JPH09241010A - Production of silicon nitride - Google Patents
Production of silicon nitrideInfo
- Publication number
- JPH09241010A JPH09241010A JP8073105A JP7310596A JPH09241010A JP H09241010 A JPH09241010 A JP H09241010A JP 8073105 A JP8073105 A JP 8073105A JP 7310596 A JP7310596 A JP 7310596A JP H09241010 A JPH09241010 A JP H09241010A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- silicon nitride
- silicon
- particle diameter
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、金属けい素の直接
窒化法において製造される窒化けい素インゴットの粉砕
性を向上させた(以下、「易粉砕性」という。)窒化け
い素の製造法に関するものであり、エンジニアリングセ
ラミックス原料として安価な窒化けい素粉末を提供する
ことを目的とする。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing silicon nitride having improved pulverizability of a silicon nitride ingot produced by a direct nitriding method of metal silicon (hereinafter referred to as "easy pulverization"). The object of the present invention is to provide inexpensive silicon nitride powder as a raw material for engineering ceramics.
【0002】[0002]
【従来の技術】窒化けい素は、耐摩耗性、高強度、破壊
靭性、低比重、低熱膨張など非常にバランスのとれた材
料であり、産業機械用エンジニアリングセラミックス
(以下、「エンセラ」と略称する。)部材としては理想
的な材料であるが、エンセラの代表であるアルミナより
も高コストなため、その利用範囲は限られており、安価
な窒化けい素粉末の出現が要望されている。2. Description of the Related Art Silicon nitride is a material that is well balanced in wear resistance, high strength, fracture toughness, low specific gravity and low thermal expansion, and is an engineering ceramic for industrial machinery (hereinafter abbreviated as "Encera"). Although it is an ideal material for a member, its use range is limited because it is more expensive than alumina, which is a representative of Encera, and the appearance of inexpensive silicon nitride powder is desired.
【0003】窒化けい素の製造プロセスの内、金属けい
素の直接窒化法は最も安価な製造法として知られている
が、本プロセスで製造された窒化けい素は高硬度である
ため、粉末化するためには多段粉砕工程が必要となり、
コストが高い問題があった。また、多段粉砕工程では不
純物混入、粉末精製工程の導入等の問題もある。Of the manufacturing processes of silicon nitride, the direct nitriding method of metal silicon is known as the cheapest manufacturing method, but the silicon nitride manufactured by this process has a high hardness and is therefore powdered. In order to do so, a multi-stage crushing process is required,
There was a problem of high cost. Further, there are problems in the multi-stage pulverization process such as mixing of impurities and introduction of a powder refining process.
【0004】[0004]
【発明が解決しようとする課題】本発明者らは、金属け
い素の直接窒化法における上記問題を解決し、粉砕性を
向上させた窒化けい素を製造すべく種々検討した結果、
金属けい素に比較的粒径の大きな二酸化けい素質粉末を
添加し、それを窒化すればよいことを見いだし、本発明
を完成したものである。DISCLOSURE OF INVENTION Problems to be Solved by the Invention As a result of various studies to solve the above problems in the direct nitriding method of metal silicon and to produce silicon nitride having improved pulverizability,
The inventors have found that it is sufficient to add a silicon dioxide powder having a relatively large particle size to metal silicon and nitride it, and have completed the present invention.
【0005】[0005]
【課題を解決するための手段】すなわち、本発明は、金
属けい素粉末100重量部に対し平均粒径10μm以上
の二酸化けい素質粉末をSiO2 換算で1〜20重量部
を含む混合粉末を成形した後、それを窒化性雰囲気下で
加熱することを特徴とする窒化けい素の製造法である。That is, according to the present invention, a mixed powder containing 1 to 20 parts by weight of silicon dioxide powder having an average particle diameter of 10 μm or more in terms of SiO 2 is formed with respect to 100 parts by weight of metal silicon powder. And then heating it in a nitriding atmosphere.
