JPH10260009A - Coordinate measuring device - Google Patents

Coordinate measuring device

Info

Publication number
JPH10260009A
JPH10260009A JP9068269A JP6826997A JPH10260009A JP H10260009 A JPH10260009 A JP H10260009A JP 9068269 A JP9068269 A JP 9068269A JP 6826997 A JP6826997 A JP 6826997A JP H10260009 A JPH10260009 A JP H10260009A
Authority
JP
Japan
Prior art keywords
interferometer
stage
measuring
shape
movable mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9068269A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kato
勝弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9068269A priority Critical patent/JPH10260009A/en
Publication of JPH10260009A publication Critical patent/JPH10260009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coordinate measuring device which can avoid influence from shape of a moving mirror reliably. SOLUTION: The device is equipped with shape measuring interferometers 13, 14 which detect the relative position between two points by irradiating two points on a moving mirror 2X with laser beam, and rotational angle detecting interferometers 21, 22 which detect the rotational angle of a stage 1 based on the relative position between two points when the laser beam is irradiated to the two points on the stage 1. The shape of the moving mirror 2X is determined by combining plural relative position data which are detected by the shape measuring interferometer 13, 14 when the stage 1 is moved along the moving mirror 2X, and by correcting relative position data based on rotational angle data which are detected by the rotational angle interferometers 21, 22. Coordinates on measuring point are corrected based on the determined shape of the moving mirror 2X.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被測定物を移動す
るステージの位置を介して被測定物の測定点の座標を測
定する座標測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coordinate measuring device for measuring the coordinates of a measurement point on an object to be measured via a position of a stage for moving the object.

【0002】[0002]

【従来の技術】被測定物を載置するステージに平面状の
移動鏡を取付けておき、この移動鏡にレーザ光を照射す
ることによりステージの位置を計測する座標測定装置が
知られている。図10に示すように、2つの移動鏡2X
および移動鏡2Yの鏡面をそれぞれX軸およびY軸に直
交して取付けるとともに、移動鏡2Xに干渉計40Xか
らX軸方向のレーザビームを、移動鏡2Yに干渉計40
YからY軸方向のレーザビームをそれぞれ照射して反射
させ、レーザ光の往復光路長を計測することによりステ
ージ101のXY座標が計測できる。被測定物上の測定
点が所定の位置に位置決めされるようにステージ101
を移動した後に上述のようにステージ101の位置を計
測することにより、ステージ101の位置を介して測定
点の座標を測定することができる。
2. Description of the Related Art There is known a coordinate measuring apparatus in which a plane movable mirror is mounted on a stage on which an object to be measured is mounted, and the position of the stage is measured by irradiating the movable mirror with laser light. As shown in FIG. 10, two movable mirrors 2X
And the mirror surface of the movable mirror 2Y is mounted orthogonally to the X axis and the Y axis, respectively, and a laser beam in the X-axis direction from the interferometer 40X is applied to the movable mirror 2X, and the interferometer 40
The XY coordinates of the stage 101 can be measured by irradiating and reflecting the laser beams from Y to the Y-axis direction and measuring the reciprocating optical path length of the laser light. The stage 101 is moved so that the measurement point on the object is positioned at a predetermined position.
By moving the stage 101 and measuring the position of the stage 101 as described above, the coordinates of the measurement point can be measured via the position of the stage 101.

【0003】[0003]

【発明が解決しようとする課題】しかし、座標測定装置
のステージ101に取付ける移動鏡2X,2Yの平面度
(真直度)精度が悪い場合、レーザ光の照射位置によっ
てレーザ光の光路差にばらつきを生ずるため、座標測定
データに誤差が混入する。移動鏡2X,2Yの平面度が
悪い場合に、理想格子状のマスクパターン102の形状
を測定したとすると、図10に示すように移動鏡2X,
2Yの歪みに対して反転した歪みが測定データに現れ
る。したがって座標測定装置ではこのような移動鏡2
X,2Yの歪みを補正しなければ真の形状(座標)を求
めることができない。
However, when the flatness (straightness) accuracy of the movable mirrors 2X and 2Y attached to the stage 101 of the coordinate measuring device is poor, the difference in the optical path difference of the laser light depends on the irradiation position of the laser light. Therefore, an error is mixed in the coordinate measurement data. If the shape of the ideal lattice-like mask pattern 102 is measured when the flatness of the movable mirrors 2X and 2Y is poor, as shown in FIG.
Distortion inverted from 2Y distortion appears in the measurement data. Therefore, such a movable mirror 2 is used in the coordinate measuring device.
Unless the X and 2Y distortions are corrected, the true shape (coordinates) cannot be obtained.

【0004】移動鏡の歪みを補正する方法として、図1
1に示すように、同一マスクパターン103を0度およ
び180度の回転姿勢で形状測定し、2つの座標測定結
果からパターンの曲り成分を取り除く手法が考えられ
る。しかし、この方法では移動鏡2X,2Yの歪みのう
ち線対称な成分(偶数次成分)しか測定できず(図11
(a))、点対称な歪み(奇数次成分)については測定
できない。例えば、図11(b)に示すように、点対称
形状であるS字形状の歪みを180度回転しても同一形
状のS字形状になるため、差分が全く測定できず、移動
鏡2X,2Yの歪みの補正を行うことができない。
FIG. 1 shows a method for correcting the distortion of a moving mirror.
As shown in FIG. 1, a method is conceivable in which the same mask pattern 103 is shape-measured at 0 ° and 180 ° rotation postures, and a curved component of the pattern is removed from two coordinate measurement results. However, in this method, only the line-symmetric components (even-order components) of the distortion of the movable mirrors 2X and 2Y can be measured (FIG. 11).
(A)), a point-symmetric distortion (odd-order component) cannot be measured. For example, as shown in FIG. 11B, even if the distortion of the S-shape, which is a point-symmetric shape, is rotated by 180 degrees, the S-shape has the same shape, so that no difference can be measured at all and the movable mirror 2X, 2Y distortion cannot be corrected.

【0005】本発明の目的は、移動鏡の形状の影響を確
実に排除することができる座標測定装置を提供すること
にある。
An object of the present invention is to provide a coordinate measuring device capable of reliably eliminating the influence of the shape of a movable mirror.

【0006】[0006]

【課題を解決するための手段】実施の形態を示す図1〜
図8に対応づけて説明すると、請求項1に記載の発明
は、被測定物5を移動させるステージ1と、ステージ1
に取付けられた平面状の移動鏡2Xと、移動鏡2Xに向
けてレーザビームを照射することによりステージ1の位
置を計測する座標測定用干渉計41Xと、被測定物5上
の測定点を検出する検出器3とを備え、検出器3が測定
点を検出したときのステージ1の位置を座標測定用干渉
計41Xによって計測することにより測定点の座標を測
定する座標測定装置に適用される。そして、移動鏡2X
の2点にレーザビームを照射することにより2点間の相
対位置関係を検出する形状計測用干渉計13,14と、
ステージ1に設けた別の鏡2Yの2点にレーザビームを
照射したときの2点間の相対位置関係に基づいてステー
ジ1の回転角を検出する回転角検出用干渉計21,22
とを備え、移動鏡2Xに沿ってステージ1を移動したと
きに形状計測用干渉計13,14により検出した複数の
相対位置関係データを繋ぎ合わせるとともに、回転角検
出用干渉計21,22により検出した回転角データに基
づいて相対位置関係データを補正することにより移動鏡
2Xの形状を計測し、計測された移動鏡2Xの形状に基
づいて測定点の座標を補正するものである。請求項2に
記載の発明は、請求項1に記載の座標測定装置におい
て、移動鏡2Xと直交して設けられた第2の移動鏡2Y
と、第2の移動鏡2Yに向けてレーザビームを照射する
第2の座標測定用干渉計41Yとをさらに備え、移動鏡
2Xの形状計測時にはステージ1を第2の移動鏡2Yの
法線方向に移動させるとともに、回転角検出用干渉計2
1,22は第2の移動鏡2Yに向けてレーザビームを照
射するものである。請求項3に記載の発明は、請求項1
または2に記載の座標測定装置において、形状計測用干
渉計13,14から射出されたレーザビームの光軸に挿
入する平行平板30(31)を備え、平行平板30(3
1)を光軸に対して傾けることによりレーザビームを横
ずらしするものである。請求項4に記載の発明は、請求
項1〜3のいずれか1項に記載の座標測定装置におい
て、測定点の座標測定時には、形状計測用干渉計13,
14あるいは回転角検出用干渉計21,22を用いてス
テージ1の姿勢を計測し、計測されたステージ1の姿勢
に基づいて測定点の座標を補正するものである。
FIG. 1 shows an embodiment of the present invention.
Explaining with reference to FIG. 8, the invention according to claim 1 includes a stage 1 for moving an object 5 and a stage 1.
A movable mirror 2X attached to the mirror, an interferometer 41X for coordinate measurement for measuring the position of the stage 1 by irradiating the movable mirror 2X with a laser beam, and a measurement point on the DUT 5 are detected. The present invention is applied to a coordinate measuring device that measures the position of the stage 1 when the detector 3 detects a measurement point by the coordinate measuring interferometer 41X to measure the coordinates of the measurement point. And moving mirror 2X
Shape measuring interferometers 13 and 14 for detecting the relative positional relationship between the two points by irradiating the two points with a laser beam;
Rotation angle detection interferometers 21 and 22 for detecting the rotation angle of stage 1 based on the relative positional relationship between the two points of another mirror 2Y provided on stage 1 when the two points are irradiated with a laser beam.
When the stage 1 is moved along the movable mirror 2X, a plurality of pieces of relative positional relationship data detected by the shape measuring interferometers 13 and 14 are joined together, and detected by the rotation angle detecting interferometers 21 and 22. The shape of the moving mirror 2X is measured by correcting the relative positional relationship data based on the measured rotation angle data, and the coordinates of the measurement point are corrected based on the measured shape of the moving mirror 2X. According to a second aspect of the present invention, in the coordinate measuring apparatus according to the first aspect, a second movable mirror 2Y provided orthogonal to the movable mirror 2X.
And a second coordinate measuring interferometer 41Y for irradiating a laser beam toward the second movable mirror 2Y, and the stage 1 is moved in the normal direction of the second movable mirror 2Y when measuring the shape of the movable mirror 2X. And the rotation angle detecting interferometer 2
Numerals 1 and 22 irradiate a laser beam toward the second movable mirror 2Y. The third aspect of the present invention is the first aspect.
Or the parallel measuring device according to (2), further comprising a parallel flat plate 30 (31) inserted into the optical axis of the laser beam emitted from the shape measuring interferometers 13 and 14;
By tilting 1) with respect to the optical axis, the laser beam is shifted laterally. According to a fourth aspect of the present invention, there is provided the coordinate measuring apparatus according to any one of the first to third aspects, wherein the shape measuring interferometer 13 and
The attitude of the stage 1 is measured using the interferometers 14 or 22 for detecting the rotation angle, and the coordinates of the measurement points are corrected based on the measured attitude of the stage 1.

【0007】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために発明の実施の形態の図を用いたが、これにより本
発明が実施の形態に限定されるものではない。
In the section of the means for solving the above-mentioned problems, which explains the configuration of the present invention, the drawings of the embodiments of the present invention are used to make the present invention easy to understand. However, the present invention is not limited to this.

【0008】[0008]

【発明の実施の形態】以下、図1〜図9を用いて本発明
による形状測定装置の一実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a shape measuring apparatus according to the present invention will be described below with reference to FIGS.

【0009】図1において、1はXY平面内を移動可能
に設けられたXYステージ、2Xは鏡面の法線がX軸方
向を向くようにXYステージ1に取付けられた移動鏡、
2Yは鏡面の法線がY軸方向を向くようにXYステージ
1に取付けられた移動鏡、3はXYステージ1に載置さ
れた被測定物5のパターンを検出する対物レンズ、4X
はXYステージ1のX座標を計測するための光学系、4
YはXYステージ1のY座標を計測するための光学系で
ある。
In FIG. 1, reference numeral 1 denotes an XY stage provided so as to be movable in an XY plane; 2X, a movable mirror attached to the XY stage 1 so that a normal line of the mirror surface faces the X-axis direction;
Reference numeral 2Y denotes a movable mirror attached to the XY stage 1 so that the normal line of the mirror surface is directed to the Y-axis direction. Reference numeral 3 denotes an objective lens for detecting a pattern of the DUT 5 mounted on the XY stage 1.
Is an optical system for measuring the X coordinate of the XY stage 1;
Y is an optical system for measuring the Y coordinate of the XY stage 1.

【0010】図1に示すように、不図示の光源から射出
されたレーザビーム6は分岐されて光学系4Xおよび光
学系4Yに導かれる。光学系4Xから射出された2対の
レーザビームのうち、一方のレーザビーム対は移動鏡2
Xに、他方のレーザビーム対は鏡面の法線がX軸方向に
向くように対物レンズに取付けられた固定鏡7Xに、そ
れぞれ照射され、各レーザビーム対は移動鏡2Xおよび
固定鏡7Xにおいて反射される。光学系4Xは干渉計4
1X(図3)に接続されており、ステージ1のX座標が
移動鏡2Xまでの光路と固定鏡7Xまでの光路との光路
長差に基づいて計測される。
As shown in FIG. 1, a laser beam 6 emitted from a light source (not shown) is branched and guided to an optical system 4X and an optical system 4Y. One of the two pairs of laser beams emitted from the optical system 4X is the movable mirror 2
X, the other laser beam pair is irradiated on a fixed mirror 7X attached to the objective lens such that the normal of the mirror surface is directed to the X-axis direction, and each laser beam pair is reflected by the movable mirror 2X and the fixed mirror 7X. Is done. The optical system 4X is an interferometer 4
1X (FIG. 3), and the X coordinate of the stage 1 is measured based on the optical path length difference between the optical path to the movable mirror 2X and the optical path to the fixed mirror 7X.

【0011】光学系4Yから射出された2対のレーザビ
ームのうち、一方のレーザビーム対は移動鏡2Yに、他
方のレーザビーム対は鏡面の法線がY軸方向に向くよう
に対物レンズ3に取付けられた固定鏡7Yに、それぞれ
照射され、移動鏡2Yおよび固定鏡7Yにおいて反射さ
れる。光学系4Yは干渉計41Y(図3)に接続されて
おり、ステージ1のY座標が移動鏡2Yまでの光路と固
定鏡7Yまでの光路との光路長差に基づいて計測され
る。
[0011] Of the two pairs of laser beams emitted from the optical system 4Y, one of the laser beam pairs is directed to the movable mirror 2Y, and the other laser beam pair is directed to the objective lens 3 so that the normal of the mirror surface faces the Y-axis direction. Are respectively radiated to the fixed mirror 7Y attached to the moving mirror 2Y and reflected by the movable mirror 2Y and the fixed mirror 7Y. The optical system 4Y is connected to an interferometer 41Y (FIG. 3), and the Y coordinate of the stage 1 is measured based on the difference between the optical path to the movable mirror 2Y and the optical path to the fixed mirror 7Y.

【0012】XYステージ1に載置された被測定物5を
対物レンズ3により捉えて、被測定物5の測定点を所定
の位置(例えば対物レンズ3の視野の中央)に設置し、
このときのXYステージ1の座標を上述の方法で計測す
ることにより測定点のXY座標を求めることができる。
但し、後述するように、本実施の形態の座標測定装置で
は移動鏡2Xおよび移動鏡2Yの鏡面形状に基づいて座
標の補正を行う。
The object 5 placed on the XY stage 1 is captured by the objective lens 3, and the measurement point of the object 5 is set at a predetermined position (for example, at the center of the field of view of the objective lens 3).
By measuring the coordinates of the XY stage 1 at this time by the above-described method, the XY coordinates of the measurement point can be obtained.
However, as will be described later, in the coordinate measuring device according to the present embodiment, the coordinates are corrected based on the mirror surface shapes of the moving mirror 2X and the moving mirror 2Y.

【0013】図2に示すように、本実施の形態の座標測
定装置には、光学系4X、干渉計41X、光学系4Yお
よび干渉計41Yとは別に、移動鏡2Xまでの距離を計
測する干渉計11〜14と、移動鏡2Yまでの距離を計
測する干渉計21〜24とがXYステージ1の周辺に設
けられている。干渉計11〜14および干渉計21〜2
4はいわゆるヘテロダインレーザ干渉計方式により、移
動鏡2Xおよび移動鏡2Yまでの距離をそれぞれ4点に
おいて計測できるように構成されている。
As shown in FIG. 2, the coordinate measuring apparatus according to the present embodiment has an optical system 4X, an interferometer 41X, an optical system 4Y and an interferometer 41Y for measuring the distance to the movable mirror 2X separately from the interferometer 41Y. A total of 11 to 14 and interferometers 21 to 24 for measuring a distance to the movable mirror 2Y are provided around the XY stage 1. Interferometers 11 to 14 and 21 to 2
Reference numeral 4 denotes a so-called heterodyne laser interferometer system which is capable of measuring the distance to the movable mirror 2X and the movable mirror 2Y at four points.

【0014】干渉計11〜14および干渉計21〜24
は移動鏡2Xおよび移動鏡2Yの鏡面形状を計測するた
めのものであり、本実施の形態の座標測定装置では、計
測された移動鏡2Xおよび移動鏡2Yの鏡面形状に基づ
いて座標測定のデータ補正を行うようにしている。
Interferometers 11 to 14 and interferometers 21 to 24
Is for measuring the mirror surface shapes of the movable mirror 2X and the movable mirror 2Y. In the coordinate measuring device of the present embodiment, data of coordinate measurement is based on the measured mirror surface shapes of the movable mirror 2X and the movable mirror 2Y. Correction is performed.

【0015】図3において、1XはXYステージ1をX
軸方向に移動する駆動装置、1YはXYステージ1をY
軸方向に移動する駆動装置、Cは制御装置、8は記憶装
置である。干渉計41Xおよび干渉計41Yにより得ら
れたXYステージ1の座標値および干渉計11〜14,
21〜24の計測データが制御装置Cに入力され、駆動
装置1Xおよび駆動装置1Yが制御装置Cにより制御さ
れる。制御装置Cは移動鏡2Xおよび移動鏡2Yの鏡面
形状を算出し、その形状を記憶装置8に記憶するととも
に、記憶装置8に記憶された形状データに基づきXYス
テージ1の座標を補正する演算を行う。
In FIG. 3, 1X denotes XY stage 1
A driving device that moves in the axial direction, 1Y moves the XY stage 1 to Y
A driving device that moves in the axial direction, C is a control device, and 8 is a storage device. The coordinate values of the XY stage 1 obtained by the interferometers 41X and 41Y and the interferometers 11 to 14,
The measurement data of 21 to 24 is input to the control device C, and the drive device 1X and the drive device 1Y are controlled by the control device C. The control device C calculates the mirror surface shapes of the movable mirror 2X and the movable mirror 2Y, stores the shapes in the storage device 8, and performs an operation of correcting the coordinates of the XY stage 1 based on the shape data stored in the storage device 8. Do.

【0016】次に、移動鏡2Xおよび移動鏡2Yの鏡面
形状を計測する場合の動作について説明する。
Next, the operation for measuring the mirror shapes of the movable mirror 2X and the movable mirror 2Y will be described.

【0017】図4は、移動鏡2Xの鏡面形状を計測する
ための4軸干渉計配置を示している。移動鏡2Xの鏡面
形状を計測する場合には、XYステージ1を一定のピッ
チでY方向に移動させ、各々の停止位置で干渉計13お
よび干渉計14により計測される座標値を取込んでい
く。
FIG. 4 shows a four-axis interferometer arrangement for measuring the mirror surface shape of the movable mirror 2X. When measuring the mirror surface shape of the movable mirror 2X, the XY stage 1 is moved in the Y direction at a constant pitch, and the coordinate values measured by the interferometers 13 and 14 at each stop position are taken. .

【0018】この座標値を積分することにより移動鏡2
Xの鏡面形状f(y)を求めることができるが、XYス
テージ1のY方向への移動にともないXYステージ1の
回転誤差成分eP (y)と並進誤差eX (y)が必ず発
生する。これらの誤差を排除しない限り正確に鏡面形状
を計測することはできないが、本実施の形態の装置では
干渉計21および干渉計22を用いることにより、誤差
を排除している。なお、厳密にはZ方向の並進誤差もあ
るが、移動鏡2Xの鏡面形状を計測する場合には影響が
少ないため、ここでは無視して説明する。
The moving mirror 2 is integrated by integrating the coordinate values.
Although the mirror surface shape f (y) of X can be obtained, the rotation error component e P (y) and the translation error e X (y) of the XY stage 1 always occur with the movement of the XY stage 1 in the Y direction. . Unless these errors are eliminated, the mirror surface shape cannot be accurately measured. However, the apparatus of the present embodiment eliminates the errors by using the interferometer 21 and the interferometer 22. Strictly, there is a translation error in the Z direction, but when measuring the mirror surface shape of the movable mirror 2X, the influence is small, and therefore, the description is ignored here.

【0019】干渉計13、干渉計14、干渉計21およ
び干渉計22による計測値をそれぞれ、mx1 (y)、
x2 (y)、my1 (y)およびmy2 (y)とする。
図5に示すように、各停止位置における計測位置のY座
標をy、yから干渉計13の光軸までの距離をdA 、y
から干渉計14の光軸までの距離をdB とすると、干渉
計13の計測値mx1 (y)および干渉計14の計測値
x2 (y)は次のようになる。
The measured values of the interferometer 13, the interferometer 14, the interferometer 21, and the interferometer 22 are respectively m x1 (y),
Let mx2 (y), my1 (y) and my2 (y).
As shown in FIG. 5, the Y coordinate of the measurement position at each stop position is y, and the distance from y to the optical axis of the interferometer 13 is d A , y
The distance to the optical axis of the interferometer 14 When d B from the measured value m x2 of the interferometer 13 the measurement value m x1 (y) and the interferometer 14 (y) are as follows.

【数1】 mx1 (y)=f(y−dA )+eX (y)−dA ・eP (y) ・・・式(1)[Number 1] m x1 (y) = f ( y-d A) + e X (y) -d A · e P (y) ··· formula (1)

【数2】 mx2 (y)=f(y+dB )+eX (y)+dB ・eP (y) ・・・式(2)[Number 2] m x2 (y) = f ( y + d B) + e X (y) + d B · e P (y) ··· (2)

【0020】式(2)から式(1)を減算すると、並進
誤差eX (y)がとれて、次式のようになる。
When the equation (1) is subtracted from the equation (2), a translation error e X (y) is obtained, and the following equation is obtained.

【数3】 mx2 (y)−mx1 (y)=f(y+dB )−f(y−dA ) +(dA +dB )・eP (y) ・・・式(3)[Number 3] m x2 (y) -m x1 ( y) = f (y + d B) -f (y-d A) + (d A + d B) · e P (y) ··· (3)

【0021】干渉計13の光軸と干渉計14の光軸との
間隔をL(=dA +dB )、干渉計21の光軸と干渉計
22の光軸との間隔をDとすると、回転誤差成分eP
(y)は干渉計21の計測値my1 (y)および干渉計
22の計測値my2 (y)の差から求められ、次式のよ
うになる。
If the distance between the optical axis of the interferometer 13 and the optical axis of the interferometer 14 is L (= d A + d B ), and the distance between the optical axis of the interferometer 21 and the optical axis of the interferometer 22 is D, Rotation error component e P
(Y) is obtained from the difference between the measured value my1 (y) of the interferometer 21 and the measured value my2 (y) of the interferometer 22, and is given by the following equation.

【数4】 eP (y)=−arctan {(my1 (y)−my2 (y))/D} ・・・式(4)E P (y) = − arctan {(my 1 (y) −my 2 (y)) / D} (4)

【0022】したがって、Dが大きければ大きいほど確
度良く回転誤差成分eP (y)が求まることになる。式
(4)を式(3)に代入すれば、
Therefore, the larger D is, the more accurately the rotation error component e P (y) can be obtained. By substituting equation (4) into equation (3),

【数5】 mx2 (y)−mx1 (y) =f(y+dB )−f(y−dA ) −L・arctan{(my1 (y)−my2 (y))/D} ・・・式(5) となる。求められた式(5)は干渉計13および干渉計
14による2つの計測点を結ぶ直線の傾きであるので、
これを積分すれば傾き係数が掛かったf(y)に比例し
た値が求まり、さらにこの値に傾き係数を掛けてオフセ
ットを取り除けば移動鏡2Xの鏡面形状が求まる。
Equation 5] m x2 (y) -m x1 ( y) = f (y + d B) -f (y-d A) -L · arctan {(m y1 (y) -m y2 (y)) / D} ... Formula (5) is obtained. Since the obtained equation (5) is the slope of a straight line connecting the two measurement points by the interferometer 13 and the interferometer 14,
By integrating this, a value proportional to f (y) multiplied by the slope coefficient is obtained. By multiplying this value by the slope coefficient and removing the offset, the mirror surface shape of the movable mirror 2X is obtained.

【0023】XYステージ1が500mm角の場合、干
渉計13および干渉計14の光軸間隔Lは、例えば3m
m〜15mm程度に設定される。また、干渉計21およ
び干渉計22の光軸間隔Dは移動鏡2Yの両端部に光軸
が位置するように定めれば計測精度の点で有利である。
When the XY stage 1 is 500 mm square, the distance L between the optical axes of the interferometers 13 and 14 is, for example, 3 m.
It is set to about m to 15 mm. Further, if the optical axis interval D between the interferometer 21 and the interferometer 22 is determined so that the optical axes are located at both ends of the movable mirror 2Y, it is advantageous in terms of measurement accuracy.

【0024】一般に電気処理におけるサンプリング定理
に従えば、干渉計13および干渉計14の光軸間隔がL
の場合、L/2周期以上の形状の周期うねりは計測でき
ないという欠点がある。光軸間隔Lが有限な値である限
り、このような計測不可能な周期うねりの領域が存在す
る。例えば、図6に示すように光軸間隔Lと同一周期の
周期うねりがあった場合にはXYステージ1が移動して
も干渉計13および干渉計14の光軸長が同一のタイミ
ングで変化するので、周期うねりが計測できないことが
明らかである。
In general, according to the sampling theorem in electrical processing, the optical axis interval between the interferometers 13 and 14 is L
In the case of (1), there is a disadvantage that the periodic undulation of a shape having a length of L / 2 or more cannot be measured. As long as the optical axis interval L is a finite value, there is a region of such a periodic undulation that cannot be measured. For example, as shown in FIG. 6, when there is a periodic waviness having the same period as the optical axis interval L, the optical axis lengths of the interferometers 13 and 14 change at the same timing even if the XY stage 1 moves. Therefore, it is clear that the periodic waviness cannot be measured.

【0025】このような欠点に対処するため、本実施の
形態では、図7に示すような平行平板30を干渉計13
の光軸に挿入し、平行平板30の回転角を変化させるこ
とによって干渉計30の光軸をY軸方向に任意の距離Δ
dだけ移動可能としている。これにより、光軸間隔Lを
狭める方向に変化させたときの変化の前後の計測値を取
込むとともに、その計測値を積分することにより短周期
のうねりの計測をすることができる。ただし、平行平板
30はその屈折率が均質・等方的である他、厚さむらが
ないか、あるいは厚さむらが既知のものを用いる必要が
ある。
In order to cope with such a drawback, in the present embodiment, the parallel plate 30 as shown in FIG.
To the optical axis of the interferometer 30 by changing the rotation angle of the parallel plate 30 to an arbitrary distance Δ in the Y-axis direction.
It is possible to move by d. Thereby, while acquiring the measured values before and after the change when the optical axis interval L is changed in the direction of narrowing, the undulation in a short cycle can be measured by integrating the measured values. However, it is necessary that the parallel plate 30 has a uniform or isotropic refractive index and has no thickness unevenness or a known thickness unevenness.

【0026】図9に示すように、平行平板30の厚さを
dとし、光軸に対して平行平板30を角度i1 だけ傾け
たとき、光軸のずれ幅Δdは、
As shown in FIG. 9, when the thickness of the parallel plate 30 is d and the parallel plate 30 is inclined by an angle i 1 with respect to the optical axis, the shift width Δd of the optical axis becomes:

【数6】 Δd={d・sin(i1 −i2 )}/cosi2 ・・・式(6) となるので、平行平板30の回転角に基づいてΔdを算
出することができる。
Δd = {d · sin (i 1 −i 2 )} / cos 2 (6) Since Δd is calculated based on the rotation angle of the parallel plate 30, Δd can be calculated.

【0027】移動鏡2Xの鏡面形状を計測するに際し、
XYステージ1の移動ピッチの粗さを補うために、図8
に示すように干渉計13の光軸および干渉計14の光軸
の両者に掛かるように平行平板31を挿入してもよい。
この場合、平行平板31の回転角を変化させることによ
り光軸間隔を不変のまま2つの光軸をY軸方向に任意の
距離Δdだけ移動させることができるので、XYステー
ジ1の移動ピッチが粗く、微小量の移動が不可能な場合
でも、計測位置yを細かく(連続的に)ずらすことがで
きる。
In measuring the mirror surface shape of the movable mirror 2X,
To compensate for the roughness of the moving pitch of the XY stage 1, FIG.
As shown in (1), a parallel flat plate 31 may be inserted so as to hang on both the optical axis of the interferometer 13 and the optical axis of the interferometer 14.
In this case, by changing the rotation angle of the parallel plate 31, the two optical axes can be moved by an arbitrary distance Δd in the Y-axis direction without changing the optical axis interval, so that the moving pitch of the XY stage 1 is coarse. Even when a small amount of movement is impossible, the measurement position y can be finely (continuously) shifted.

【0028】以上、移動鏡2Xの鏡面形状を計測する場
合について説明したが、移動鏡2Yの鏡面形状を計測す
る場合には、XYステージをX軸方向に移動させながら
干渉計23および干渉計24により計測される光路長差
を積分すればよい。この場合、干渉計11および干渉計
12により回転誤差成分を検出することができる。
The case where the mirror surface shape of the movable mirror 2X is measured has been described above. When the mirror surface shape of the movable mirror 2Y is measured, the interferometers 23 and 24 are moved while moving the XY stage in the X-axis direction. What is necessary is just to integrate the optical path length difference measured by. In this case, the rotation error component can be detected by the interferometer 11 and the interferometer 12.

【0029】以上の手法によって計測された移動鏡2X
および移動鏡2Yの鏡面形状は、記憶装置8に記憶さ
れ、被測定物5の座標測定に際して記憶された計測値に
基づいて座標値の補正を行う。これにより、移動鏡2X
および移動鏡2Yの鏡面形状の影響を排除することがで
きるので、正確な座標測定が可能となる。
The moving mirror 2X measured by the above method
The mirror shape of the movable mirror 2Y is stored in the storage device 8, and the coordinate value is corrected based on the measured value stored at the time of measuring the coordinates of the DUT 5. Thereby, the moving mirror 2X
In addition, since the influence of the mirror surface shape of the movable mirror 2Y can be eliminated, accurate coordinate measurement can be performed.

【0030】座標測定を行う際に、例えば干渉計11〜
14、干渉計21〜24のうちのいずれか2つ以上の干
渉計を用いて、XY平面内での回転角等、XYステージ
1の姿勢を計測するようにしてもよい。計測されたXY
ステージ1の姿勢のデータを用いて座標測定の測定値を
補正することにより、さらに座標測定の精度を向上させ
ることができる。例えば、座標測定のためXYステージ
1を駆動する間、干渉計11および干渉計14の光路長
差を検出することにより、XYステージ1のXY平面内
の回転角が求まるので、これにより座標測定値を補正す
ることができる。
When performing coordinate measurement, for example, the interferometers 11 to
14. The attitude of the XY stage 1 such as the rotation angle in the XY plane may be measured using any two or more of the interferometers 21 to 24. XY measured
By correcting the measurement value of the coordinate measurement using the attitude data of the stage 1, the accuracy of the coordinate measurement can be further improved. For example, while the XY stage 1 is driven for coordinate measurement, the rotation angle of the XY stage 1 in the XY plane can be determined by detecting the optical path length difference between the interferometer 11 and the interferometer 14, thereby obtaining the coordinate measurement value. Can be corrected.

【0031】[0031]

【発明の効果】請求項1に記載の発明によれば、移動鏡
に沿ってステージを移動したときに形状計測用干渉計に
より検出した複数の相対位置関係データを繋ぎ合わせる
とともに、回転角検出用干渉計により検出した回転角デ
ータに基づいて相対位置関係データを補正することによ
り移動鏡の形状を計測し、計測された移動鏡の形状に基
づいて測定点の座標を補正するので、移動鏡の形状の影
響を受けることなく高精度に座標測定を行うことができ
る。請求項3に記載の発明によれば、形状計測用干渉計
から射出されたレーザビームの光軸に挿入する平行平板
を備え、平行平板を光軸に対して傾けることによりレー
ザビームを横ずらしするので、レーザビームの照射位置
を制御できる。請求項4に記載の発明によれば、測定点
の座標測定時には、形状計測用干渉計あるいは回転角検
出用干渉計を用いてステージの姿勢を計測し、計測され
たステージの姿勢に基づいて測定点の座標を補正するの
で、ステージの姿勢の影響を排除して高精度に座標測定
を行うことができる。
According to the first aspect of the present invention, a plurality of relative positional relationship data detected by the shape measuring interferometer when the stage is moved along the movable mirror are joined together, and the rotational angle is detected. The shape of the moving mirror is measured by correcting the relative positional relationship data based on the rotation angle data detected by the interferometer, and the coordinates of the measurement point are corrected based on the measured shape of the moving mirror. Coordinate measurement can be performed with high accuracy without being affected by the shape. According to the third aspect of the present invention, there is provided a parallel plate inserted into the optical axis of the laser beam emitted from the shape measuring interferometer, and the laser beam is shifted laterally by tilting the parallel plate with respect to the optical axis. Therefore, the irradiation position of the laser beam can be controlled. According to the invention described in claim 4, at the time of measuring the coordinates of the measurement point, the posture of the stage is measured using a shape measurement interferometer or a rotation angle detection interferometer, and the measurement is performed based on the measured stage posture. Since the coordinates of the points are corrected, it is possible to perform the coordinate measurement with high accuracy while eliminating the influence of the posture of the stage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による座標測定装置の一実施の形態を示
す斜視図。
FIG. 1 is a perspective view showing an embodiment of a coordinate measuring device according to the present invention.

【図2】実施の形態の座標測定装置を示す上面図。FIG. 2 is a top view showing the coordinate measuring device according to the embodiment;

【図3】実施の形態の座標測定装置を示すブロック図。FIG. 3 is a block diagram showing a coordinate measuring device according to the embodiment;

【図4】移動鏡の鏡面形状を計測する場合の干渉計配置
を示す図。
FIG. 4 is a diagram showing an interferometer arrangement when measuring a mirror surface shape of a movable mirror.

【図5】干渉計の光軸間隔を示す図。FIG. 5 is a diagram showing an optical axis interval of an interferometer.

【図6】移動鏡の鏡面に周期的なうねりがある場合を示
す図。
FIG. 6 is a diagram showing a case where a mirror surface of a movable mirror has a periodic undulation.

【図7】平行平板によりレーザビームの光軸間隔を狭め
る場合を示す図。
FIG. 7 is a diagram showing a case where the optical axis interval of a laser beam is reduced by a parallel plate.

【図8】平行平板によりレーザビームの2箇所の照射位
置をシフトする場合を示す図。
FIG. 8 is a diagram showing a case where two irradiation positions of a laser beam are shifted by a parallel plate.

【図9】平行平板による光軸のシフト量を説明する図。FIG. 9 is a diagram illustrating a shift amount of an optical axis by a parallel flat plate.

【図10】従来の座標測定装置を示す図。FIG. 10 is a diagram showing a conventional coordinate measuring device.

【図11】マスクパターンを反転して形状計測すること
により、移動鏡の歪みを検出する手法を示す図であり、
(a)は歪みが線対称成分からなる場合を示す図、
(b)は歪みが点対称成分からなる場合を示す図。
FIG. 11 is a diagram showing a method for detecting a distortion of a moving mirror by inverting a mask pattern and measuring a shape thereof;
(A) is a diagram showing a case where the distortion consists of a line symmetric component,
(B) is a diagram showing a case where the distortion is composed of point symmetric components.

【符号の説明】[Explanation of symbols]

1 XYステージ 2X 移動鏡 2Y 移動鏡 3 検出器 5 被測定物 13 干渉計 14 干渉計 21 干渉計 22 干渉計 30 平行平板 31 平行平板 41X 干渉計 Reference Signs List 1 XY stage 2X moving mirror 2Y moving mirror 3 detector 5 device under test 13 interferometer 14 interferometer 21 interferometer 22 interferometer 30 parallel flat plate 31 parallel flat plate 41X interferometer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定物を移動させるステージと、前記
ステージに取付けられた平面状の移動鏡と、前記移動鏡
に向けてレーザビームを照射することにより前記ステー
ジの位置を計測する座標測定用干渉計と、前記被測定物
上の測定点を検出する検出器とを備え、前記検出器が前
記測定点を検出したときの前記ステージの位置を前記座
標測定用干渉計によって計測することにより前記測定点
の座標を測定する座標測定装置において、 前記移動鏡の2点にレーザビームを照射することにより
2点間の相対位置関係を検出する形状計測用干渉計と、 前記ステージに設けた別の鏡の2点にレーザビームを照
射したときの2点間の相対位置関係に基づいて前記ステ
ージの回転角を検出する回転角検出用干渉計とを備え、 前記移動鏡に沿って前記ステージを移動したときに前記
形状計測用干渉計により検出した複数の相対位置関係デ
ータを繋ぎ合わせるとともに、前記回転角検出用干渉計
により検出した回転角データに基づいて前記相対位置関
係データを補正することにより前記移動鏡の形状を計測
し、 計測された前記移動鏡の形状に基づいて前記測定点の座
標を補正することを特徴とする座標測定装置。
1. A stage for moving an object to be measured, a planar movable mirror attached to the stage, and a coordinate measuring device for measuring a position of the stage by irradiating a laser beam toward the movable mirror. Interferometer, comprising a detector for detecting a measurement point on the object to be measured, by measuring the position of the stage when the detector detects the measurement point by the coordinate measurement interferometer, A coordinate measuring device for measuring coordinates of a measuring point, wherein a shape measuring interferometer for detecting a relative positional relationship between the two points by irradiating a laser beam to two points of the movable mirror; A rotation angle detection interferometer for detecting a rotation angle of the stage based on a relative positional relationship between the two points when the laser beam is irradiated to the two points of the mirror; A plurality of relative position relationship data detected by the shape measurement interferometer when the device is moved, and correcting the relative position relationship data based on the rotation angle data detected by the rotation angle detection interferometer. A coordinate measuring apparatus for measuring the shape of the moving mirror, and correcting the coordinates of the measurement point based on the measured shape of the moving mirror.
【請求項2】 前記移動鏡と直交して設けられた第2の
移動鏡と、前記第2の移動鏡に向けてレーザビームを照
射する第2の座標測定用干渉計とをさらに備え、前記移
動鏡の形状計測時には前記ステージを前記第2の移動鏡
の法線方向に移動させるとともに、前記回転角検出用干
渉計は前記第2の移動鏡に向けてレーザビームを照射す
るものであることを特徴とする請求項1に記載の座標測
定装置。
2. The apparatus according to claim 1, further comprising: a second movable mirror provided orthogonal to the movable mirror; and a second coordinate measuring interferometer for irradiating the second movable mirror with a laser beam. At the time of measuring the shape of the movable mirror, the stage is moved in a direction normal to the second movable mirror, and the rotation angle detecting interferometer irradiates a laser beam toward the second movable mirror. The coordinate measuring apparatus according to claim 1, wherein:
【請求項3】 前記形状計測用干渉計から射出されたレ
ーザビームの光軸に挿入する平行平板を備え、前記平行
平板を前記光軸に対して傾けることにより前記レーザビ
ームを横ずらしすることを特徴とする請求項1または2
に記載の座標測定装置。
3. A parallel plate which is inserted into an optical axis of a laser beam emitted from the shape measuring interferometer, wherein the parallel plate is tilted with respect to the optical axis to laterally shift the laser beam. 3. A method according to claim 1, wherein
The coordinate measuring device according to 1.
【請求項4】 前記測定点の座標測定時には、前記形状
計測用干渉計あるいは前記回転角検出用干渉計を用いて
前記ステージの姿勢を計測し、計測された前記ステージ
の姿勢に基づいて前記測定点の座標を補正することを特
徴とする請求項1〜3のいずれか1項に記載の座標測定
装置。
4. At the time of measuring the coordinates of the measurement point, the posture of the stage is measured using the shape measuring interferometer or the rotation angle detecting interferometer, and the measurement is performed based on the measured posture of the stage. The coordinate measuring device according to any one of claims 1 to 3, wherein the coordinates of the point are corrected.
JP9068269A 1997-03-21 1997-03-21 Coordinate measuring device Pending JPH10260009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9068269A JPH10260009A (en) 1997-03-21 1997-03-21 Coordinate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9068269A JPH10260009A (en) 1997-03-21 1997-03-21 Coordinate measuring device

Publications (1)

Publication Number Publication Date
JPH10260009A true JPH10260009A (en) 1998-09-29

Family

ID=13368876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9068269A Pending JPH10260009A (en) 1997-03-21 1997-03-21 Coordinate measuring device

Country Status (1)

Country Link
JP (1) JPH10260009A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700665B2 (en) * 2001-08-20 2004-03-02 Zygo Corporation Interferometric apparatus for measuring the topography of mirrors in situ and providing error correction signals therefor
US6847452B2 (en) 2001-08-02 2005-01-25 Zygo Corporation Passive zero shear interferometers
US6867867B2 (en) 2000-05-19 2005-03-15 Zygo Corporation Interferometric stage metrology system
US6882430B2 (en) 2002-03-04 2005-04-19 Zygo Corporation Spatial filtering in interferometry
US6888638B1 (en) 1999-05-05 2005-05-03 Zygo Corporation Interferometry system having a dynamic beam steering assembly for measuring angle and distance
US6891624B2 (en) 2001-03-13 2005-05-10 Zygo Corporation Cyclic error reduction in average interferometric position measurements
US6912054B2 (en) 2001-08-28 2005-06-28 Zygo Corporation Interferometric stage system
US6950192B2 (en) 2002-07-08 2005-09-27 Zygo Corporation Cyclic error compensation in interferometry systems
US6956655B2 (en) 2002-02-12 2005-10-18 Zygo Corporation Characterization and compensation of non-cyclic errors in interferometry systems
US6987569B2 (en) 2001-08-23 2006-01-17 Zygo Corporation Dynamic interferometer controlling direction of input beam
US7019843B2 (en) 2001-05-10 2006-03-28 Zygo Corporation Method and apparatus for stage mirror mapping
US7075619B2 (en) 2002-12-12 2006-07-11 Zygo Corporation In-process correction of stage mirror deformations during a photolithography exposure cycle
US7180603B2 (en) 2003-06-26 2007-02-20 Zygo Corporation Reduction of thermal non-cyclic error effects in interferometers
JP2007521462A (en) * 2003-07-29 2007-08-02 ザイゴ コーポレーション Compensation for errors in off-axis interferometry
US7262860B2 (en) 2002-07-29 2007-08-28 Zygo Corporation Compensation for errors in off-axis interferometric measurements
US7274462B2 (en) 2002-09-09 2007-09-25 Zygo Corporation In SITU measurement and compensation of errors due to imperfections in interferometer optics in displacement measuring interferometry systems
US7280224B2 (en) 2004-04-22 2007-10-09 Zygo Corporation Interferometry systems and methods of using interferometry systems
US7283248B2 (en) 2004-01-06 2007-10-16 Zygo Corporation Multi-axis interferometers and methods and systems using multi-axis interferometers
US7286240B2 (en) 2003-06-19 2007-10-23 Zygo Corporation Compensation for geometric effects of beam misalignments in plane mirror interferometer metrology systems
US7289226B2 (en) 2003-11-04 2007-10-30 Zygo Corporation Characterization and compensation of errors in multi-axis interferometry systems
EP1804122A3 (en) * 2005-12-30 2007-11-07 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2008003056A (en) * 2006-06-26 2008-01-10 Yokogawa Electric Corp Xy-stage
US7321432B2 (en) 2002-09-09 2008-01-22 Zygo Corporation Measurement and compensation of errors in interferometers
JP2008020290A (en) * 2006-07-12 2008-01-31 Fuji Xerox Co Ltd Beam diameter measuring device and focal point adjusting device
US7327465B2 (en) 2003-06-19 2008-02-05 Zygo Corporation Compensation for effects of beam misalignments in interferometer metrology systems
US7330274B2 (en) 2002-05-13 2008-02-12 Zygo Corporation Compensation for geometric effects of beam misalignments in plane mirror interferometers
US7375823B2 (en) 2004-04-22 2008-05-20 Zygo Corporation Interferometry systems and methods of using interferometry systems
US7379190B2 (en) 2004-01-05 2008-05-27 Zygo Corporation Stage alignment in lithography tools
US7428685B2 (en) 2002-07-08 2008-09-23 Zygo Corporation Cyclic error compensation in interferometry systems
US7576868B2 (en) 2007-06-08 2009-08-18 Zygo Corporation Cyclic error compensation in interferometry systems
US7616322B2 (en) 2002-07-08 2009-11-10 Zygo Corporation Cyclic error compensation in interferometry systems
JP2012127842A (en) * 2010-12-16 2012-07-05 Mitsubishi Motors Corp Displacement measurement device for internal combustion engine
JP5040657B2 (en) * 2005-10-24 2012-10-03 株式会社ニコン Exposure apparatus, exposure method, device manufacturing method, and device assembly method
JP2014096456A (en) * 2012-11-08 2014-05-22 Canon Inc Stage device and method for adjusting the same, exposure system, and method for manufacturing device
US9632429B2 (en) 2012-08-29 2017-04-25 Asml Holding N.V. Real-time reticle curvature sensing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310105A (en) * 1989-06-08 1991-01-17 Nikon Corp Method and apparatus for measuring or determining position

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310105A (en) * 1989-06-08 1991-01-17 Nikon Corp Method and apparatus for measuring or determining position

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888638B1 (en) 1999-05-05 2005-05-03 Zygo Corporation Interferometry system having a dynamic beam steering assembly for measuring angle and distance
US6867867B2 (en) 2000-05-19 2005-03-15 Zygo Corporation Interferometric stage metrology system
US6891624B2 (en) 2001-03-13 2005-05-10 Zygo Corporation Cyclic error reduction in average interferometric position measurements
US7057736B2 (en) 2001-03-13 2006-06-06 Zygo Corporation Cyclic error reduction in average interferometric position measurements
US7019843B2 (en) 2001-05-10 2006-03-28 Zygo Corporation Method and apparatus for stage mirror mapping
US6847452B2 (en) 2001-08-02 2005-01-25 Zygo Corporation Passive zero shear interferometers
US6700665B2 (en) * 2001-08-20 2004-03-02 Zygo Corporation Interferometric apparatus for measuring the topography of mirrors in situ and providing error correction signals therefor
US6987569B2 (en) 2001-08-23 2006-01-17 Zygo Corporation Dynamic interferometer controlling direction of input beam
US6912054B2 (en) 2001-08-28 2005-06-28 Zygo Corporation Interferometric stage system
US7030994B2 (en) 2002-02-12 2006-04-18 Zygo Corporation Method and apparatus to measure fiber optic pickup errors in interferometry systems
US6956655B2 (en) 2002-02-12 2005-10-18 Zygo Corporation Characterization and compensation of non-cyclic errors in interferometry systems
US6906784B2 (en) 2002-03-04 2005-06-14 Zygo Corporation Spatial filtering in interferometry
US6882430B2 (en) 2002-03-04 2005-04-19 Zygo Corporation Spatial filtering in interferometry
US7251041B2 (en) 2002-03-04 2007-07-31 Zygo Corporation Spatial filtering in interferometry
US7330274B2 (en) 2002-05-13 2008-02-12 Zygo Corporation Compensation for geometric effects of beam misalignments in plane mirror interferometers
US6950192B2 (en) 2002-07-08 2005-09-27 Zygo Corporation Cyclic error compensation in interferometry systems
US7428685B2 (en) 2002-07-08 2008-09-23 Zygo Corporation Cyclic error compensation in interferometry systems
US7616322B2 (en) 2002-07-08 2009-11-10 Zygo Corporation Cyclic error compensation in interferometry systems
US7262860B2 (en) 2002-07-29 2007-08-28 Zygo Corporation Compensation for errors in off-axis interferometric measurements
US7274462B2 (en) 2002-09-09 2007-09-25 Zygo Corporation In SITU measurement and compensation of errors due to imperfections in interferometer optics in displacement measuring interferometry systems
US7321432B2 (en) 2002-09-09 2008-01-22 Zygo Corporation Measurement and compensation of errors in interferometers
US7075619B2 (en) 2002-12-12 2006-07-11 Zygo Corporation In-process correction of stage mirror deformations during a photolithography exposure cycle
US7286240B2 (en) 2003-06-19 2007-10-23 Zygo Corporation Compensation for geometric effects of beam misalignments in plane mirror interferometer metrology systems
US7327465B2 (en) 2003-06-19 2008-02-05 Zygo Corporation Compensation for effects of beam misalignments in interferometer metrology systems
US7180603B2 (en) 2003-06-26 2007-02-20 Zygo Corporation Reduction of thermal non-cyclic error effects in interferometers
JP2007521462A (en) * 2003-07-29 2007-08-02 ザイゴ コーポレーション Compensation for errors in off-axis interferometry
US7289226B2 (en) 2003-11-04 2007-10-30 Zygo Corporation Characterization and compensation of errors in multi-axis interferometry systems
US7379190B2 (en) 2004-01-05 2008-05-27 Zygo Corporation Stage alignment in lithography tools
US7548322B2 (en) 2004-01-06 2009-06-16 Zygo Corporation Multi-axis interferometers and methods and systems using multi-axis interferometers
US7283248B2 (en) 2004-01-06 2007-10-16 Zygo Corporation Multi-axis interferometers and methods and systems using multi-axis interferometers
US7280223B2 (en) 2004-04-22 2007-10-09 Zygo Corporation Interferometry systems and methods of using interferometry systems
US7280224B2 (en) 2004-04-22 2007-10-09 Zygo Corporation Interferometry systems and methods of using interferometry systems
US7375823B2 (en) 2004-04-22 2008-05-20 Zygo Corporation Interferometry systems and methods of using interferometry systems
JP5040657B2 (en) * 2005-10-24 2012-10-03 株式会社ニコン Exposure apparatus, exposure method, device manufacturing method, and device assembly method
US9851644B2 (en) 2005-12-30 2017-12-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1804122A3 (en) * 2005-12-30 2007-11-07 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US8941810B2 (en) 2005-12-30 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7649611B2 (en) 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947631B2 (en) 2005-12-30 2015-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11669021B2 (en) 2005-12-30 2023-06-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11275316B2 (en) 2005-12-30 2022-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9436096B2 (en) 2005-12-30 2016-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10761433B2 (en) 2005-12-30 2020-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10222711B2 (en) 2005-12-30 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8743339B2 (en) 2005-12-30 2014-06-03 Asml Netherlands Lithographic apparatus and device manufacturing method
JP2008003056A (en) * 2006-06-26 2008-01-10 Yokogawa Electric Corp Xy-stage
JP2008020290A (en) * 2006-07-12 2008-01-31 Fuji Xerox Co Ltd Beam diameter measuring device and focal point adjusting device
US7576868B2 (en) 2007-06-08 2009-08-18 Zygo Corporation Cyclic error compensation in interferometry systems
JP2012127842A (en) * 2010-12-16 2012-07-05 Mitsubishi Motors Corp Displacement measurement device for internal combustion engine
US9632429B2 (en) 2012-08-29 2017-04-25 Asml Holding N.V. Real-time reticle curvature sensing
JP2014096456A (en) * 2012-11-08 2014-05-22 Canon Inc Stage device and method for adjusting the same, exposure system, and method for manufacturing device

Similar Documents

Publication Publication Date Title
JPH10260009A (en) Coordinate measuring device
Fan et al. A 6-degree-of-freedom measurement system for the accuracy of XY stages
US6067165A (en) Position calibrating method for optical measuring apparatus
JP2003035509A (en) Interferometer system
JP2009069151A (en) Means and method for determining space position of transfer element in coordinate measuring device
US6674512B2 (en) Interferometer system for a semiconductor exposure system
JP3772444B2 (en) Stage device, coordinate measuring device, and position measuring method
CN110702027A (en) Miniature roundness measuring instrument and measuring method based on complex beam angle sensor
JPH11344305A (en) Position detecting apparatus
KR100670072B1 (en) Reticle focus measurement system and method using multiple interferometric beams
JP5010964B2 (en) Angle measuring method and apparatus
JP2001165629A (en) Shape measuring device and shape measuring method
JPH11108645A (en) Straightness measuring method of reflecting surface of reflecting mirror and stage equipment
JP3237022B2 (en) Projection exposure equipment
JPS62272107A (en) Inspecting method for packaging component
JP2004325120A (en) Probe scanning type shape-measuring apparatus provided with straightness correction function
JPH11281306A (en) Calibrated-value detection method for coordinate-measuring machine and calibration method for shape data using the same calibrated data
JPH08233524A (en) Multiaxial positioning device
JP2728331B2 (en) Flatness measurement device
Li et al. Error analysis and improvements for using parallel-shift method to test a galvanometer-based laser scanning system
JP2977307B2 (en) Sample height measurement method
JPH1068602A (en) Shape measuring apparatus
JPH01292206A (en) Surface condition measuring apparatus for object
JP3393910B2 (en) Surface shape measurement method
JP3218570B2 (en) Interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411