JPH09300189A - Curved face cutting and machining method - Google Patents

Curved face cutting and machining method

Info

Publication number
JPH09300189A
JPH09300189A JP12545696A JP12545696A JPH09300189A JP H09300189 A JPH09300189 A JP H09300189A JP 12545696 A JP12545696 A JP 12545696A JP 12545696 A JP12545696 A JP 12545696A JP H09300189 A JPH09300189 A JP H09300189A
Authority
JP
Japan
Prior art keywords
cutting
axis
curved surface
cutting blade
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12545696A
Other languages
Japanese (ja)
Inventor
Shunji Chiaki
俊司 千明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP12545696A priority Critical patent/JPH09300189A/en
Publication of JPH09300189A publication Critical patent/JPH09300189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable high precision cutting and machining by eliminating the interference of a cutting tool with a workpiece even on a curved face Which is close to semi-sphere and is unsymmetrical for an axis. SOLUTION: The center of radius of curvature of a cutting blade 8 having a predetermined radius of curvature is positioned on a rotary central shaft 10a of a cutting spindle 7 which holds the cutting blade 8 firmly. A diamond tool which makes rotation locus of the cutting blade 8 a spherical face having a predetermined radius of curvature is used, and the diamond tool is moved relatively for a curved face lens 1 which is unsymmetrical for an axis to cut and machine the curved face.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、曲面の中でも特に
軸非対称曲面を対象とした光学素子の光学機能面、及び
光学素子の成形用型の光学機能面の切削加工を行う曲面
切削加工方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a curved surface cutting method for cutting an optical functional surface of an optical element and an optical functional surface of a molding die for an optical element, especially for an axially asymmetric curved surface among curved surfaces. It is a thing.

【0002】[0002]

【従来の技術】従来例の一つとして特開平6−2266
10号公報により開示された「トーリック面を有する眼
用レンズの製作方法」がある。これは、一軸回りに回転
する切削刃により、レンズ材料の被加工面をトーリック
形伏に切削加工するに際して、前記切削刃の回転軸と、
前記レンズ材料の被加工面におけるレンズ軸とのなす角
を一定に保ちつつ、かかる切削刃の回転軸を、回転軸お
よび前記レンズ材料の被加工面におけるレンズ軸を含む
面内で、レンズ材料に対して相対的に移動させ、前記被
加工面を切削加工するものである。
2. Description of the Related Art As one of conventional examples, Japanese Patent Laid-Open No. 6-2266.
There is "a manufacturing method of an ophthalmic lens having a toric surface" disclosed in Japanese Patent No. This is, when the processing surface of the lens material is cut into a toric profile by a cutting blade that rotates around one axis, and the rotation axis of the cutting blade,
While keeping the angle formed with the lens axis on the processed surface of the lens material constant, the rotation axis of the cutting blade is set to the lens material within a plane including the rotation axis and the lens axis on the processed surface of the lens material. The surface to be processed is cut by relatively moving it.

【0003】また、他の従来例として、特開平8−11
223号公報の「光学素子及びその成形方法」がある。
この中の、光学素子の成形用型部材の光学機能面の加工
において、所定の曲率半径を有するダイヤモンドバイト
の刃先を外周方向へ向け、バイトを回転して前記成形用
型部材を彫り込むように加工するもので、前記刃先の曲
率半径は略3ミリメートル以下でその真円度が1ミクロ
ン以下に設定され、前記刃先の回転半径を略3ミリメー
トル以下に設定して回転させることを特徴としている。
As another conventional example, Japanese Patent Laid-Open No. 8-11
No. 223, “Optical element and its molding method”.
Among these, in the processing of the optical functional surface of the molding die member of the optical element, the cutting edge of the diamond cutting tool having a predetermined radius of curvature is directed toward the outer peripheral direction, and the cutting tool is rotated to engrave the molding die member. It is characterized in that the cutting edge has a radius of curvature of about 3 mm or less and a roundness of 1 micron or less, and the turning radius of the cutting edge is set to about 3 mm or less for rotation.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例では、以下の様な課題があった。前記一つの従来例
の課題として、互いに直交する断面形状において一方の
断面形状は任意の曲面に加工可能であるものの、他方の
断面形状は切削刃の回転直径及び、切削刃の回転軸とレ
ンズ軸とのなす角により決定されるものであり、任意の
曲面形状には加工できず、トーリック形状のみに対応す
るものである。
However, the above-mentioned conventional example has the following problems. As a problem of the one conventional example, although one cross-sectional shape in the cross-sectional shape orthogonal to each other can be processed into an arbitrary curved surface, the other cross-sectional shape is the rotation diameter of the cutting blade and the rotation axis of the cutting blade and the lens axis. It is determined by the angle formed by and, and cannot be processed into an arbitrary curved surface shape, and corresponds only to the toric shape.

【0005】他の従来例の課題として、刃先の回転半径
が3ミリメートル以下で、刃先からホルダに延びるシャ
ンク部は2段に形成され、シャンク部の先端は直径2.
6ミリメートル以下になっているが、このような加工方
法では、所望の曲面が半球に近くなるほどシャンク部と
ワークの接触が生じ易くなり、それを回避するためにシ
ャンク部の径を小さくすると剛性がなくなり加工精度の
劣化につながる。当然、半球状のものは加工できない。
As another problem of the conventional example, when the turning radius of the cutting edge is 3 mm or less, the shank portion extending from the cutting edge to the holder is formed in two steps, and the tip of the shank portion has a diameter of 2.
Although it is 6 mm or less, in such a processing method, the closer the desired curved surface is to the hemisphere, the easier it is for the shank portion to come into contact with the workpiece, and in order to avoid this, the rigidity is reduced if the shank portion diameter is reduced. It leads to deterioration of processing accuracy. Naturally, hemispherical ones cannot be processed.

【0006】また、ワーク曲面の形状によっては、切削
刃の曲率半径全域を使用しなくてはならず、切削刃全域
において真円度1ミクロン以下のダイヤモンドバイトの
製作は難しく、かつ、高価である。
Further, depending on the shape of the curved surface of the work, the entire radius of curvature of the cutting blade must be used, and it is difficult and expensive to manufacture a diamond bite having a roundness of 1 micron or less over the entire cutting edge. .

【0007】更には、刃先の曲率半径と回転半径は必ず
しも一致するものでなく、加工プログラムも2つの補正
を加える必要があり複雑になる。
Furthermore, the radius of curvature of the cutting edge and the radius of gyration do not always match, and the machining program is complicated because it requires two corrections.

【0008】本発明は、上記従来技術の課題に鑑みてな
されたもので、半球に近い軸非対称曲面においても切削
工具とワークとの干渉を無くして高精度に切削加工が可
能な曲面切削加工方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and a curved surface cutting method capable of performing highly accurate cutting work even on an axially asymmetric curved surface close to a hemisphere without interference between a cutting tool and a work. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
所定の曲率半径を有する切削刃の曲率半径中心が前記切
削刃を固持する工具の回転中心軸上に位置し、前記切削
刃の回転軌跡が前記所定の曲率半径を有する球面になる
切削工具を用い、この切削工具をワーク曲面に対して相
対的に移動させてワーク曲面を切削加工することを特徴
とするものである。
According to the first aspect of the present invention,
Using a cutting tool in which the center of curvature of the cutting blade having a predetermined radius of curvature is located on the rotation center axis of the tool that holds the cutting blade, and the rotation locus of the cutting blade becomes a spherical surface having the predetermined radius of curvature. The cutting tool is characterized in that the cutting tool is moved relative to the curved surface of the workpiece to cut the curved surface of the workpiece.

【0010】請求項2記載の発明は、請求項1記載の曲
面切削加工方法において、前記切削工具の回転中心軸
が、ワーク曲面内に位置しないように、前記切削工具を
保持する切削スピンドルを一定角度傾けることを特徴と
するものである。
According to a second aspect of the present invention, in the curved surface cutting method according to the first aspect, the cutting spindle holding the cutting tool is fixed so that the rotation center axis of the cutting tool is not located in the curved surface of the work. It is characterized by tilting at an angle.

【0011】請求項3記載の発明は、請求項1記載の曲
面切削加工方法において、前記切削工具の回転中心軸か
ら外周方向に向かって、少なくとも90度以上の範囲の
中で切削工具を回転させることを特徴とするものであ
る。
According to a third aspect of the present invention, in the curved surface cutting method according to the first aspect, the cutting tool is rotated in a range of at least 90 degrees or more from the rotation center axis of the cutting tool toward the outer peripheral direction. It is characterized by that.

【0012】請求項1記載の発明に係る曲面切削加工方
法によれば、所定の曲率半径を有する切削刃の曲率半径
中心が前記切削刃を固持する工具の回転中心軸上に位置
し、前記切削刃の回転軌跡が前記所定の曲率半径を有す
る球面になる切削工具を用い、この切削工具をワーク曲
面に対して相対的に移動させてワーク曲面を切削加工す
るものであり、切削刃の回転軌跡を球面としているの
で、ボールエンドミルと同様の加工形態がとれ、曲率の
大小に拘らず軸非対称曲面の場合においても高精度な加
工を実現できる。
According to the curved surface cutting method of the present invention, the center of the radius of curvature of the cutting blade having a predetermined radius of curvature is located on the center axis of rotation of the tool holding the cutting blade, A cutting tool whose cutting locus is a spherical surface having the predetermined radius of curvature is used to cut a work curved surface by moving the cutting tool relative to the work curved surface. Since is a spherical surface, the same processing form as a ball end mill can be adopted, and high-precision processing can be realized even in the case of an axially asymmetric curved surface regardless of the size of the curvature.

【0013】請求項2記載の発明に係る曲面切削加工方
法によれば、前記切削工具の回転中心軸がワーク曲面内
に位置しないので、周速0での加工箇所がなくなり、曲
面全面において良好な加工面を得ることができる。
In the curved surface cutting method according to the second aspect of the present invention, since the center axis of rotation of the cutting tool is not located within the curved surface of the workpiece, there are no processing points at a peripheral speed of 0, and the entire curved surface is good. The machined surface can be obtained.

【0014】請求項3記載の発明に係る曲面切削加工方
法によれば、前記切削工具の回転中心軸から外周方向に
向かって、少なくとも90度以上の範囲の中で切削工具
を回転させるので、半球(90度必要)のものでも高精
度で加工きる。
According to the curved surface cutting method of the third aspect of the present invention, the cutting tool is rotated in the range of at least 90 degrees or more from the rotation center axis of the cutting tool toward the outer peripheral direction. Even if it is necessary (90 degrees), it can be processed with high precision.

【0015】[0015]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0016】(実施の形態1)図1は、本発明の実施の
形態1における軸非対称曲面レンズ1を示す斜視図であ
り、図2は実施の形態1における軸非対称曲面レンズ1
を示す正面図であり、図3は図2のA−A線断面図を示
し、図4は図2のB−B線断面図を示す。
(Embodiment 1) FIG. 1 is a perspective view showing an axially asymmetric curved lens 1 according to the first embodiment of the present invention, and FIG. 2 is a axially asymmetric curved lens 1 according to the first embodiment.
3 is a front view showing a cross section taken along line AA of FIG. 2, and FIG. 4 is a cross section taken along line BB of FIG.

【0017】また、本実施の形態1では、図4に示す軸
非対称曲面レンズ1の最外周での曲率中心とのなす角θ
1 、θ2 が、各々45度以下のアクリルのレンズをダイ
ヤモンドの切削刃8を持つ切削工具、即ち、ダイヤモン
ド工具6で加工するものである。
In the first embodiment, the angle θ formed by the center of curvature at the outermost circumference of the axially asymmetric curved lens 1 shown in FIG.
1. Acrylic lenses having angles of 45 degrees or less are machined with a cutting tool having a diamond cutting blade 8, that is, a diamond tool 6.

【0018】図5は、前記軸非対称曲面レンズ1を切削
加工するための加工機及びその加工状態を示すものであ
る。この加工機は、超精密CNC加工機であり、X軸、
Y軸、Z軸の3軸方向にスライド可能なX軸スライドテ
ーブル2、Y軸スライドテーブル3、Z軸スライドテー
ブル4を有し、3軸同時制御で運転可能で、図5に示す
Z軸スライドテーブル4上に回転可能な主軸5を備えた
ものである。
FIG. 5 shows a processing machine for cutting the axially asymmetric curved lens 1 and its processing state. This processing machine is an ultra-precision CNC processing machine,
It has an X-axis slide table 2, a Y-axis slide table 3, and a Z-axis slide table 4 that can slide in the Y-axis and Z-axis directions, and can be operated by simultaneous 3-axis control. A rotatable main shaft 5 is provided on the table 4.

【0019】前記主軸5の先端に、軸非対称曲面レンズ
1が保持されている。また、ダイヤモンド工具6は、こ
のダイヤモンド工具6の回転中心軸10bが、精密に回
転する切削スピンドル7の回転中心軸10aと同軸とな
るように切削スピンドル7に保持され、さらに、切削ス
ビンドル7はY軸スライドテーブル3に対しY軸平面上
でθ方向(円周方向)ヘ回動可能で任意に傾けられるよ
うに取付られている。
An axially asymmetric curved lens 1 is held at the tip of the main shaft 5. Further, the diamond tool 6 is held by the cutting spindle 7 such that the rotation center axis 10b of the diamond tool 6 is coaxial with the rotation center axis 10a of the cutting spindle 7 that rotates precisely, and the cutting spindle 8 is set to the Y axis. It is attached to the shaft slide table 3 so as to be rotatable in the θ direction (circumferential direction) on the Y-axis plane and tilted arbitrarily.

【0020】図6は、実施の形態1のダイヤモンド工具
6を示す図であり、図7は、前記ダイヤモンド工具6が
回転した状態を示す図である。図6において、所定の曲
率半径R1 のダイヤモンドを用いた切削刃8の曲率半径
中心9が、ダイヤモンド工具6の回転中心軸10bの軸
上に位置し、切削刃8はダイヤモンド工具6の回転中心
軸10bから外周方向へ向かって90度以上の有効部1
2を持ち、前記切削切8の図7に点線で示す回転軌跡1
1が前記曲率半径R1 の球面になるよう構成されてい
る。
FIG. 6 is a diagram showing the diamond tool 6 according to the first embodiment, and FIG. 7 is a diagram showing a state in which the diamond tool 6 is rotated. In FIG. 6, the radius of curvature center 9 of the cutting edge 8 using diamond having a predetermined radius of curvature R 1 is located on the axis of the rotation center axis 10b of the diamond tool 6, and the cutting edge 8 is the rotation center of the diamond tool 6. Effective part 1 of 90 degrees or more from the axis 10b toward the outer circumference
2 has a rotation locus 1 of the cutting section 8 shown by a dotted line in FIG.
1 is a spherical surface having the radius of curvature R 1 .

【0021】前記ダイヤモンド工具6のシャンク部6a
(切削刃8から切削スピンドル7に至る部分)の径は、
前記切削刃8の回転軌跡11よりも小さくなっている。
これにより、加工面と前記シャンク部6aとの干渉を無
くし、半球状の曲面の加工を可能としている。
The shank portion 6a of the diamond tool 6
The diameter of (the part from the cutting blade 8 to the cutting spindle 7) is
It is smaller than the rotation locus 11 of the cutting blade 8.
This eliminates the interference between the processed surface and the shank portion 6a, and enables processing of a hemispherical curved surface.

【0022】本実施の形態1の前記切削スピンドル7の
傾き角度θは、以下のように設定される。
The inclination angle θ of the cutting spindle 7 of the first embodiment is set as follows.

【0023】図4において、 角θ1 =θ2 のとき 傾き角度θ=切削刃8の有効範囲(度)/2In FIG. 4, when the angle θ 1 = θ 2 , the inclination angle θ = the effective range (degrees) / 2 of the cutting blade 8

【0024】角θ1 >θ2 のとき 傾き角度θ=切削刃8の有効範囲(度)/2+(θ1
θ2 )/2
When Angle θ 1 > θ 2 Inclination angle θ = effective range (degrees) of cutting blade 8/2 + (θ 1
θ 2 ) / 2

【0025】角θ1 <θ2 のとき 傾き角度θ=切削刃8の有効範囲(度)/2−(θ1
θ2 )/2
When the angle θ 12 Inclination angle θ = effective range (degrees) of cutting blade 8 / 2− (θ 1
θ 2 ) / 2

【0026】次に、実施の形態1の作用を、図8乃至図
10を参照して説明する。図8は、軸非対称曲面レンズ
1の光軸中心13上でダイヤモンド工具6が作用する状
態の側面図を示し、図9はその上面図を示す。図10
は、加工時の切削刃8の軌跡及び加工順序を示す説明図
である。
Next, the operation of the first embodiment will be described with reference to FIGS. 8 to 10. FIG. 8 shows a side view of the state where the diamond tool 6 acts on the optical axis center 13 of the axially asymmetric curved lens 1, and FIG. 9 shows its top view. FIG.
FIG. 4 is an explanatory diagram showing a locus of the cutting blade 8 and a processing order during processing.

【0027】前記軸非対称曲面レンズ1は、配置された
ダイヤモンド工具6により以下のように切削加工され
る。即ち、軸非対称曲面レンズ1の光軸中心13とダイ
ヤモンド工具6の切削刃8の回転中心9とが一致するN
C座標値のX、Yを0とし、軸非対称曲面レンズ1に接
した位置を曲率半径R1 の数値に書き換える(NCプロ
グラムが切削刃8の回転中心9を基準に動く)。以上
で、X軸、Y軸、Z軸の基準位置が設定される。
The axially asymmetric curved lens 1 is cut by the diamond tool 6 arranged as follows. That is, the optical axis center 13 of the axially asymmetric curved lens 1 and the rotation center 9 of the cutting blade 8 of the diamond tool 6 coincide with each other N
The X and Y of the C coordinate values are set to 0, and the position in contact with the axially asymmetric curved surface lens 1 is rewritten to the numerical value of the radius of curvature R 1 (the NC program moves based on the rotation center 9 of the cutting blade 8). As described above, the reference positions of the X axis, the Y axis, and the Z axis are set.

【0028】切削加工は、図10に示す加工開始ライン
L101から行うが、ダイヤモンド工具6の切削刃8の
当接点8aが加工開始ラインL101を通過するように
加工ラインに対し切削刃8の当接点8aの変化を考慮に
いれて、切削刃8の回転中心9の軌跡(図8に示すY方
向移動ラインYL及び図9に示すX方向移動ラインXL
の交点)の各加工点データを計算してNCプログラムを
作成する。
The cutting is performed from the machining start line L101 shown in FIG. 10, but the contact point 8a of the cutting edge 8 of the diamond tool 6 with respect to the machining line passes through the machining start line L101. 8a is taken into consideration, the locus of the rotation center 9 of the cutting blade 8 (Y-direction movement line YL shown in FIG. 8 and X-direction movement line XL shown in FIG. 9).
NC point program is created by calculating each processing point data of (intersection point of).

【0029】この作成されたNCプログラムにより、N
C加工機のX軸、Z軸の各方向の移動をNC制御し、1
つのラインの加工を行う。この1つのラインの加工が終
了するとY軸をNC制御し、次のラインL102へ移動
して同様に加工を行う。
With the NC program created, N
NC control of X-axis and Z-axis movement of the C processing machine
One line is processed. When the processing of this one line is completed, the Y-axis is NC controlled, and the process is moved to the next line L102 to perform the same processing.

【0030】このように加工開始ラインL101からラ
インL102、L103、…とY軸方向に細分化した全
てのラインの加工を終了することにより、軸非対称面レ
ンズ1を形成することができる。
In this way, by finishing the processing of all the lines subdivided in the Y-axis direction from the processing start line L101 to the lines L102, L103, ..., The axially asymmetric lens 1 can be formed.

【0031】本実施の形態1によれば、ダイヤモンド工
具6の切削刃8を球状として加工することから、複雑な
軸非対称曲面レンズ1であってもNCプログラムを容易
に作成でき、常に周速を持つ切削刃8にて連続した切削
加工が可能となり、軸非対称曲面レンズ1において高精
度な光学面が得られる。また、切削刃にダイヤモンドを
用いるので、切削加工のみで良好な光学面がえられる。
According to the first embodiment, since the cutting blade 8 of the diamond tool 6 is machined into a spherical shape, an NC program can be easily created even with a complicated axially asymmetric curved surface lens 1, and the peripheral speed is always maintained. Continuous cutting can be performed by the cutting blade 8 provided, and a highly accurate optical surface can be obtained in the axially asymmetric curved lens 1. Further, since diamond is used for the cutting blade, a good optical surface can be obtained only by cutting.

【0032】尚、本実施の形態1では、加工順序におい
てX軸、Z軸で制御される加工ラインをワークである軸
非対称曲面レンズ1に対してY軸制御にて下から上に移
動させ切削加工を行ってっているが、逆に上から下に移
動させて切削加工を行うことができ、更には、Y軸、Z
軸で制御される加工ラインをワークである軸非対称曲面
レンズ1に対してX軸制御にて横方向に移動させても切
削加工が可能となるものである。
In the first embodiment, the machining line controlled by the X-axis and the Z-axis in the machining order is moved from the bottom to the top by the Y-axis control with respect to the axially asymmetric curved lens 1 which is the workpiece and the cutting is performed. Although processing is done, it is possible to move from top to bottom to perform cutting, and further, Y-axis, Z
Even if the machining line controlled by the axis is moved laterally by the X-axis control with respect to the axially asymmetric curved surface lens 1 as the work, the cutting can be performed.

【0033】また、ワークの材質は、切削加工が可能な
ものであれば、アクリル樹脂に限らず他の光学用樹脂、
更には成形用型では、無電解ニッケルメッキ、無酸素
銅、リン青銅、真鍮等があり、ミラーではアルミニウム
等がある。
The material of the work is not limited to acrylic resin as long as it can be cut, and other optical resin,
Further, there are electroless nickel plating, oxygen-free copper, phosphor bronze, brass and the like in the molding die, and aluminum and the like in the mirror.

【0034】本実施の形態1と同じ構成で、切削工具の
切削刃にc−BN(立方晶窒化ほう素)を用いること
で、ダイヤモンドと親和性の良い鉄系の材料からなるワ
ークについても、高精度で加工できる。
With the same structure as in the first embodiment, by using c-BN (cubic boron nitride) for the cutting edge of the cutting tool, a work made of an iron-based material having a good affinity with diamond Can be processed with high precision.

【0035】(実施の形態2)図11は、本発明の実施
の形態2の軸非対称曲面レンズ14の斜視図であり、図
12はその正面図を示し、図13は図12のC−C断面
図であり、図14は図12のD−D断面図である。本実
施の形態2では、図14に示す軸非対称曲面レンズ13
の最外周での曲率中心とのなす角θ3 、θ4 が各々90
度の半球のアクリルのレンズを加工するものである。
(Embodiment 2) FIG. 11 is a perspective view of an axially asymmetric curved lens 14 according to Embodiment 2 of the present invention, FIG. 12 shows its front view, and FIG. 13 shows CC of FIG. FIG. 14 is a sectional view, and FIG. 14 is a sectional view taken along line DD of FIG. 12. In the second embodiment, the axially asymmetric curved surface lens 13 shown in FIG.
The angles θ 3 and θ 4 with the center of curvature at the outermost circumference of
It is used to process a hemispherical acrylic lens.

【0036】加工機の構成は、実施の形態1と同様であ
り、図5に示す切削スピンドル7の傾き角θを水平(0
度)に近い状態にして、図12に示すC−Cラインの上
の面と下の面の二つに分けて加工するものであり、切削
スピンドル7の傾き角θは1度以上で(切削刃有効範囲
−90度)未満としている。
The structure of the processing machine is the same as that of the first embodiment, and the inclination angle θ of the cutting spindle 7 shown in FIG.
The cutting spindle 7 is divided into two parts, an upper surface and a lower surface of the CC line shown in FIG. 12, and the inclination angle θ of the cutting spindle 7 is 1 degree or more (cutting). The effective blade range is less than -90 degrees.

【0037】図15は、軸非対称曲面レンズ14の光軸
中心15に関して切削刃8の最外周16上でのダイヤモ
ンド工具6の作用状態の側面を示す。また、図16、図
17は、加工時の切削刃の軌跡及び加工順序を示すもの
である。
FIG. 15 shows a side view of the working state of the diamond tool 6 on the outermost circumference 16 of the cutting blade 8 with respect to the optical axis center 15 of the axially asymmetric curved lens 14. 16 and 17 show the locus of the cutting blade and the processing order during processing.

【0038】軸非対称曲面レンズ14を加工するための
X軸、Y軸、Z軸の基準位置の設定を実施の形態1と同
様に行い、切削加工は非対称曲面レンズ14の光軸中心
15上のC−Cライン(ラインL201)を加工開始ラ
インとし、実施の形態1と同様にNCプログラムを作成
し、加工開始ラインL201からラインL202、ライ
ンL203、…とY軸方向に細分化した全てのラインの
加工を終了し、軸非対称曲面レンズ14の半分の面14
aが形成される。
The X-axis, Y-axis, and Z-axis reference positions for processing the axially asymmetric curved lens 14 are set in the same manner as in the first embodiment, and the cutting is performed on the optical axis center 15 of the asymmetric curved lens 14. Using the CC line (line L201) as a machining start line, an NC program is created in the same manner as in the first embodiment, and all lines subdivided in the Y-axis direction from the machining start line L201 to line L202, line L203 ,. After finishing the process, the half surface 14 of the axially asymmetric curved lens 14 is processed.
a is formed.

【0039】また、次に光軸中心15を中心に軸非対称
曲面レンズ14を180度反転させ、前記のように加工
開始ラインL201、ラインL202、ラインL20
3、…とY軸方向に細分化した全てのラインの加工を終
了し、もう半分の面14bが形成される。以上で軸非対
称曲面レンズ14を形成することができる。
Then, the axially asymmetric curved surface lens 14 is inverted 180 degrees about the optical axis center 15 and, as described above, the processing start line L201, line L202, line L20.
Processing of all the lines subdivided in the Y-axis direction such as 3, ... Is completed, and the other half surface 14b is formed. With the above, the axially asymmetric curved lens 14 can be formed.

【0040】本実施の形態2によれば、切削スピンドル
7を傾けることにより半球又は半球に近い曲面レンズで
あっても切削加工が可能となり、高精度な光学面を得る
ことができる。
According to the second embodiment, by tilting the cutting spindle 7, even a hemisphere or a curved lens close to a hemisphere can be cut and a highly accurate optical surface can be obtained.

【0041】(実施の形態3)図18乃至図21は、本
発明の実施の形態3を示すものである。図18は実施の
形態3の軸外し非球面ミラー17の斜視図であり、図1
9は軸外し非球面ミラー17の光軸18との位置関係を
示し、本実施の形態3では軸外し非球面ミラー17を軸
非対称曲面レンズ1の場合と同様に加工するものであ
る。
(Third Embodiment) FIGS. 18 to 21 show a third embodiment of the present invention. 18 is a perspective view of the off-axis aspherical mirror 17 according to the third embodiment.
Reference numeral 9 indicates a positional relationship between the off-axis aspherical mirror 17 and the optical axis 18, and in the third embodiment, the off-axis aspherical mirror 17 is processed in the same manner as the case of the axially asymmetric curved lens 1.

【0042】加工機の構成は、実施の形態1と同様であ
り、図19に示すようにミラー面17aには光軸18が
含まれないので、図3に示す切削スピンドル7の傾き角
θを水平(0度)の状態にして、実施の形態1と同様に
加工するものである。
The structure of the processing machine is the same as that of the first embodiment, and since the mirror surface 17a does not include the optical axis 18 as shown in FIG. 19, the inclination angle θ of the cutting spindle 7 shown in FIG. The processing is performed in the horizontal (0 degree) state as in the first embodiment.

【0043】図20は、軸外し非球面ミラー17のミラ
ー面17a上のダイヤモンド工具6の作用状態の側面図
を示し、図21は切削加工時の切削刃8の軌跡及び加工
順序を示す説明図である。
FIG. 20 is a side view showing the working state of the diamond tool 6 on the mirror surface 17a of the off-axis aspherical mirror 17, and FIG. 21 is an explanatory view showing the locus of the cutting blade 8 and the processing sequence during cutting. Is.

【0044】軸外し非球面ミラー17を加工するための
プログラムは、前記ミラー面17aの範囲の中の非球面
データを実施の形態1と同様に図21に示すラインL3
01をダイヤモンド工具6の切削刃8の当接点8aが通
過するよう書換え作成し、ラインL301を加工開始ラ
インとし、ラインL302、ラインL303、…とY軸
方向に細分化した全て加工ラインの加工を行い、終了と
する。以上で軸外し非球面ミラー17を形成することが
できる。
As a program for processing the off-axis aspherical mirror 17, the aspherical surface data within the range of the mirror surface 17a is line L3 shown in FIG. 21 as in the first embodiment.
01 is rewritten so that the contact point 8a of the cutting edge 8 of the diamond tool 6 passes, and the line L301 is set as the processing start line, and the processing of all the processing lines subdivided in the Y-axis direction such as the line L302, the line L303 ,. Perform and end. As described above, the off-axis aspherical mirror 17 can be formed.

【0045】本実施の形態3によれば、軸外し非球面ミ
ラー17においても特別な治具を用いずに切削加工が可
能となり、高精度な光学面を得ることができる。
According to the third embodiment, the off-axis aspherical mirror 17 can be cut without using a special jig, and a highly accurate optical surface can be obtained.

【0046】[0046]

【発明の効果】請求項1記載の発明の効果は、曲率の大
小に拘らず軸非対称曲面又は軸外し非球面等のあらゆる
曲面加工に対応できる。更には、切削刃を球状としてい
るのでプログラム作成時の補正も1つで済み容易である
利点がある。
The effect of the invention according to claim 1 can be applied to any curved surface processing such as an axially asymmetric curved surface or an off-axis aspherical surface, regardless of the size of the curvature. Furthermore, since the cutting blade is spherical, there is an advantage that only one correction is required at the time of program creation and it is easy.

【0047】請求項2記載の発明によれば、請求項1記
載の発明の効果に加え、曲面全面において良好な加工面
を得ることができる曲面切削加工方法を提供できる。
According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, it is possible to provide a curved surface cutting method capable of obtaining a good processed surface on the entire curved surface.

【0048】請求項3記載の発明によれば、請求項1記
載の発明の効果に加え、半球状のものでも高精度で加工
できる曲面切削加工方法を提供できる。
According to the third aspect of the present invention, in addition to the effect of the first aspect of the invention, it is possible to provide a curved surface cutting method capable of processing a hemispherical shape with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1における軸非対称曲面レ
ンズを示す斜視図である。
FIG. 1 is a perspective view showing an axially asymmetric curved lens according to a first embodiment of the present invention.

【図2】実施の形態1における軸非対称曲面レンズを示
す正面図である。
FIG. 2 is a front view showing an axially asymmetric curved lens according to the first embodiment.

【図3】図2のA−A線断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 2;

【図4】図2のB−B線断面図である。FIG. 4 is a sectional view taken along line BB in FIG.

【図5】実施の形態1の加工機を示す側面図である。FIG. 5 is a side view showing the processing machine according to the first embodiment.

【図6】実施の形態1の切削工具を示す正面図である。FIG. 6 is a front view showing the cutting tool according to the first embodiment.

【図7】実施の形態1の切削工具を示す平面図である。FIG. 7 is a plan view showing the cutting tool according to the first embodiment.

【図8】軸非対称曲面レンズの光軸中心上でダイヤモン
ド工具が作用する状態の側面図である。
FIG. 8 is a side view showing a state where a diamond tool acts on the optical axis center of an axially asymmetric curved lens.

【図9】軸非対称曲面レンズの光軸中心上でダイヤモン
ド工具が作用する状態の平面図である。
FIG. 9 is a plan view showing a state where a diamond tool acts on the optical axis center of an axially asymmetric curved lens.

【図10】加工時の切削刃の軌跡及び加工順序を示す説
明図である。
FIG. 10 is an explanatory diagram showing a trajectory of a cutting blade and a processing order during processing.

【図11】実施の形態2における軸非対称曲面レンズを
示す斜視図である。
FIG. 11 is a perspective view showing an axially asymmetric curved lens in the second embodiment.

【図12】実施の形態2における軸非対称曲面レンズを
示す正面図である。
FIG. 12 is a front view showing an axially asymmetric curved lens according to a second embodiment.

【図13】図12のC−C線断面図である。FIG. 13 is a sectional view taken along line CC of FIG. 12;

【図14】図12のD−D線断面図である。FIG. 14 is a sectional view taken along line DD of FIG. 12;

【図15】実施の形態2における加工状態を示す側面図
である。
FIG. 15 is a side view showing a processed state in the second embodiment.

【図16】実施の形態2における片方の面の加工時の切
削刃の軌跡を示す正面図である。
FIG. 16 is a front view showing a locus of a cutting blade when processing one surface in the second embodiment.

【図17】実施の形態2における他方の面の加工時の切
削刃の軌跡を示す正面図である。
FIG. 17 is a front view showing a locus of a cutting blade when processing the other surface in the second embodiment.

【図18】実施の形態3の軸外し非球面ミラーの斜視図
である。
FIG. 18 is a perspective view of an off-axis aspherical mirror according to a third embodiment.

【図19】実施の形態3の軸外し非球面ミラーの光軸と
の位置関係を示す平面図である。
FIG. 19 is a plan view showing the positional relationship with the optical axis of the off-axis aspherical mirror according to the third embodiment.

【図20】実施の形態3の軸外し非球面ミラーのミラー
面上のダイヤモンド工具の作用状態の側面図である。
FIG. 20 is a side view of the off-axis aspherical mirror according to the third embodiment in a working state of the diamond tool on the mirror surface.

【図21】実施の形態3の切削加工時の切削刃の軌跡及
び加工順序を示す説明図である。
FIG. 21 is an explanatory diagram showing a locus of a cutting blade and a processing order during cutting according to the third embodiment.

【符号の説明】[Explanation of symbols]

1 軸非対称曲面レンズ 2 X軸スライドテーブル 3 Y軸スライドテーブル 4 Z軸スライドテーブル 5 主軸 6 ダイヤモンド工具 7 切削スピンドル 8 切削刃 8a 当接点 9 回転中心 10a 回転中心軸 10b 回転中心軸 12 有効部 13 光軸中心 14 軸非対称曲面レンズ 15 光軸中心 16 最外周部 17 軸外し非球面ミラー l7a ミラー面 18 光軸 1-axis asymmetric curved lens 2 X-axis slide table 3 Y-axis slide table 4 Z-axis slide table 5 Spindle 6 Diamond tool 7 Cutting spindle 8 Cutting blade 8a Contact point 9 Rotation center 10a Rotation center axis 10b Rotation center axis 12 Effective part 13 Optical Axial center 14 Axisymmetric curved lens 15 Optical axis center 16 Outermost peripheral portion 17 Off-axis aspherical mirror 17a Mirror surface 18 Optical axis

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年6月4日[Submission date] June 4, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】図4において、傾き角度θ=切削刃8の有効範囲(度)/2−(θ1
θ2 )/2
In FIG. 4, inclination angle θ = effective range (degrees) of cutting blade 8 / 2− (θ 1
θ 2 ) / 2

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】削除[Correction method] Deleted

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】削除[Correction method] Deleted

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定の曲率半径を有する切削刃の曲率半
径中心が前記切削刃を固持する工具の回転中心軸上に位
置し、前記切削刃の回転軌跡が前記所定の曲率半径を有
する球面になる切削工具を用い、この切削工具をワーク
曲面に対して相対的に移動させてワーク曲面を切削加工
することを特徴とする曲面切削加工方法。
1. A center of curvature of a cutting blade having a predetermined radius of curvature is located on a rotation center axis of a tool holding the cutting blade, and a rotation locus of the cutting blade is a spherical surface having the predetermined radius of curvature. A curved surface cutting method characterized by using the cutting tool described above, and moving the cutting tool relative to the curved surface of the work to cut the curved surface of the work.
【請求項2】 前記切削工具の回転中心軸が、ワーク曲
面内に位置しないように、前記切削工具を保持する切削
スピンドルを一定角度傾けることを特徴とする請求項1
記載の曲面切削加工方法。
2. The cutting spindle holding the cutting tool is tilted at a constant angle so that the center axis of rotation of the cutting tool is not located in the curved surface of the work.
The curved surface cutting method described.
【請求項3】 前記切削工具の回転中心軸から外周方向
に向かって、少なくとも90度以上の範囲の中で切削工
具を回転させることを特徴とする請求項1記載の曲面切
削加工方法。
3. The curved surface cutting method according to claim 1, wherein the cutting tool is rotated in a range of at least 90 degrees or more from the rotation center axis of the cutting tool toward the outer peripheral direction.
JP12545696A 1996-05-21 1996-05-21 Curved face cutting and machining method Pending JPH09300189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12545696A JPH09300189A (en) 1996-05-21 1996-05-21 Curved face cutting and machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12545696A JPH09300189A (en) 1996-05-21 1996-05-21 Curved face cutting and machining method

Publications (1)

Publication Number Publication Date
JPH09300189A true JPH09300189A (en) 1997-11-25

Family

ID=14910553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12545696A Pending JPH09300189A (en) 1996-05-21 1996-05-21 Curved face cutting and machining method

Country Status (1)

Country Link
JP (1) JPH09300189A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008098429A1 (en) * 2007-02-13 2008-08-21 Wang Zhong An A method for processing aspheric
WO2016120985A1 (en) * 2015-01-27 2016-08-04 日立マクセル株式会社 Method for manufacturing rotationally asymmetric lens, method for manufacturing rotationally asymmetric lens molding die, method for manufacturing rotationally asymmetric mirror, and method for manufacturing rotationally asymmetric mirror molding die

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008098429A1 (en) * 2007-02-13 2008-08-21 Wang Zhong An A method for processing aspheric
WO2016120985A1 (en) * 2015-01-27 2016-08-04 日立マクセル株式会社 Method for manufacturing rotationally asymmetric lens, method for manufacturing rotationally asymmetric lens molding die, method for manufacturing rotationally asymmetric mirror, and method for manufacturing rotationally asymmetric mirror molding die
CN107003431A (en) * 2015-01-27 2017-08-01 日立麦克赛尔株式会社 The manufacture method of non-rotationally-symmetric lens, the manufacture method of non-rotationally-symmetric forming lens mould, the manufacture method of the manufacture method of rotation asymmetry speculum and rotation asymmetry speculum shaping dies
JPWO2016120985A1 (en) * 2015-01-27 2017-09-14 日立マクセル株式会社 Rotation non-axisymmetric lens manufacturing method, rotation non-axisymmetric lens molding die manufacturing method, rotation non-axisymmetric surface mirror manufacturing method, and rotation non-axisymmetric surface mirror molding die manufacturing method
CN107003431B (en) * 2015-01-27 2019-03-12 麦克赛尔株式会社 The manufacturing method of non-rotational symmetry lens/reflecting mirror and its shaping dies
US10265831B2 (en) 2015-01-27 2019-04-23 Maxell, Ltd. Method for manufacturing lens, method for manufacturing molding die for lens, method for manufacturing mirror, method for manufacturing molding die for mirror, lens and molding die for lens

Similar Documents

Publication Publication Date Title
US20080273253A1 (en) Method for producing mold for zonal optical element
US7494305B2 (en) Raster cutting technology for ophthalmic lenses
US20100280650A1 (en) Machining apparatus and machining method
EP1679154A1 (en) Method for machining aspherical surface, method for forming aspherical surface, and system for machining aspherical surface
JPH09300189A (en) Curved face cutting and machining method
JP3662087B2 (en) Curved surface cutting method
JP7016568B1 (en) Fresnel lens mold manufacturing method, processing equipment and cutting tools
JP2000052217A (en) Tool and processing method
WO2006132126A1 (en) Method of producing optical element, and optical element
JP2009095973A (en) Grinding wheel molding device and method
JPH10328995A (en) Curved surface grinding method
JP3839326B2 (en) Axisymmetric aspheric grinding method
JP2007090489A (en) Die cutting method and device therefor
JP2000198001A (en) Cutting tool and cutting work method
JP2002144105A (en) Curved surface cutting method
JP2004009158A (en) Manufacturing method for die for golf ball
JP2006289871A (en) Method for manufacturing ring zone optical element and method for manufacturing mold for ring zone optical element
JP2723158B2 (en) Processing method of toroidal surface
JPH08290303A (en) Ultra-precision cutting method
JP3241149B2 (en) Method for manufacturing ophthalmic lens having toric surface
JP2004202667A (en) Method of generating shape of grindstone for grinding
JP2003094201A (en) Axially non-symmetric and aspherical machining machine, axially non-symmetric and aspherical machining method, and axially non-symmetric and aspherical workpiece
JPH11188591A (en) Curved surface cutting method
JP2000084815A (en) Manufacture of aspherical optical element
KR100210341B1 (en) Asymmetric spherical surface forming method and device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Effective date: 20050524

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050712

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060117

Free format text: JAPANESE INTERMEDIATE CODE: A02