【0006】[0006]
【発明の実施の形態】以下、本発明について詳細に説明
する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
【0007】従来より、金属けい素の直接窒化法におい
て、窒化けい素粉末の焼結性及び焼結体の高温強度の特
性を向上させることを目的とし、金属けい素粉末に二酸
化けい素粉末を添加し窒素等の窒化性雰囲気下、又は窒
素とアンモニア又は水素を含む還元窒化性雰囲気下で窒
化させることが知られているが、そこで使用される二酸
化けい素粉末の平均粒径はいずれも最大で5μm程度
(比表面積:10m2 /g程度)であった(例えば特開
平2−225306号公報、特開平2−248309号
公報など)。Conventionally, in the direct nitriding method of metallic silicon, silicon dioxide powder is added to the metallic silicon powder for the purpose of improving the sinterability of the silicon nitride powder and the high temperature strength characteristics of the sintered body. It is known that nitriding is performed in a nitriding atmosphere such as nitrogen added or in a reducing nitriding atmosphere containing nitrogen and ammonia or hydrogen, but the average particle diameter of the silicon dioxide powder used in each is the maximum. Was about 5 μm (specific surface area: about 10 m 2 / g) (for example, JP-A-2-225306 and JP-A-2-248309).
【0008】これに対し、本発明で使用される二酸化け
い素質粉末は、平均粒径が10μm以上好ましくはJI
S標準篩いで測定された平均粒径が100〜500μm
であって、従来よりも著しく大きい粒子であることが特
徴である。On the other hand, the silicon dioxide powder used in the present invention has an average particle size of 10 μm or more, preferably JI.
The average particle size measured by S standard sieve is 100 to 500 μm
The feature is that the particles are significantly larger than conventional particles.
【0009】本発明のように、粒径の大きい二酸化けい
素質粉末の添加された金属けい素粉末を原料とすること
によって、かなり微細な針状晶又はウイスカーの多く含
まれた窒化けい素インゴットを製造することができ、こ
れを通常の粗砕・中砕機を用いて粗砕・中砕物に粉砕し
たとき、その粉砕物中の粒子径が0.5mm下、比表面
積1.5m2 /g以上の粉末となる。このような易粉砕
性の効果は、従来の最大5μm程度の二酸化けい素粉末
を添加して製造された窒化けい素の比表面積が約1.0
m2 /g程度と比較して、著しく著大である。As in the present invention, by using a metal silicon powder to which a silicon dioxide powder having a large particle size is added as a raw material, a silicon nitride ingot containing a large amount of fine needle crystals or whiskers can be obtained. It can be produced, and when it is crushed into a roughly crushed / medium crushed product using an ordinary coarse crusher / medium crusher, the crushed product has a particle size of 0.5 mm or less and a specific surface area of 1.5 m 2 / g or more. Of powder. The effect of such easy pulverization is that the specific surface area of the silicon nitride produced by adding the conventional silicon dioxide powder with a maximum of about 5 μm is about 1.0.
It is remarkably large as compared with about m 2 / g.
【0010】すなわち、本発明において、二酸化けい素
質粉末の平均粒径が10μm未満では、微細な針状晶又
はウイスカーを多く含ませた易粉砕性の窒化けい素イン
ゴットを製造することが困難である。また、二酸化けい
素質粉末の平均粒径の上限については制限はないが、窒
化けい素中の残留を配慮して1000μmである。That is, in the present invention, if the average particle size of the silicon dioxide powder is less than 10 μm, it is difficult to produce a crushable silicon nitride ingot containing a large amount of fine needle-like crystals or whiskers. . The upper limit of the average particle size of the silicon dioxide powder is not limited, but it is 1000 μm in consideration of the residual in silicon nitride.
【0011】二酸化けい素質粉末の添加量は、金属けい
素粉末100重量部に対しSiO2換算として1〜20
重量部好ましくは1〜10重量部である。1重量部未満
では易粉砕性の窒化けい素を製造することが困難であ
り、また20重量部を越えると窒化けい素中に残存する
酸素量が無視できなくなり、窒化けい素焼結体の強度を
著しく低下させる原因となる。二酸化けい素質粉末とし
ては高純度のものが望ましいが、SiO2 純度が70重
量%程度以上のロー石、ケイ石、陶石などでも使用可能
である。The amount of the silicon dioxide powder added is 1 to 20 in terms of SiO 2 with respect to 100 parts by weight of the metal silicon powder.
Parts by weight It is preferably 1 to 10 parts by weight. If it is less than 1 part by weight, it is difficult to produce easily crushable silicon nitride, and if it exceeds 20 parts by weight, the amount of oxygen remaining in the silicon nitride cannot be ignored, and the strength of the silicon nitride sintered body is improved. It causes a significant decrease. Although it is desirable that the silicon dioxide powder has a high purity, it is also possible to use lozenge, silica stone, porcelain stone, etc. having a SiO 2 purity of about 70% by weight or more.
【0012】一方、本発明で使用される金属けい素粉末
は、75μm下好ましくは45μm下程度のものであ
る。このように、本発明においては比較的粒度の大きな
金属けい素を用いることができる理由は、金属けい素と
窒素の反応の全てが固・気反応(1)式ではなく、表面
の若干の固・気反応が行われた後は、気・気反応(2)
式で窒化が進むことに大きく関与している。すなわち、
本発明においては、たとえ75μm下程度の粗い金属け
い素粉末であっても表面の一部が固・気反応によって一
旦窒化が起これば、金属けい素と窒化けい素の密度差に
より金属けい素の破壊現象が生じ微細な金属けい素が生
成し気・気反応で窒化が進行するものである。On the other hand, the metal silicon powder used in the present invention is about 75 μm or less, preferably about 45 μm or less. As described above, the reason why the metal silicon having a relatively large grain size can be used in the present invention is that all the reactions of metal silicon and nitrogen are not solid-gas reaction (1), but some solid surface.・ Qi / Qi reaction after the Qi reaction (2)
It is greatly involved in the progress of nitriding in the formula. That is,
In the present invention, even if a coarse metal silicon powder having a size of about 75 μm or less is used, once a part of the surface undergoes solid-gas reaction to undergo nitriding, the density difference between the metal silicon and the silicon nitride causes a difference in the density of the metal silicon. The destruction phenomenon occurs and fine metal silicon is generated, and nitriding proceeds by gas-gas reaction.
【0013】更に説明すると、本発明では、金属けい素
粉末と窒素との反応は、固・気反応よりかむしろSiO
(G)を介した気・気反応により律速されているもので
あり、この反応を経て製造される窒化けい素は結晶がよ
り微細となり易粉砕性となる。そして、この気・気反応
は添加される二酸化けい素質粉末の大きさに大きく依存
しているものである。To further explain, in the present invention, the reaction between the metal silicon powder and nitrogen is SiO 2 rather than solid-gas reaction.
The rate is controlled by the gas-gas reaction via (G), and the silicon nitride produced through this reaction has finer crystals and becomes easily crushable. The gas-gas reaction largely depends on the size of the added silicon dioxide powder.
【0014】 Si(S) + 2/3 N2(G) → 1/3 Si3N4(S) (1) SiO(G)+ 2/3 N2(G) → 1/3 Si3N4(S)+ 1/2 O2 (2)Si (S) + 2/3 N 2 (G) → 1/3 Si 3 N 4 (S) (1) SiO (G) + 2/3 N 2 (G) → 1/3 Si 3 N 4 (S) + 1/2 O 2 (2)
【0015】二酸化けい素は、アルカリ土類金属化合物
等の触媒を添加して製造した場合にその共有結合が切断
され融解温度が低下することがある。融解温度の低下は
二酸化けい素質粉末の粒子が微細であるほど顕著となる
ので好ましくないと言える。When silicon dioxide is produced by adding a catalyst such as an alkaline earth metal compound, its covalent bond may be broken and the melting temperature may be lowered. The lowering of the melting temperature becomes more remarkable as the particles of the silicon dioxide powder become finer, which is not preferable.
【0016】次に、金属けい素粉末と二酸化けい素質粉
末を含む混合粉末の窒化条件について説明する。本発明
が関与する反応においては、Siを核とする化学種の内
で雰囲気中の酸素分圧が低い(PO2 <10-5atm)
場合はSiO(G)の分圧が最も高く、次いでSiO2
(G)となり、その他の化学種の分圧は無視されるほど
に小さいものとなる。また、(2)式で生成する酸素
は、近傍に過剰に存在する金属けい素を酸化させ
((3)式、(4)式参照)、ミクロ的結晶場内で循環
されるので問題はない。Next, the nitriding conditions of the mixed powder containing the metal silicon powder and the silicon dioxide powder will be described. In the reaction involving the present invention, the oxygen partial pressure in the atmosphere is low among the chemical species having Si as a nucleus (PO 2 <10 −5 atm).
In this case, the partial pressure of SiO (G) was the highest, followed by SiO 2
(G), and the partial pressures of other chemical species are so small that they can be ignored. Further, the oxygen generated by the equation (2) oxidizes excess metal silicon present in the vicinity (see the equations (3) and (4)) and is circulated in the microscopic crystal field, so there is no problem.
【0017】 Si(S) + 1/2 O2(G) → SiO(S) → SiO(G) (3) Si(S) + O2(G) → SiO2(S) → 反応(5) (4)Si (S) + 1/2 O 2 (G) → SiO (S) → SiO (G) (3) Si (S) + O 2 (G) → SiO 2 (S) → reaction (5) (4)
【0018】本発明で使用される窒化性雰囲気は、N2
ガス又はN2 ガスと不活性ガス(Ar、He等)の混合
ガスである。N2 ガス濃度は95体積%以上であること
が好ましい。The nitriding atmosphere used in the present invention is N 2
Gas or a mixed gas of N 2 gas and an inert gas (Ar, He, etc.). The N 2 gas concentration is preferably 95% by volume or more.
【0019】加熱条件としては、1000〜1450℃
の温度範囲を昇温速度10℃/Hr以下にすることが好
ましい。昇温速度が10℃/Hrを越えると局所的な過
剰反応が起こり、金属けい素の溶融によって未窒化金属
けい素が残留し易くなる。The heating conditions are 1000 to 1450 ° C.
It is preferable that the temperature range is set to 10 ° C./hr or less. When the temperature rising rate exceeds 10 ° C./Hr, a local excess reaction occurs, and unnitrided metal silicon tends to remain due to melting of the metal silicon.
【0020】[0020]
【作用】本発明によって易粉砕性の窒化けい素が製造さ
れる理由は、以下のとおりであると考えている。すなわ
ち、二酸化けい素質粉末が微粉である場合は、(2)式
のSiO(G)分圧が高められる前の比較的低い温度域
(窒化反応開始に至らない低い温度域)において二酸化
けい素が融解し流動化するので、混合原料の表面又は底
部にそれが移動し濃縮される結果、二酸化けい素質粉末
の効果が期待できない。これに対し、本発明のように、
粗粒の二酸化けい素質粉末を添加した場合は、(5)式
によって(2)式の反応を促進させ、より高温域(窒化
反応が開始される温度付近)で二酸化けい素が流動化さ
れるためにSiO(G)分圧が高められ、混合原料全体
にわたって均質に窒化反応が進行する結果、易粉砕性の
窒化けい素を製造することができる。The reason why the easily crushable silicon nitride is produced by the present invention is considered to be as follows. That is, when the silicon dioxide powder is a fine powder, the silicon dioxide is contained in a relatively low temperature range (a low temperature range that does not lead to the initiation of the nitriding reaction) before the SiO (G) partial pressure of the formula (2) is increased. Since it melts and fluidizes, it moves to the surface or the bottom of the mixed raw material and is concentrated, so that the effect of the silicon dioxide powder cannot be expected. On the other hand, as in the present invention,
When coarse-grained silicon dioxide powder is added, the reaction of the equation (2) is promoted by the equation (5), and the silicon dioxide is fluidized in a higher temperature range (around the temperature at which the nitriding reaction starts). Therefore, the partial pressure of SiO (G) is increased, and the nitriding reaction proceeds uniformly over the entire mixed raw material. As a result, easily crushable silicon nitride can be produced.
【0021】本発明によって製造された易粉砕性窒化け
い素について更に詳しく説明すると、その定義として
は、単位質量当たりの表面積の多い結晶形態からなって
いるα−窒化けい素の集合体であり、図2、図3に示さ
れるように径の大きな針状乃至柱状の結晶は含まず、径
が0.5μm以下の微細なウイスカー又は針状結晶を含
んだ集合体である(図1参照)。The easily crushable silicon nitride produced according to the present invention will be described in more detail. It is defined as an α-silicon nitride aggregate having a crystal form having a large surface area per unit mass. As shown in FIGS. 2 and 3, the aggregate does not include needle-like or columnar crystals having a large diameter, but includes fine whiskers or needle-like crystals having a diameter of 0.5 μm or less (see FIG. 1).
【0022】本発明によって製造された窒化けい素を通
常の粗砕・中砕機を用いて粗砕・中砕物に粉砕したと
き、その粉砕物中の粒子径0.5mm下粉末の比表面積
が1.5m2 /g以上となる。これは、従来の窒化けい
素の粗砕・中砕物の場合の比表面積が約1.0m2 /g
程度であるのと比べて著しく易粉砕性である。When the silicon nitride produced according to the present invention is crushed into a roughly crushed / medium crushed product using an ordinary coarse crusher / medium crusher, the specific surface area of the powder having a particle diameter of 0.5 mm is 1 in the crushed product. It becomes more than 0.5 m 2 / g. This has a specific surface area of about 1.0 m 2 / g in the case of conventional coarse and medium crushed silicon nitride.
It is extremely easy to grind as compared with the degree.
【0023】窒化けい素のα率は、より高α率(α率≧
70%)であることが好ましい。その理由は、焼結時に
添加した焼結助剤に溶解するα相が多くなり、アスペク
ト比の高いβ柱状晶の発達したβ窒化けい素が多くな
り、強度発現が向上するからである。そのためには、
(1)原料の充填厚みを薄くする、(2)原料に窒化け
い素粉末を配合する、(3)反応温度、窒素ガス濃度を
制御し一定反応速度以下に保つ、(4)窒素ガスに水素
ガス及び/又はアンモニアガスを混合する、(5)フッ
化物等の触媒を原料に添加する、等の手段をとればよ
い。The α ratio of silicon nitride is higher than the α ratio (α ratio ≧
70%) is preferable. The reason is that the α phase dissolved in the sintering aid added at the time of sintering is increased, the β silicon nitride in which β columnar crystals with a high aspect ratio is developed is increased, and the strength development is improved. for that purpose,
(1) decrease the filling thickness of the raw material, (2) blend silicon nitride powder into the raw material, (3) control the reaction temperature and nitrogen gas concentration to keep the reaction rate below a certain level, (4) hydrogen in nitrogen gas Means such as mixing gas and / or ammonia gas, and (5) adding a catalyst such as fluoride to the raw material may be taken.
【0024】以上のようにして製造された窒化けい素
は、例えば粗砕・中砕機後、ボールミル、振動ミル、ジ
ェットミル、アトリッションミル等で乾式又は湿式粉砕
し、所望粒度に調整されて実用に供される。The silicon nitride produced as described above is subjected to dry or wet pulverization with a ball mill, a vibration mill, a jet mill, an attrition mill or the like after being subjected to a coarse crushing / medium crushing machine and adjusted to a desired particle size. It is put to practical use.
【0025】[0025]
【実施例】以下、実施例と比較例をあげて更に具体的に
本発明を説明する。The present invention will be described more specifically below with reference to examples and comparative examples.
【0026】実施例1〜8 比較例1〜7 金属けい素(Si純度98重量%、45μm下)100
重量部に対し、表1に示される添加粉末を表2の割合
(A〜DについてはSiO2 換算の重量部、Eについて
は換算なしの重量部)で混合し、その混合物100重量
部に対して20体積%ポリビニルアルコール水溶液を2
0重量部添加し混練りした後、20kg/cm2 圧力で
直径150mm×高さ30mmの円柱供試体に金型成形
し、大気中、約200の温度で約10時間乾燥させた
後、窒素ガス雰囲気下、1000℃迄を200℃/Hr
の速度で昇温し、1000〜1450℃間を8℃/Hr
の速度で加熱した。Examples 1 to 8 Comparative Examples 1 to 7 Metallic silicon (Si purity 98% by weight, under 45 μm) 100
With respect to 100 parts by weight of the mixture, the additive powder shown in Table 1 was mixed with the parts by weight in the proportions shown in Table 2 (parts by weight for SiO 2 equivalent to A to D, parts without conversion for E). 20 volume% polyvinyl alcohol aqueous solution 2
After adding 0 part by weight and kneading, mold it into a cylindrical specimen with a diameter of 150 mm and a height of 30 mm at a pressure of 20 kg / cm 2 and dry it in the atmosphere at a temperature of about 200 for about 10 hours, and then nitrogen gas. 200 ℃ / Hr up to 1000 ℃ in an atmosphere
At a rate of 1000 ° C to 1450 ° C, 8 ° C / Hr
Heated at a rate of.
【0027】得られた窒化けい素インゴットをジョーク
ラッシャー及びダブルロールクラッシャーを用いて粗粉
砕した後、乳鉢を用いて75μm下に粉砕し、X線回折
及び酸素量を測定した。その結果を表2に示す。また、
実施例3、比較例3及び比較例7で得られた窒化けい素
の断面のSEM写真(倍率3500倍)をそれぞれ図
1、図2及び図3に示す。The obtained silicon nitride ingot was roughly crushed by using a jaw crusher and a double roll crusher, and then crushed by a mortar at 75 μm, and X-ray diffraction and oxygen content were measured. Table 2 shows the results. Also,
SEM photographs (magnification 3500 times) of the cross sections of the silicon nitrides obtained in Example 3, Comparative Example 3 and Comparative Example 7 are shown in FIGS. 1, 2 and 3, respectively.
【0028】[0028]
【表1】 [Table 1]
【0029】[0029]
【表2】 [Table 2]
【0030】次いで、上記で得られた窒化けい素の粗粉
砕物を0.5mmの篩いに掛け、篩い下の粉末について
BET法により比表面積を測定した(これを粉砕時間0
時間の比表面積として表3に示す)。次にその篩い下粉
100gを窒化けい素製粉砕ボール(直径20mm)
1.2リットルの充填された2リットルのポットミルで
粉砕し、2、4及び6時間後の比表面積を測定し、易粉
砕性の比較を行った。また、粉砕時間6時間後の粉末の
粒度分布を測定した。それらの結果を表3に示す。Next, the coarsely ground product of silicon nitride obtained as described above was passed through a 0.5 mm sieve, and the specific surface area of the powder under the sieve was measured by the BET method (this was performed at a grinding time of 0).
The specific surface area over time is shown in Table 3). Next, 100 g of the sieved powder is a silicon nitride crushed ball (diameter 20 mm).
It grind | pulverized with a 1.2-liter filled 2 liter pot mill, the specific surface area after 2, 4 and 6 hours was measured, and the easy grindability was compared. Further, the particle size distribution of the powder after a crushing time of 6 hours was measured. Table 3 shows the results.
【0031】[0031]
【表3】 [Table 3]
【0032】更に、6時間ボールミル粉砕して得られ
た、実施例2、3、4及び比較例7の窒化けい素粉末に
内割りで平均粒径1.3μmのY2 O3 粉末と1.4μ
mのAl2 O3 粉末をそれぞれ5重量%と4重量%を添
加し、更にエタノールを加えてアルミナ製媒体による湿
式混合を4時間行ってから乾燥し、100kg/cm2
の成形圧で6×10×60mmに金型成形した後、2.
7t/cm2 の成形圧でCIP成形した。これらの成形
体をカーボン坩堝にセットし、窒素ガス雰囲気下(1.
8kg/cm2 )、温度1750℃で8時間焼成して焼
結体を製造した。それらを研削後、相対密度と常温4点
曲げ強度を測定した。それらの結果を表4に示す。Further, the silicon nitride powders of Examples 2, 3, 4 and Comparative Example 7 obtained by ball milling for 6 hours were mixed with Y 2 O 3 powder having an average particle diameter of 1.3 μm and 1. 4μ
5% by weight and 4% by weight of Al 2 O 3 powder, respectively, and ethanol were further added, wet mixing was carried out with an alumina medium for 4 hours, and then dried to obtain 100 kg / cm 2.
After molding into a mold of 6 × 10 × 60 mm with the molding pressure of 2.
CIP molding was performed at a molding pressure of 7 t / cm 2 . These compacts were set in a carbon crucible and placed under a nitrogen gas atmosphere (1.
8 kg / cm 2 ) and a temperature of 1750 ° C. for 8 hours to produce a sintered body. After grinding them, the relative density and room temperature 4-point bending strength were measured. The results are shown in Table 4.
【0033】[0033]
【表4】 [Table 4]
【0034】本明細書における物性は以下に従って測定
した。 (1)X線回折;理学電気社製「ガイガーフラックス2
013型」X線回折分析装置による。 α率 =(α1 +α2 )×100/(α1 +α2 +β1
+β2 ) 但し、α1 、α2 、β1 、β2 はX線回折チャートから
得られる所定位置のピーク高さである。 α1 ;α−Si3 N4 の(102)面 α2 ;α−Si3 N4 の(210)面 β1 ;β−Si3 N4 の(101)面 β2 ;β−Si3 N4 の(210)面 ND:X線回折チャートから検出されず。 W :X線回折チャートに弱いピークが現れる。The physical properties in this specification were measured as follows. (1) X-ray diffraction; "Geiger flux 2" manufactured by Rigaku Denki Co., Ltd.
013 "X-ray diffraction analyzer. α ratio = (α 1 + α 2 ) × 100 / (α 1 + α 2 + β 1
+ Β 2 ) However, α 1 , α 2 , β 1 , and β 2 are peak heights at predetermined positions obtained from the X-ray diffraction chart. α 1 ; α-Si 3 N 4 (102) plane α 2 ; α-Si 3 N 4 (210) plane β 1 ; β-Si 3 N 4 (101) plane β 2 ; β-Si 3 N No. 4 (210) face ND: Not detected from X-ray diffraction chart. W: A weak peak appears on the X-ray diffraction chart.
【0035】(2)酸素分析;堀場製作所社製「EMG
A A−2800型」酸素・窒素分析装置による。 (3)比表面積;QUNTACHROME社製「QUN
TASORB Jr OS Jr−1型」装置によるB
ET1点法。 (4)粒度分布;Leeds&Northrup社製
「マイクロトラック SPA Modell 7997」
装置によるレーザー回折式粒度分布(分散液として0.
2%ヘキサメタリン酸ソーダ水溶液を使用)。 (5)相対密度;アルキメデス法による。 (6)常温曲げ強度;島津製作所社製「オートグラフA
G−2000A型」装置による。(2) Oxygen analysis; "EMG" manufactured by Horiba Ltd.
AA-2800 "oxygen / nitrogen analyzer. (3) Specific surface area; "QUN" manufactured by QUNTACHROME
TASORB Jr OS Jr-1 type ”device B
ET 1-point method. (4) Particle size distribution: "Microtrac SPA Model 7997" manufactured by Leeds & Northrup.
Laser diffraction type particle size distribution by the device (0.
2% sodium hexametaphosphate aqueous solution is used). (5) Relative density; by Archimedes method. (6) Bending strength at room temperature; "Autograph A" manufactured by Shimadzu Corporation
G-2000A "device.
【0036】[0036]
【発明の効果】本発明によれば、金属けい素の直接窒化
法によって易粉砕性の窒化けい素を製造することができ
るので安価な窒化けい素粉末を提供することができる。According to the present invention, since easily grindable silicon nitride can be produced by the direct nitriding method of metal silicon, an inexpensive silicon nitride powder can be provided.
【0037】本発明で得られた窒化けい素を用いて製造
された焼結体は、従来の金属けい素の直接窒化法窒化け
い素粉末を用いて製造された焼結体に比べて、相対密
度、常温曲げ強度ともに遜色はない。The sintered body produced by using the silicon nitride obtained in the present invention has a relatively high relative density as compared with the sintered body produced by the conventional direct nitriding method silicon nitride powder of metal silicon. Both density and bending strength at room temperature are comparable.
【図1】 実施例3で製造された窒化けい素の断面にお
けるSEM写真(倍率3500倍)。FIG. 1 is an SEM photograph (magnification: 3500 times) of a cross section of the silicon nitride manufactured in Example 3.
【図2】 比較例3で製造された窒化けい素の断面にお
けるSEM写真(倍率3500倍)。FIG. 2 is an SEM photograph (magnification: 3500 times) of a cross section of the silicon nitride manufactured in Comparative Example 3.
【図3】 比較例7で製造された窒化けい素の断面にお
けるSEM写真(倍率3500倍)。3 is a SEM photograph (magnification: 3500 times) of a cross section of the silicon nitride manufactured in Comparative Example 7. FIG.
Claims (1)
粒径10μm以上の二酸化けい素質粉末をSiO2 換算
で1〜20重量部を含む混合粉末を成形した後、それを
窒化性雰囲気下で加熱することを特徴とする窒化けい素
の製造法。1. A mixed powder containing 1 to 20 parts by weight of a silicon dioxide powder having an average particle size of 10 μm or more in terms of SiO 2 with respect to 100 parts by weight of a metal silicon powder is molded, and then the mixed powder is subjected to a nitriding atmosphere. A method for producing silicon nitride, which comprises heating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07310596A JP3827360B2 (en) | 1996-03-05 | 1996-03-05 | Manufacturing method of silicon nitride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07310596A JP3827360B2 (en) | 1996-03-05 | 1996-03-05 | Manufacturing method of silicon nitride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09241010A true JPH09241010A (en) | 1997-09-16 |
JP3827360B2 JP3827360B2 (en) | 2006-09-27 |
Family
ID=13508699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07310596A Expired - Fee Related JP3827360B2 (en) | 1996-03-05 | 1996-03-05 | Manufacturing method of silicon nitride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3827360B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11322438A (en) * | 1998-03-12 | 1999-11-24 | Sumitomo Electric Ind Ltd | High thermal conductive silicon nitride sintered compact and its production |
JP2008120624A (en) * | 2006-11-10 | 2008-05-29 | Denki Kagaku Kogyo Kk | Silicon nitride powder, method for manufacture and use |
-
1996
- 1996-03-05 JP JP07310596A patent/JP3827360B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11322438A (en) * | 1998-03-12 | 1999-11-24 | Sumitomo Electric Ind Ltd | High thermal conductive silicon nitride sintered compact and its production |
JP2008120624A (en) * | 2006-11-10 | 2008-05-29 | Denki Kagaku Kogyo Kk | Silicon nitride powder, method for manufacture and use |
Also Published As
Publication number | Publication date |
---|---|
JP3827360B2 (en) | 2006-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102643831B1 (en) | Method for producing silicon nitride powder | |
WO2018110565A1 (en) | Method for producing high-purity silicon nitride powder | |
KR20070094032A (en) | Metallic powder blends | |
JP3827459B2 (en) | Silicon nitride powder and method for producing the same | |
JPH04223808A (en) | Silicon nitride sintered body tool | |
JP3827360B2 (en) | Manufacturing method of silicon nitride | |
JP3698664B2 (en) | Method for producing high purity silicon nitride powder | |
JP2004059346A (en) | Silicon nitride-based ceramic sintered compact, and its production process | |
JP2525432B2 (en) | Normal pressure sintered boron nitride compact | |
JP4958353B2 (en) | Aluminum nitride powder and method for producing the same | |
JP7337304B1 (en) | silicon nitride powder | |
JP4082803B2 (en) | Method for producing silicon nitride powder | |
WO1987003866A1 (en) | Ceramics containing alpha-sialon | |
JPH0283265A (en) | Production of silicon nitride | |
JP3496795B2 (en) | Method for producing silicon nitride powder | |
WO2021112145A1 (en) | Metal nitride prodcution method | |
JPS62275067A (en) | Manufacture of silicon nitride sintered body | |
JPH01246178A (en) | Production of refractory for molten steel | |
WO2021112146A1 (en) | Method for producing metal nitride | |
JPS59123543A (en) | Medium for crushing ceramics | |
JPH01197307A (en) | Silicon nitride fine powder having a low oxygen content and its production | |
JP4832048B2 (en) | Aluminum nitride powder and method for producing the same | |
JP3342756B2 (en) | Silicon nitride powder and method for producing the same | |
JP2004189524A (en) | Method of manufacturing silicon carbide fine particles-dispersed ceramic sintered compact | |
JPH05221617A (en) | Production of silicon nitride powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060418 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060704 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100714 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110714 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110714 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130714 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |