ion implantation method to reduce distortion. A wafer for epitaxial growth having the above capability is subjected to high-temperature thermal oxidation (1000 to 1200 ° C.) to generate OSF on the surface layer of the wafer. In the case of a wafer subjected to sandblasting or the like, the surface is further mirror-finished, After forming the OSF exposed wafer mirror surface,
The present inventors have found that the gettering ability can be easily provided by forming an epitaxial layer, and completed the present invention.

【0016】すなわち、この発明は、シリコンウェーハ
の表層に酸化誘起積層欠陥を有し、その上層にエピタキ
シャル層が成膜されたことを特徴とするエピタキシャル
シリコンウェーハであり、エピタキシャル厚をL、酸化
誘起積層欠陥最大直径をD、必要デバイス活性層厚みを
Mとしたとき、L=1.41D+Mの関係式より求めら
れる厚み以上のエピタキシャル層を設けたことにより、
デバイス活性層の直下にゲッタリングシンクであるOS
F層を有するエピタキシャルウェーハを得ることがで
き、目的を達成できる。
That is, the present invention relates to an epitaxial silicon wafer characterized by having an oxidation-induced stacking fault in the surface layer of the silicon wafer and an epitaxial layer formed thereon, wherein the epitaxial thickness is L, When the maximum stacking fault diameter is D and the required device active layer thickness is M, by providing an epitaxial layer having a thickness equal to or greater than the thickness obtained from the relational expression of L = 1.41D + M,
OS that is a gettering sink directly under the device active layer
An epitaxial wafer having an F layer can be obtained, and the object can be achieved.

【0017】[0017]

【発明の実施の形態】この発明は、鏡面側にOSFを有
するシリコンエピタキシャルウェーハ基板上に、エピタ
キシャル層が成長するに伴い、基板表面に露呈していた
OSFがエピタキシャル層に伝搬し、あるエピタキシャ
ル厚で完全に閉じるという現象の発見に基づくものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a silicon epitaxial wafer substrate having an OSF on the mirror surface, as the epitaxial layer grows, the OSF exposed on the substrate surface is propagated to the epitaxial layer, and a certain epitaxial thickness is obtained. Is completely closed.

【0018】OSFは(111)面上にある面欠陥であ
り、この場合、欠陥周囲の転位は表面に抜けている。図
1に示すように、この転位がエピタキシャル成長に伴
い、OSF面方位に対して垂直でかつウェーハ表面に対
して45℃の角をなす<110>系列の方向に転位線が
延び、OSFは収縮する。この際、(100)表面を持
つウェーハでは基板表面におけるOSFの長さをD、エ
ピタキシャル厚をLとしたとき、L=1.41Dのエピ
タキシャル厚でOSFは完全に閉じる。
The OSF is a plane defect on the (111) plane. In this case, dislocations around the defect are missing on the surface. As shown in FIG. 1, the dislocation lines extend in the <110> series of directions perpendicular to the OSF plane orientation and at an angle of 45 ° C. with respect to the wafer surface, and the OSF shrinks with the epitaxial growth due to the dislocation. . At this time, in a wafer having a (100) surface, when the length of the OSF on the substrate surface is D and the epitaxial thickness is L, the OSF is completely closed at an epitaxial thickness of L = 1.41D.

【0019】従って、OSF形成時の酸化温度及び時間
を制御することにより、基板表層に導入するOSFの大
きさ制御し、上記関係からL=1.41D+Mの関係式
より求められる厚み以上のエピタキシャル層を設けたこ
とにより、所定のエピタキシャル厚内にデバイス活性層
とゲッタリングシンクであるOSF層を作り込むことが
できる。
Therefore, by controlling the oxidation temperature and time during the formation of the OSF, the size of the OSF to be introduced into the surface layer of the substrate is controlled, and the epitaxial layer having a thickness equal to or greater than the thickness obtained from the above relation from the relational expression L = 1.41D + M Is provided, a device active layer and an OSF layer serving as a gettering sink can be formed within a predetermined epitaxial thickness.

