JP2004202667A - Method of generating shape of grindstone for grinding - Google Patents

Method of generating shape of grindstone for grinding Download PDF

Info

Publication number
JP2004202667A
JP2004202667A JP2002378107A JP2002378107A JP2004202667A JP 2004202667 A JP2004202667 A JP 2004202667A JP 2002378107 A JP2002378107 A JP 2002378107A JP 2002378107 A JP2002378107 A JP 2002378107A JP 2004202667 A JP2004202667 A JP 2004202667A
Authority
JP
Japan
Prior art keywords
grinding
grinding wheel
shape
grindstone
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002378107A
Other languages
Japanese (ja)
Inventor
Harutaka Kondo
晴崇 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002378107A priority Critical patent/JP2004202667A/en
Publication of JP2004202667A publication Critical patent/JP2004202667A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of generating the shape of a grindstone for grinding, which generates a ground surface at a desired curvature and with high profile irregularity. <P>SOLUTION: According to the method, the grindstone 4 for grinding, having an abrasive grain layer on the periphery of a rotating shaft and a columnar grindstone 8 for generating the shape, which has its rotating shaft located in a plane perpendicular to the former rotating shaft and has a hollow tip portion, are arranged such that the rotating shaft of the grindstone 4 for grinding and the rotating shaft of the grindstone 8 for generating the shape are twisted with respect to each other. Then while the grindstone 4 for grinding and the grindstone 8 for generating the shape are rotated on the respective rotating shafts, the tip of the grindstone 8 for generating the shape is abutted on a side surface of the grindstone 4 for grinding, to thereby generate the shape of the grindstone 4 for grinding. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、レンズ、ミラー、プリズムなどの光学素子の光学面の研削加工、あるいはその光学面をプレス成形により形成するための金型の成形面の研削加工に用いるのに好適な研削加工用砥石の形状の創成方法に関する。
【0002】
【従来の技術】
現在、デジタルカメラ等のデジタル画像処理技術の進歩に伴い、レンズ、ミラー、プリズムといった光学素子の高精度化が求められている。
従来、非球面形状の光学素子の光学面の研削加工、あるいはその光学面をプレス成形するための金型の成形面の研削加工においては、光軸を中心にして被研削加工物を回転させると共に砥石軸を中心として砥石表面が一定の速さとなるように研削加工用砥石を回転させながら被研削加工物又は研削加工用砥石を一定方向に走査させることにより、被研削加工面が所望の形状になるように加工を行っていた。この場合、研削加工用砥石の実際の加工軌跡は被研削加工物の表面を渦巻き状に移動することになる。
【0003】
この非球面形状の光学素子の光学面の研削加工、あるいはその光学面をプレス成形するための金型の成形面の研削加工に用いられる砥石の形状の創成方法として、特許文献1に記載の発明が開示されている。以下、図9を用いてこの発明を説明する。
【0004】
図9(a)に示すように、形状創成用砥石108の形状創成用砥石回転軸AAと研削加工用砥石104の研削加工用砥石回転軸BBとを交差するように配置し、研削加工用砥石104と形状創成用砥石108とを各々回転させながら相対的に接近させる。そして、形状創成用砥石108の先端108aと研削加工用砥石104の研削加工面104aとを線接触させながら切込むと、研削加工用砥石104の研削加工面104aを球面形状とすることができる。なお、図9(b)は図9(a)に示した研削加工用砥石104と形状創成用砥石108とを図9(a)における左横から見た図である。
【0005】
このようにして形成された球面形状の研削加工用砥石を用いれば、光学素子の光学面、あるいは金型の成形面といった被研削加工面が凸面若しくは凹面であるとに関わらず、また浅面若しくは深面であるとにも関わらず、更には変極点の有無にも関わらず、研削加工用砥石の研削位置と被研削加工面の研削位置とを常に垂直に接触させて研削できるので、被研削加工面の形状を選ばず加工が行える利点があった。
【0006】
【特許文献1】
特開2001−260023号公報
【0007】
【発明が解決しようとする課題】
例えば被研削加工面を軸対称非球面の凸面形状であり、且つ変極点を持たない形状とするべく球面形状の研削加工用砥石で加工を行う場合には、被研削加工面と研削加工用砥石の曲率の中心位置とが対極側になり、曲率の中心位置から離れて研削加工を行うこととなる。この状態で所望形状を得るために前述のようにして研削加工を行うと、被研削加工面における研削加工用砥石の軌跡方向に対して垂直方向に切込み深さ分の研削加工用砥石の曲率が転写されてしまうため、被研削加工面に波形状の粗さが生じてしまう。また、研削加工用砥石と被研削加工面の曲率の中心位置とが離れているので、研削加工用砥石が被研削加工面を回り込むように走査させるため走査量が長くなってしまい、その結果加工リードタイムも長くなってしまう。
【0008】
また、例えば被研削加工面を軸対称非球面の浅い凹面形状とするべく球面形状の研削加工用砥石で加工を行う場合にも、同様な問題が発生する。
このような問題に対処するため、単なる球形状に留まらずにより自由な形状の研削加工用砥石を創成できるようにすることが求められていた。
【0009】
本発明が解決しようとする課題は、上述した要請を鑑み、研削加工面を所望の曲率の形状に高い面精度で創成することのできる研削加工用砥石の形状の創成方法を提供することである。
【0010】
【課題を解決するための手段】
本発明の態様のひとつである研削加工用砥石の形状創成方法は、回転軸の外周部に砥粒層を有している研削加工用砥石と、該回転軸に対して垂直な面上に回転軸が位置しており先端が中空である円柱形状の形状創成用砥石とを、該研削加工用砥石の回転軸と該形状創成用砥石の回転軸とがねじれの位置となるように配置し、該研削加工用砥石と該形状創成用砥石とを各々自身の回転軸を中心にして回転させながら該研削加工用砥石の側面に該形状創成用砥石の先端を当て付けることで該研削加工用砥石の形状を創成するようにすることで前述した課題を解決する。
【0011】
こうすることにより、単なる球形状に留まらずにより自由な形状の研削加工用砥石を高い面精度で創成することができる。
なお、上述した本発明に係る研削加工用砥石の形状創成方法において、研削加工用砥石の回転軸が、形状創成用砥石の回転軸から該形状創成用砥石の半径よりも離れた位置であって該研削加工用砥石の半径と該形状創成用砥石の半径との和よりも近い該位置に配置されるようにすることができる。
【0012】
こうすることにより、研削加工用砥石の研削加工面を所望の曲率の凹面形状に高い面精度で創成することができる。
また、前述した本発明に係る研削加工用砥石の形状創成方法において、研削加工用砥石の回転軸が、形状創成用砥石の回転軸から該形状創成用砥石の半径よりも近い位置に配置されるようにすることができる。
【0013】
こうすることにより、研削加工用砥石の研削加工面を所望の曲率の凸面形状に高い面精度で創成することができる。
【0014】
【発明の実施の形態】
本発明では、研削加工用砥石の回転軸と形状創成用砥石の回転軸とを交わることのないねじれの位置に配置し、その位置で研削加工用砥石を回転させると共に形状創成用砥石をも回転させる。そして、その状態で研削加工用砥石又は形状創成用砥石を接近させて接触させることで、研削加工用砥石の研削加工面を凹面凸面、深面浅面に関わらず所望の曲率の形状に、且つ研削加工面を高い面精度で形状創成する。
【0015】
以下、本発明の実施の形態を図面に基づいて説明する。
[実施例1]
まず、実施例1の構成を説明する。
図1は、砥石を軸対称非球面のレンズの研削用のものに加工する加工機の構成を示している。この加工機は、その移動軸が同図に示す各々直交するX軸、Y軸、Z軸の3軸方向に制御可能な軸構成を有している。
【0016】
主軸1はZ軸方向に移動させることのできるZ軸テーブル2の上に保持されており、主軸1の回転軸Aは主軸モータ3によりZ軸方向を中心にして回転させることができる。
研削加工用砥石4を回転させる工具モータ5は、X軸方向及びY軸方向に各々移動させることのできるXY軸テーブル6の上に保持されている。
【0017】
工具モータ5はその回転軸Bが前述した主軸回転軸Aと直交しているY軸方向を中心にして回転するように配置されている。工具モータ5の先端には工具軸10が接着されている研削加工用砥石4が把持されており、工具モータ5を動作させることによって研削加工用砥石4は上述した工具回転軸Bを中心にして回転する。
【0018】
この実施例1で創成される研削加工用砥石4の構造を図2に示す。
図2に示すように、研削加工用砥石4にはその砥石軸の外周部に砥粒層9が厚く設けられている。本実施形態では、この研削加工用砥石4の砥石軸側面の研削加工面4aを平面もしくは凹面形状に形成する。なお、同図において、Tを研削加工用砥石4の研削加工面の凹面形状の面頂部の半径とし、Cを研削加工面4aの凹面部の曲率の中心が存在する軸(曲率中心位置軸)とし、Rを研削加工面4aの凹面部の曲率半径とする。
【0019】
図1の説明へ戻ると、主軸1の先端はチャック装置7を介して形状創成用砥石8を把持する。このとき、形状創成用砥石8は主軸モータ3を動作させることによって前述した主軸回転軸Aを中心にして回転する。この形状創成用砥石8の構造を図3に示す。
【0020】
図3に示すように、形状創成用砥石8は中空の円柱状であるカップ形状をしており、そのカップの先端にはダイヤモンド砥粒8aが設けられている。なお、同図において、Sを形状創成用砥石8の半径、Uを形状創成用砥石8の内径の半径とする。
【0021】
以下、実施例1における研削加工用砥石4の形状創成の方法を図4及び図5を用いて説明する。なお、図4は、図1に示した加工機における前面側から研削加工用砥石4と形状創成用砥石8とを見た図、図5は、図1に示した加工機における上面側から研削加工用砥石4と形状創成用砥石8とを見た図である。
【0022】
まず、図1に示した加工機のXY軸テーブル6をY軸方向で移動させ、研削加工面4aの凹面部の曲率中心位置軸Cの高さと前述した主軸回転軸Aの高さとを一致(Y軸方向の位置を一致)させるように設定する(図4参照)。
次に、XY軸テーブル6を今度はX軸方向で移動させ、研削加工用砥石4を回転させる工具回転軸Bが、主軸回転軸Aの位置から少なくとも形状創成用砥石8の半径Sより離れた位置であって、且つ研削加工用砥石4の半径Tと形状創成用砥石8の半径Sとを足した距離までの位置となるねじれの位置になるように設定する。
【0023】
次に、主軸モータ3と工具モータ5とを動作させて研削加工用砥石4と形状創成用砥石8とを回転させる。そして、この状態でZ軸テーブル2を移動送りさせて研削加工用砥石4と形状創成用砥石8とを相対的に接近させる。この移動送りを継続させると、やがて研削加工用砥石4の研削加工面4aと形状創成用砥石8のカップ部の外周部とが線接触する。更にZ軸テーブル2を移動送りさせると、研削加工面4aの線接触部がダイヤモンド砥粒8aによって切り込まれる。その後、Z軸テーブル2の移動送りを研削加工用砥石4の研削加工面4aの全面が切込まれるまで継続することにより、研削加工用砥石4の研削加工面4aを高い面精度で凹面形状に創成することができる。
【0024】
ここで、中心位置軸Cの高さと主軸回転軸Aの高さとを一致させているので、研削加工用砥石4の凹面形状の曲率中心位置は主軸回転軸A上にある。従って、主軸回転軸Aと工具回転軸Bとの距離をLとすると、研削加工用砥石4の研削加工面4aの凹面形状の曲率半径RがこのLと前述したS及びTとを用いて次式で表せることは、図5を参照すれば明らかである。
【0025】
R=T×{S/(L−S)}
上式に従って各パラメータを設定することにより、研削加工面4aに所望の曲率の凹面形状を持たせた、面精度の高い研削加工用砥石4を創成することができる。
[実施例2]
次に実施例2を説明する。なお、この実施例2でも図1に示したものと同一の加工機を使用して砥石の加工を行う。また、形状創成用砥石8も図3に示した構造のものを用いる。
【0026】
なお、各図に付した符号は共通して使用するものとし、その説明は省略する。まず図6について説明する。同図はこの実施例2で創成される研削加工用砥石4の構造を示している。
図6に示すように、研削加工用砥石4にはその砥石軸の外周部に砥粒層9が厚く設けられている。本実施形態では、この研削加工用砥石4の砥石軸側面の研削加工面4aを凸面形状に形成する。なお、同図において、Vを研削加工用砥石4の研削加工面の凸面形状の面頂部の半径とし、Cを研削加工面4aの凸面部の曲率の中心が存在する軸(曲率中心位置軸)とし、Rを研削加工面4aの凸面部の曲率半径とする。
【0027】
以下、実施例2における研削加工用砥石4の形状創成の方法を図7及び図8を用いて説明する。なお、図7は、図1に示した加工機における前面側から研削加工用砥石4と形状創成用砥石8とを見た図、図8は、図1に示した加工機における上面側から研削加工用砥石4と形状創成用砥石8とを見た図である。
【0028】
まず、図1に示した加工機のXY軸テーブル6をY軸方向で移動させ、研削加工用砥石4の研削加工面4aの凸面部の曲率中心位置軸Cの高さと前述した主軸回転軸Aの高さとをー致(Y軸方向の位置を一致)させるように設定する(図7参照)。
【0029】
次に、XY軸テーブル6を今度はX軸方向で移動させ、研削加工用砥石4を回転させる工具回転軸Bが、主軸回転軸Aの位置から少なくとも形状創成用砥石8の内径の半径Uより近い位置のねじれの位置になるように設定する。
次に、主軸モータ3と工具モータ5とを動作させて研削加工用砥石4と形状創成用砥石8とを回転させる。そして、この状態でZ軸テーブル2を移動送りさせて研削加工用砥石4と形状創成用砥石8とを相対的に接近させる。この移動送りを継続させると、やがて研削加工用砥石4の研削加工面4aと形状創成用砥石8のカップ部の内周部とが線接触する。更にZ軸テーブル2を移動送りさせると、研削加工面4aの線接触部がダイヤモンド砥粒8aによって切り込まれる。その後、Z軸テーブル2の移動送りを研削加工用砥石4の研削加工面4aの全面が切込まれるまで継続することにより、研削加工用砥石4の研削加工面4aを高い面精度で凸面形状に創成することができる。
【0030】
ここで、中心位置軸Cの高さと主軸回転軸Aの高さとを一致させているので、研削加工用砥石4の凸面形状の曲率中心位置は主軸回転軸A上にある。従って、主軸回転軸Aと工具回転軸Bとの距離Lとすると、研削加工用砥石4の研削加工面4aの凸面形状の曲率半径RがこのLと前述したU及びVとを用いて次式で表せることは、図8を参照すれば明らかである。
【0031】
R=V×{U/(U−L)}
上式に従って各パラメータを設定することにより、研削加工面4aに所望の曲率の凸面形状を持たせた、面精度の高い研削加工用砥石4を創成することができる。
【0032】
その他、本発明は、上述した実施形態に限定されることなく、本発明の要旨を逸脱しない範囲内で種々の改良・変更が可能である。
【0033】
【発明の効果】
以上詳細に説明したように、本発明によれば、光学素子の光学面の研削加工、あるいはその光学面をプレス成形により形成するための金型の成形面の研削加工等において用いられる研削加工用砥石の研削加工面の形状を、凹面凸面、深面浅面に関わらず所望の曲率の形状に高い面精度で創成することができるという効果を奏する。
【図面の簡単な説明】
【図1】加工機の構成を示す図である。
【図2】実施例1で創成される研削加工用砥石の構造を示す図である。
【図3】形状創成用砥石の構造を示す図である。
【図4】実施例1における研削加工用砥石の形状創成の方法を説明する図(その1)である。
【図5】実施例1における研削加工用砥石の形状創成の方法を説明する図(その2)である。
【図6】実施例2で創成される研削加工用砥石の構造を示す図である。
【図7】実施例2における研削加工用砥石の形状創成の方法を説明する図(その1)である。
【図8】実施例2における研削加工用砥石の形状創成の方法を説明する図(その2)である。
【図9】従来技術を説明する図である。
【符号の説明】
1 主軸
2 Z軸テーブル
3 主軸モータ
4 研削加工用砥石
4a 研削加工面
5 工具モータ
6 XY軸テーブル
7 チャック装置
8 形状創成用砥石
8a ダイヤモンド砥粒
9 砥粒層
10 工具軸
104 研削加工用砥石
104a 研削加工面
108 形状創成用砥石
108a 先端
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a grinding wheel suitable for grinding an optical surface of an optical element such as a lens, a mirror, or a prism, or a grinding surface of a mold surface for forming the optical surface by press molding. And a method of creating the shape of
[0002]
[Prior art]
At present, with the advance of digital image processing technology of digital cameras and the like, higher precision of optical elements such as lenses, mirrors, and prisms is required.
Conventionally, in the grinding of the optical surface of an aspherical optical element, or in the grinding of the molding surface of a mold for press-molding the optical surface, the workpiece to be ground is rotated around the optical axis. By rotating the grinding wheel so that the grinding wheel surface is at a constant speed around the grinding wheel axis and scanning the workpiece to be ground or the grinding wheel in a certain direction, the surface to be ground has a desired shape. Processing was done to become. In this case, the actual processing locus of the grinding wheel moves spirally on the surface of the workpiece.
[0003]
The invention described in Patent Document 1 is a method for creating a shape of a grindstone used for grinding an optical surface of an optical element having an aspherical surface or a grinding surface of a mold for press-molding the optical surface. Is disclosed. Hereinafter, the present invention will be described with reference to FIG.
[0004]
As shown in FIG. 9 (a), the grinding wheel 108 is arranged so that the grinding wheel rotation axis AA of the grinding wheel 108 and the grinding wheel rotation axis BB of the grinding wheel 104 intersect. The wheel 104 and the shape creating grindstone 108 are relatively close to each other while rotating. Then, when the tip 108a of the grinding wheel 108 for forming a shape and the grinding surface 104a of the grinding wheel 104 are cut in line contact with each other, the grinding surface 104a of the grinding wheel 104 can be formed into a spherical shape. 9B is a diagram of the grinding wheel 104 and the shape creating wheel 108 shown in FIG. 9A as viewed from the left side in FIG. 9A.
[0005]
If the spherical grinding wheel formed in this way is used, regardless of whether the surface to be ground such as the optical surface of the optical element or the molding surface of the mold is convex or concave, or shallow or Regardless of whether it is a deep surface or not, whether or not there is an inflection point, the grinding position of the grinding wheel and the grinding position of the surface to be ground can always be brought into vertical contact, so grinding can be performed. There is an advantage that processing can be performed regardless of the shape of the processing surface.
[0006]
[Patent Document 1]
JP 2001-260023 A
[Problems to be solved by the invention]
For example, when the surface to be ground has an axisymmetric aspherical convex surface and does not have an inflection point and is processed with a spherical grinding wheel, the grinding surface and the grinding wheel are used. The center position of the curvature is on the opposite electrode side, and grinding is performed away from the center position of the curvature. When grinding is performed as described above to obtain a desired shape in this state, the curvature of the grinding wheel for the depth of cut in the direction perpendicular to the trajectory direction of the grinding wheel on the surface to be ground is increased. Since the transfer is performed, a wave-shaped roughness is generated on the surface to be ground. In addition, since the grinding wheel and the center of curvature of the surface to be ground are separated from each other, the scanning distance is long because the grinding wheel is scanned so as to go around the surface to be ground. The lead time will be longer.
[0008]
A similar problem also occurs when, for example, the surface to be ground is processed with a spherical grinding wheel for forming a shallow concave surface with an axisymmetric aspheric surface.
In order to cope with such a problem, it has been demanded to be able to create a grinding wheel having a free shape in addition to a simple spherical shape.
[0009]
The problem to be solved by the present invention is to provide a method for creating a shape of a grinding wheel for grinding capable of creating a ground surface with a desired curvature with high surface accuracy in view of the above-mentioned demands. .
[0010]
[Means for Solving the Problems]
A method for creating a shape of a grinding wheel for grinding, which is one aspect of the present invention, includes a grinding wheel having an abrasive layer on an outer peripheral portion of a rotating shaft, and a rotating wheel on a surface perpendicular to the rotating shaft. An axis is located and the tip is hollow and a cylindrical shape creating grindstone is arranged such that the rotation axis of the grinding wheel and the rotation axis of the shape creation grindstone are in a twisted position, The grinding wheel for grinding is applied by applying the tip of the grinding wheel for shape creation to the side surface of the grinding wheel for grinding while rotating the grinding wheel for grinding and the grinding wheel for shape creation each around its own rotation axis. The above-mentioned problem is solved by creating the shape of.
[0011]
By doing so, it is possible to create a grinding wheel having a free shape with a high surface accuracy without being limited to a simple spherical shape.
In the above-described method for creating a shape of a grinding wheel according to the present invention, the rotation axis of the grinding wheel is located at a position separated from the rotation axis of the shape creation wheel by a radius of the shape creation wheel. It can be arranged at the position closer to the sum of the radius of the grinding wheel and the radius of the shape creating wheel.
[0012]
By doing so, the ground surface of the grinding wheel can be formed into a concave shape having a desired curvature with high surface accuracy.
In the above-described method for creating a shape of a grinding wheel according to the present invention, the rotation axis of the grinding wheel is disposed at a position closer to the radius of the shape creation wheel from the rotation axis of the shape creation wheel. You can do so.
[0013]
By doing so, the grinding surface of the grinding wheel can be formed into a convex shape having a desired curvature with high surface accuracy.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the rotation axis of the grinding wheel and the rotation axis of the shape creation wheel are arranged at a twist position where they do not intersect, and the grinding wheel is rotated at that position and the shape creation wheel is also rotated. Let it. Then, in this state, by bringing the grinding wheel for grinding or the grinding wheel for shape creation close to and in contact with the surface, the grinding surface of the grinding wheel for grinding is formed into a desired curvature regardless of the concave convex surface and the deep shallow surface, and Creates a ground surface with high surface accuracy.
[0015]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Example 1]
First, the configuration of the first embodiment will be described.
FIG. 1 shows a configuration of a processing machine for processing a grindstone into an object for grinding an axisymmetric aspheric lens. This processing machine has an axis configuration in which the moving axis can be controlled in three orthogonal directions of an X axis, a Y axis, and a Z axis which are respectively orthogonal to each other as shown in FIG.
[0016]
The spindle 1 is held on a Z-axis table 2 that can be moved in the Z-axis direction, and the rotation axis A of the spindle 1 can be rotated by the spindle motor 3 about the Z-axis direction.
A tool motor 5 for rotating the grinding wheel 4 is held on an XY-axis table 6 that can be moved in the X-axis direction and the Y-axis direction.
[0017]
The tool motor 5 is arranged so that its rotation axis B rotates around the Y-axis direction orthogonal to the above-described main spindle rotation axis A. The tip of the tool motor 5 holds a grinding wheel 4 to which a tool shaft 10 is adhered. By operating the tool motor 5, the grinding wheel 4 is centered on the tool rotation axis B described above. Rotate.
[0018]
FIG. 2 shows the structure of the grinding wheel 4 created in the first embodiment.
As shown in FIG. 2, the grinding wheel 4 is provided with a thick abrasive layer 9 on the outer periphery of the grinding wheel shaft. In the present embodiment, the grinding surface 4a on the side surface of the grinding wheel shaft of the grinding wheel 4 is formed in a flat or concave shape. In the figure, T is the radius of the top of the concave surface of the grinding surface of the grinding wheel 4, and C is the axis at which the center of curvature of the concave portion of the grinding surface 4 a exists (curvature center position axis). And R is the radius of curvature of the concave portion of the ground surface 4a.
[0019]
Returning to the description of FIG. 1, the tip of the main spindle 1 holds a shape-creating grindstone 8 via a chuck device 7. At this time, the grinding wheel 8 for forming a shape is rotated around the spindle rotation axis A by operating the spindle motor 3. FIG. 3 shows the structure of the grinding wheel 8 for creating a shape.
[0020]
As shown in FIG. 3, the shape creating grindstone 8 has a hollow cylindrical cup shape, and diamond abrasive grains 8a are provided at the tip of the cup. In the drawing, S is the radius of the shape creating grindstone 8 and U is the radius of the inner diameter of the shape creating grindstone 8.
[0021]
Hereinafter, a method of creating the shape of the grinding wheel 4 in the first embodiment will be described with reference to FIGS. 4 and 5. 4 shows the grinding wheel 4 and the shape creating wheel 8 from the front side in the processing machine shown in FIG. 1, and FIG. 5 shows the grinding wheel from the top side in the processing machine shown in FIG. FIG. 4 is a view of a processing grindstone 4 and a shape creation grindstone 8.
[0022]
First, the XY-axis table 6 of the processing machine shown in FIG. 1 is moved in the Y-axis direction, and the height of the curvature center position axis C of the concave portion of the grinding surface 4a coincides with the height of the above-described main spindle rotation axis A ( It is set so that the positions in the Y-axis direction coincide (see FIG. 4).
Next, the XY-axis table 6 is moved in the X-axis direction this time, and the tool rotation axis B for rotating the grinding wheel 4 is at least separated from the position of the spindle rotation axis A by at least the radius S of the shape creation grinding wheel 8. The torsion position is set to a position that is a distance up to the sum of the radius T of the grinding wheel 4 for grinding and the radius S of the grinding wheel 8 for shape creation.
[0023]
Next, the spindle motor 3 and the tool motor 5 are operated to rotate the grinding wheel 4 and the shape creating wheel 8. Then, in this state, the Z-axis table 2 is moved and fed so that the grinding wheel 4 and the shape creating wheel 8 are relatively close to each other. When this moving feed is continued, the grinding surface 4a of the grinding wheel 4 and the outer peripheral portion of the cup portion of the shape creating grinding wheel 8 come into line contact with each other. When the Z-axis table 2 is further moved and fed, the line contact portion of the grinding surface 4a is cut by the diamond abrasive grains 8a. Thereafter, the moving feed of the Z-axis table 2 is continued until the entire grinding surface 4a of the grinding wheel 4 is cut so that the grinding surface 4a of the grinding wheel 4 is formed into a concave shape with high surface accuracy. It can be created.
[0024]
Here, since the height of the center position axis C and the height of the main spindle rotation axis A are matched, the center of curvature of the concave shape of the grinding wheel 4 is on the main spindle rotation axis A. Therefore, when the distance between the spindle rotation axis A and the tool rotation axis B is L, the radius of curvature R of the concave shape of the grinding surface 4a of the grinding wheel 4 is calculated using the L and the above-described S and T. What can be expressed by the equation is apparent with reference to FIG.
[0025]
R = T × {S / (LS)}
By setting each parameter in accordance with the above formula, it is possible to create a grinding wheel 4 with high surface accuracy, in which the grinding surface 4a has a concave shape with a desired curvature.
[Example 2]
Next, a second embodiment will be described. It should be noted that also in the second embodiment, the grindstone is processed using the same processing machine as that shown in FIG. Also, the shape creating grindstone 8 having the structure shown in FIG. 3 is used.
[0026]
Note that the reference numerals attached to the respective drawings are used in common, and description thereof is omitted. First, FIG. 6 will be described. FIG. 2 shows the structure of the grinding wheel 4 created in the second embodiment.
As shown in FIG. 6, the grinding wheel 4 is provided with a thick abrasive layer 9 on the outer periphery of the grinding wheel shaft. In the present embodiment, the grinding surface 4a on the side of the grinding wheel shaft of the grinding wheel 4 is formed in a convex shape. In the figure, V is the radius of the top of the convex shape of the grinding surface of the grinding wheel 4 for grinding, and C is the axis at which the center of curvature of the convex portion of the grinding surface 4a exists (curvature center position axis). And R is the radius of curvature of the convex portion of the ground surface 4a.
[0027]
Hereinafter, a method of creating the shape of the grinding wheel 4 in the second embodiment will be described with reference to FIGS. 7 and 8. FIG. 7 is a view of the grinding wheel 4 and the shape creating wheel 8 from the front side of the processing machine shown in FIG. 1, and FIG. 8 is a diagram showing the grinding wheel from the top side of the processing machine shown in FIG. FIG. 4 is a view of a processing grindstone 4 and a shape creation grindstone 8.
[0028]
First, the XY-axis table 6 of the processing machine shown in FIG. 1 is moved in the Y-axis direction, and the height of the curvature center position axis C of the convex portion of the grinding surface 4a of the grinding wheel 4 and the above-described spindle rotation axis A Is set so as to match the height (the position in the Y-axis direction matches) (see FIG. 7).
[0029]
Next, the XY-axis table 6 is moved in the X-axis direction this time, and the tool rotation axis B for rotating the grinding wheel 4 is at least the radius U of the inner diameter of the shape creation grinding wheel 8 from the position of the main shaft rotation axis A. Set so that the position is close to the twist.
Next, the spindle motor 3 and the tool motor 5 are operated to rotate the grinding wheel 4 and the shape creating wheel 8. Then, in this state, the Z-axis table 2 is moved and fed so that the grinding wheel 4 and the shape creating wheel 8 are relatively close to each other. When this moving feed is continued, the grinding surface 4a of the grinding wheel 4 and the inner peripheral portion of the cup portion of the shape creating grinding wheel 8 eventually come into line contact. When the Z-axis table 2 is further moved and fed, the line contact portion of the grinding surface 4a is cut by the diamond abrasive grains 8a. Thereafter, the moving feed of the Z-axis table 2 is continued until the entire surface of the grinding surface 4a of the grinding wheel 4 is cut so that the grinding surface 4a of the grinding wheel 4 has a convex shape with high surface accuracy. It can be created.
[0030]
Here, since the height of the center position axis C and the height of the main spindle rotation axis A are matched, the center of curvature of the convex shape of the grinding wheel 4 is on the main spindle rotation axis A. Therefore, assuming that the distance L between the main spindle rotation axis A and the tool rotation axis B is, the radius of curvature R of the convex shape of the grinding surface 4a of the grinding wheel 4 is represented by the following equation using this L and U and V described above. Can be clearly understood with reference to FIG.
[0031]
R = V × {U / (UL)}
By setting each parameter in accordance with the above formula, it is possible to create a grinding wheel 4 for grinding with high surface accuracy, in which the grinding surface 4a has a convex shape with a desired curvature.
[0032]
In addition, the present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the gist of the present invention.
[0033]
【The invention's effect】
As described above in detail, according to the present invention, the grinding of an optical surface of an optical element, or the grinding of a molding surface of a mold for forming the optical surface by press molding, etc. There is an effect that the shape of the grinding surface of the grindstone can be formed with a high surface accuracy with a desired curvature regardless of the concave convex surface or the deep shallow surface.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a processing machine.
FIG. 2 is a view showing the structure of a grinding wheel created in Example 1.
FIG. 3 is a view showing a structure of a shape creating whetstone.
FIG. 4 is a view (No. 1) for explaining a method of creating a shape of a grinding wheel in Example 1;
FIG. 5 is a diagram (part 2) for explaining the method of creating the shape of the grinding wheel in the first embodiment.
FIG. 6 is a view showing the structure of a grinding wheel created in Example 2.
FIG. 7 is a view (No. 1) for explaining a method of creating a shape of a grinding wheel in Example 2;
FIG. 8 is a diagram (part 2) for explaining the method of creating the shape of the grinding wheel in the second embodiment.
FIG. 9 is a diagram illustrating a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Spindle 2 Z-axis table 3 Spindle motor 4 Grinding wheel 4a Grinding surface 5 Tool motor 6 XY-axis table 7 Chuck device 8 Shape creation grinding wheel 8a Diamond abrasive grains 9 Abrasive layer 10 Tool shaft 104 Grinding wheel 104a Grinding surface 108 Shape creation whetstone 108a Tip

Claims (3)

回転軸の外周部に砥粒層を有している研削加工用砥石と、該回転軸に対して垂直な面上に回転軸が位置しており先端が中空である円柱形状の形状創成用砥石とを、該研削加工用砥石の回転軸と該形状創成用砥石の回転軸とがねじれの位置となるように配置し、
前記研削加工用砥石と前記形状創成用砥石とを各々自身の回転軸を中心にして回転させながら該研削加工用砥石の側面に該形状創成用砥石の先端を当て付けることで該研削加工用砥石の形状を創成する、
ことを特徴とする研削加工用砥石の形状創成方法。
A grinding wheel having an abrasive layer on the outer periphery of a rotating shaft, and a cylindrical grinding wheel having a hollow tip where the rotating shaft is positioned on a plane perpendicular to the rotating shaft. And arranged such that the rotation axis of the grinding wheel and the rotation axis of the shape creation grinding wheel are at the position of the twist,
The grinding wheel for grinding is formed by applying the tip of the grinding wheel for shape creation to the side surface of the grinding wheel for grinding while rotating the grinding wheel and the shape creating wheel each around its own rotation axis. Creating the shape of
A method for creating a shape of a grinding wheel for grinding.
前記研削加工用砥石の回転軸は、前記形状創成用砥石の回転軸から該形状創成用砥石の半径よりも離れた位置であって該研削加工用砥石の半径と該形状創成用砥石の半径との和よりも近い該位置に配置されることを特徴とする請求項1に記載の研削加工用砥石の形状創成方法。The rotation axis of the grinding wheel is located at a position farther than the radius of the shape creation wheel from the rotation axis of the shape creation wheel, the radius of the grinding wheel and the radius of the shape creation wheel. The method according to claim 1, wherein the grinding wheel is arranged at the position closer to the sum of 前記研削加工用砥石の回転軸は、前記形状創成用砥石の回転軸から該形状創成用砥石の半径よりも近い位置に配置されることを特徴とする請求項1に記載の研削加工用砥石の形状創成方法。The rotating shaft of the grinding wheel for grinding according to claim 1, wherein the rotating shaft of the grinding wheel for grinding is arranged at a position closer to a radius of the grinding wheel for shape creation from the rotating shaft of the grinding wheel for shape creating. Shape creation method.
JP2002378107A 2002-12-26 2002-12-26 Method of generating shape of grindstone for grinding Pending JP2004202667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002378107A JP2004202667A (en) 2002-12-26 2002-12-26 Method of generating shape of grindstone for grinding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002378107A JP2004202667A (en) 2002-12-26 2002-12-26 Method of generating shape of grindstone for grinding

Publications (1)

Publication Number Publication Date
JP2004202667A true JP2004202667A (en) 2004-07-22

Family

ID=32815078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002378107A Pending JP2004202667A (en) 2002-12-26 2002-12-26 Method of generating shape of grindstone for grinding

Country Status (1)

Country Link
JP (1) JP2004202667A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182679B1 (en) * 2010-03-09 2012-09-17 그린코트 주식회사 Blade Granding Machine
WO2018017142A3 (en) * 2016-07-21 2018-03-01 Dtc Products, Inc. Improved slug retention groove forming machine and method of use and operation thereof
US10286515B2 (en) 2012-03-16 2019-05-14 Dtc Products, Inc. Slug retention groove forming machine and method of use and operation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182679B1 (en) * 2010-03-09 2012-09-17 그린코트 주식회사 Blade Granding Machine
US10286515B2 (en) 2012-03-16 2019-05-14 Dtc Products, Inc. Slug retention groove forming machine and method of use and operation thereof
WO2018017142A3 (en) * 2016-07-21 2018-03-01 Dtc Products, Inc. Improved slug retention groove forming machine and method of use and operation thereof

Similar Documents

Publication Publication Date Title
US5615588A (en) Apparatus for processing the edge of ophthalmic lenses
KR100560273B1 (en) Method for machining an aspheric surface and method for forming an aspheric surface
JP2008508109A (en) Method and apparatus for treating an optical workpiece surface
WO2005039821A1 (en) Method for machining aspherical surface, method for forming aspherical surface, and system for machining aspherical surface
JP2004202667A (en) Method of generating shape of grindstone for grinding
CN109299514B (en) Grinding wheel path generation method for grinding free curved surface by inclined shaft
JP7016568B1 (en) Fresnel lens mold manufacturing method, processing equipment and cutting tools
JP2007044817A (en) Apparatus for chamfering wafer, grinding wheel therefor and truing grinding wheel
WO2006132126A1 (en) Method of producing optical element, and optical element
JP2000052217A (en) Tool and processing method
JP2006218554A (en) Method for creating shape of tool grinding wheel
JP2007118117A (en) Machining device and method for fly-eye lens forming die
JP2009166222A (en) Polishing method
JP2003053602A (en) Cutting method of optical lens and/or die therefor
JP2009066724A (en) Lens spherical face grinding method and device
JP2829103B2 (en) Cutting method and cutting device for plastic lens
JPH10328995A (en) Curved surface grinding method
JP3839326B2 (en) Axisymmetric aspheric grinding method
JP2019072788A (en) Processing method, processing device and grindstone
WO2015045470A1 (en) Lens processing device and lens processing method
JP2009018366A (en) Method of grinding convex surface
JP5381123B2 (en) Hemispherical forming apparatus and forming tool
JP3452619B2 (en) Spherical surface grinding method
JP3679717B2 (en) Blank for spherical surface generating grinding and spherical surface generating grinding method
JPH09300189A (en) Curved face cutting and machining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051005

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080228

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080304

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

A131 Notification of reasons for refusal

Effective date: 20080909

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203