【0020】この発明において、サンドブラスト法など
の機械的な歪みを導入して酸化誘起積層欠陥を発生させ
る能力を有するに至ったエピタキシャル成長用ウェーハ
は、熱処理後、エピタキシャル成長前に鏡面研磨を施す
必要があるが、自ら酸化誘起積層欠陥を発生させる能力
を有する場合やイオン注入法などの処理を行い歪みを導
入して酸化誘起積層欠陥を発生させる能力を有するに至
ったエピタキシャル成長用ウェーハは、特にエピタキシ
ャル成長前に再度鏡面研磨を施す必要がない。
In the present invention, a wafer for epitaxial growth, which has the ability to generate oxidation-induced stacking faults by introducing mechanical strain such as sandblasting, needs to be mirror-polished after heat treatment and before epitaxial growth. However, wafers for epitaxial growth, which have the ability to generate oxidation-induced stacking faults by themselves, or have the ability to generate oxidation-induced stacking faults by introducing strain by performing processes such as ion implantation, especially before epitaxial growth There is no need to perform mirror polishing again.

【0021】[0021]

【実施例】実施例1 試料として、直径4インチp型(100):抵抗率17
〜23Ωcm、格子間酸素濃度11〜15×1017at
oms/cm3、のCZ‐Siウェーハを用いた。これ
らのサンプルウェーハに、サンドブラスト処理を行い、
乾燥酸素雰囲気中で1150℃で2時間の熱処理を行い
OSFを形成させた。次にウェーハ表面を鏡面加工し約
3μm削り、OSFを表面に完全に露呈させた。さらに
エピタキシャル反応炉において、1010℃で塩化水素
ガスにより約0.5μmエッチングした後、1010℃
でシリコン層を約15μm成長させた。
EXAMPLE 1 As a sample, a 4-inch diameter p-type (100): resistivity 17
~ 23Ωcm, interstitial oxygen concentration 11 ~ 15 × 10 17 at
oms / cm 3 , a CZ-Si wafer was used. Sandblasting these sample wafers,
Heat treatment was performed at 1150 ° C. for 2 hours in a dry oxygen atmosphere to form an OSF. Next, the wafer surface was mirror-polished and shaved by about 3 μm, so that the OSF was completely exposed on the surface. Further, in an epitaxial reactor, after etching about 0.5 μm with hydrogen chloride gas at 1010 ° C.,
To grow a silicon layer of about 15 μm.

【0022】以上の方法により作成した試料をウェーハ
断面方向、すなわちウェーハ(100)を(110)方
向に透過型電子顕微鏡(TEM)試料として加工した後
に観察した結果を、断面TEM観察写真を図2、また、
平面TEM観察写真を図3に示す。図2からOSFがエ
ピタキシャル成長と共に収縮していることが確認され、
さらに図1の模式図に示すごとく、OSFはエピタキシ
ャル層の成長と共にエピタキシャル厚をL、OSF直径
をDとすると、L=1.34Dの関係式により求められ
るエピタキシャル厚にて消滅することが分かる。
FIG. 2 is a cross-sectional TEM observation photograph showing the result of observing the sample prepared by the above method after processing it as a transmission electron microscope (TEM) sample in the cross-sectional direction of the wafer, that is, the wafer (100) in the (110) direction. ,Also,
FIG. 3 shows a planar TEM observation photograph. From FIG. 2, it was confirmed that the OSF was contracted with the epitaxial growth,
Further, as shown in the schematic diagram of FIG. 1, when the epitaxial thickness is L and the OSF diameter is D with the growth of the epitaxial layer, the OSF disappears at the epitaxial thickness determined by the relational expression of L = 1.34D.

【0023】実施例2 上記ウェーハのゲッタリング能力を調べるために以下の
ような評価を行った。試料として上記方法にて作成した
ウェーハと、LPCVD炉にて裏面に多結晶膜を約1μ
m堆積させたもの、及び何も処理をしていないウェーハ
の3種類のウェーハを用いて以下のような評価を行っ
た。
Example 2 The following evaluation was performed to examine the gettering ability of the wafer. A wafer prepared by the above method was used as a sample, and a polycrystalline film was formed on the back of the
The following evaluations were performed using three types of wafers, one on which m deposition was performed and the other on which no treatment was performed.

【0024】これらのウェーハ表面を3ppmのCu
(NO32水溶液でスピンコーターにより汚染した後、
図4に示すデバイスプロセスを想定した簡易熱処理を乾
燥酸素雰囲気中で行い、熱処理の進行に伴うゲッタリン
グ効果の変化を調べるためにプロセス中の図4中A〜C
の3ポイントからウェーハをそれぞれ抜き取った。
The surfaces of these wafers were treated with 3 ppm of Cu.
(NO 3 ) 2 After contamination with an aqueous solution by a spin coater,
A simple heat treatment assuming the device process shown in FIG. 4 is performed in a dry oxygen atmosphere, and A to C shown in FIG.
Wafers were extracted from each of the three points.

【0025】次に、熱酸化膜をフッ酸で除去した後、1
000℃で2時間乾燥酸素雰囲気で酸化し約75nmの
ゲート酸化膜を形成し、500nmのAl膜を蒸着し4
50℃で30分間窒素雰囲気中でシンタリングを行い、
ガード電極を有する1mm×1mmのゲート電極を作成
した。次にMOSの発生ライフタイムによってゲッタリ
ング評価を行った。
Next, after removing the thermal oxide film with hydrofluoric acid,
Oxidation is performed in a dry oxygen atmosphere at 000 ° C. for 2 hours to form a gate oxide film having a thickness of about 75 nm.
Perform sintering in a nitrogen atmosphere at 50 ° C for 30 minutes,
A 1 mm × 1 mm gate electrode having a guard electrode was formed. Next, gettering evaluation was performed based on the generation lifetime of the MOS.

【0026】発生ライフタイムを測定した結果を図5に
示す。この結果からこの発明の製造方法により作成した
ウェーハは、IG処理及び多結晶シリコン膜を堆積させ
たウェーハと比較してプロセス初期から最終までほぼ一
定のライフタイムを示ことから、デバイス熱プロセス中
において一様なゲッタリング能力を保つことが分かる。
FIG. 5 shows the results of measuring the occurrence lifetime. From this result, the wafer prepared by the manufacturing method of the present invention shows a substantially constant lifetime from the beginning to the end of the process as compared with the wafer on which the IG processing and the polycrystalline silicon film are deposited. It can be seen that uniform gettering ability is maintained.

【0027】[0027]

【発明の効果】この発明は、ウェーハ表面に歪みを導入
後に酸素含有雰囲気で熱処理して酸化誘起積層欠陥を形
成し、その後エピタキシャル層を成膜することにより、
デバイス活性層直下にゲッタリングシンクを形成するこ
とが可能となった。これにより、デバイス活性層に非常
に近接した位置にゲッタリング層を形成することがで
き、効率良くゲッタリングができる。
According to the present invention, by introducing a strain into a wafer surface and then performing a heat treatment in an oxygen-containing atmosphere to form oxidation-induced stacking faults and then forming an epitaxial layer,
A gettering sink can be formed immediately below the device active layer. Thereby, a gettering layer can be formed at a position very close to the device active layer, and gettering can be performed efficiently.

【0028】また、この発明において、OSFは一度形
成すると熱プロセスにおいて安定な状態を維持するため
に、デバイスプロセス中においてほとんど消滅しない。
このためエピタキシャル成長プロセス及びデバイスプロ
セス初期から全般にわたり安定してゲッタリング能力を
維持することができるようになった。
In the present invention, since the OSF is formed once and maintains a stable state in the thermal process, it hardly disappears during the device process.
Therefore, the gettering ability can be stably maintained throughout the epitaxial growth process and the initial stage of the device process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ウェーハ表面におけるOSFがエピタキシャル
成長に伴い閉じる様子を図示する模式図である。
FIG. 1 is a schematic diagram illustrating a state in which an OSF on a wafer surface is closed with epitaxial growth.

【図2】この発明方法にて作成したエピタキシャルシリ
コンウェーハ(100)を(110)方向に透過型電子
顕微鏡(TEM)観察した結果を示す断面写真である。
FIG. 2 is a cross-sectional photograph showing the result of observing a transmission electron microscope (TEM) in the (110) direction of the epitaxial silicon wafer (100) produced by the method of the present invention.

【図3】図2のTEM試料の平面写真である。FIG. 3 is a plan photograph of the TEM sample of FIG. 2;

【図4】デバイスプロセスを想定した熱シミュレーショ
ンの温度変化を示すヒートパターン図である。
FIG. 4 is a heat pattern diagram showing a temperature change in a thermal simulation assuming a device process.

【図5】ヒートパターン図の図4に示すA、B、Cの3
カ所より取り出したそれぞれのウェーハの発生ライフタ
イムの測定結果を示すグラフである。
FIG. 5 shows A, B, and C shown in FIG. 4 of the heat pattern diagram.
It is a graph which shows the measurement result of generation lifetime of each wafer taken out from three places.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリコンウェーハの表層に酸化誘起積層
欠陥を有し、その上層にエピタキシャル層が成膜された
エピタキシャルシリコンウェーハ。
1. An epitaxial silicon wafer having an oxidation-induced stacking fault on a surface layer of a silicon wafer and an epitaxial layer formed thereon.
【請求項2】 請求項1において、エピタキシャル厚を
L、酸化誘起積層欠陥最大直径をD、必要デバイス活性
層厚みをMとしたとき、L=1.41D+Mの関係式よ
り求められる厚み以上のエピタキシャル層を有するエピ
タキシャルシリコンウェーハ。
2. An epitaxial layer having a thickness equal to or greater than a thickness obtained from a relational expression of L = 1.41D + M, where L is an epitaxial thickness, D is a maximum diameter of oxidation-induced stacking faults, and M is a thickness of a necessary device active layer. An epitaxial silicon wafer having a layer.
【請求項3】 酸化誘起積層欠陥を発生させる能力を有
するシリコンエピタキシャル成長用ウェーハを酸素を含
む雰囲気中において熱処理して、表層に酸化誘起積層欠
陥を導入した後、ウェーハ表面にエピタキシャル層を形
成するエピタキシャルシリコンウェーハの製造方法。
3. An epitaxial growth method comprising: heat-treating a silicon epitaxial growth wafer capable of generating oxidation-induced stacking faults in an atmosphere containing oxygen to introduce oxidation-induced stacking faults into a surface layer; and forming an epitaxial layer on the wafer surface. Silicon wafer manufacturing method.
【請求項4】 請求項3において、シリコンエピタキシ
ャル成長用ウェーハが表面に歪みを導入されたウェーハ
であるエピタキシャルシリコンウェーハの製造方法。
4. The method for producing an epitaxial silicon wafer according to claim 3, wherein the silicon epitaxial growth wafer is a wafer having a surface with strain introduced.
JP34410097A 1997-11-28 1997-11-28 Epitaxial silicon wafer manufacturing method Expired - Fee Related JP4356039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34410097A JP4356039B2 (en) 1997-11-28 1997-11-28 Epitaxial silicon wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34410097A JP4356039B2 (en) 1997-11-28 1997-11-28 Epitaxial silicon wafer manufacturing method

Publications (2)

Publication Number Publication Date
JPH11162989A true JPH11162989A (en) 1999-06-18
JP4356039B2 JP4356039B2 (en) 2009-11-04

Family

ID=18366652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34410097A Expired - Fee Related JP4356039B2 (en) 1997-11-28 1997-11-28 Epitaxial silicon wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP4356039B2 (en)

Also Published As

Publication number Publication date
JP4356039B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
US6641888B2 (en) Silicon single crystal, silicon wafer, and epitaxial wafer.
JPS6255697B2 (en)
JPS6124240A (en) Semiconductor substrate
KR100319413B1 (en) Method for manufacturing semiconductor silicon epitaxial wafer and semiconductor device
JP3381816B2 (en) Semiconductor substrate manufacturing method
US6878451B2 (en) Silicon single crystal, silicon wafer, and epitaxial wafer
US5951755A (en) Manufacturing method of semiconductor substrate and inspection method therefor
JPH1074771A (en) Method and apparatus for heat treating silicon single crystal wafer, silicon monocrystalline wafer and its manufacture
JPH07335657A (en) Silicon wafer and its thermal treatment method
JPH11168106A (en) Treatment method of semiconductor substrate
WO2010131412A1 (en) Silicon wafer and method for producing the same
JP2002184779A (en) Annealed wafer and method of manufacturing the same
US5574307A (en) Semiconductor device and method of producing the same
KR20050015983A (en) Silicon wafer and process for producing it
JPH11204534A (en) Manufacture of silicon epitaxial wafer
JP4035886B2 (en) Silicon epitaxial wafer and manufacturing method thereof
EP1202334A1 (en) Method of producing silicon epitaxial wafers
JP4356039B2 (en) Epitaxial silicon wafer manufacturing method
KR20020060244A (en) Method for manufacturing annealed wafer and annealed wafer
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JP3944958B2 (en) Silicon epitaxial wafer and manufacturing method thereof
JPH09223699A (en) Silicon wafer and its manufacturing method
JPH0897222A (en) Manufacture of silicon wafer, and silicon wafer
JPH11297704A (en) Evaluation method for oxygen deposit density
JP2010040638A (en) Method of manufacturing soi substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees