JP3496795B2 - Method for producing silicon nitride powder - Google Patents

Method for producing silicon nitride powder

Info

Publication number
JP3496795B2
JP3496795B2 JP34719696A JP34719696A JP3496795B2 JP 3496795 B2 JP3496795 B2 JP 3496795B2 JP 34719696 A JP34719696 A JP 34719696A JP 34719696 A JP34719696 A JP 34719696A JP 3496795 B2 JP3496795 B2 JP 3496795B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
silicon
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34719696A
Other languages
Japanese (ja)
Other versions
JPH10182115A (en
Inventor
哲美 大塚
欣夫 佐々木
正義 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP34719696A priority Critical patent/JP3496795B2/en
Publication of JPH10182115A publication Critical patent/JPH10182115A/en
Application granted granted Critical
Publication of JP3496795B2 publication Critical patent/JP3496795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、易粉砕性で、焼結性に
優れた窒化珪素質粉末の製造方法に関する。更に詳しく
云えば、自動車エンジン部品、切削工具、アルミ溶湯治
具等の構造部品、耐熱部品の焼結に好適な窒化珪素質粉
末の製造方法に関する。 【0002】 【従来の技術】窒化珪素(Si3 4 )には、α型、β
型の結晶系の存在が知られている。従来より焼結体製造
用の原料粉末としては主にα型窒化珪素粉末が用いられ
てきた。これは、β型窒化珪素粉末を出発原料とした場
合、柱状粒子が発達せず、得られた焼結体の破壊靭性が
低いので、一部の耐火物を除き構造材料への応用は限定
されていた。 【0003】窒化珪素粉末の合成法において金属シリコ
ン(Si)の直接窒化法は、現在工業化されている最も
一般的な方法である。すなわち、窒化炉内に原料を充填
し、窒素ガス置換、昇温、窒化、冷却というプロセスを
経る場合は、昇温、冷却工程に時間を要する為、大幅な
コスト低減は困難である。その他に連続炉を用いて窒化
珪素を合成する方法が知られているが、粉砕、精製の後
工程が必要である。特に高α型窒化珪素粉末を得るに
は、 触媒の使用、反応速度、雰囲気ガス組成、窒化温度
の制御が必要であり、反応が終了するには長時間かける
必要がある。また得られた生成物を粉砕して、焼結に適
した微細な粉末を得るには、長時間の粉砕や、分級等の
後工程が必要になる。さらに窒化珪素のような硬い被粉
砕物を長時間粉砕すると、粉砕メディアの摩耗が激し
く、ランニングコストの増加と共に、混入したメディア
や増加した表面酸素を取り除く精製工程が不可欠であ
り、精製工程では酸処理を行うため、高価なものになっ
てしまう。 【0004】一方、β型窒化珪素は高温安定型であるた
め、その合成は高温で反応させるあるいは反応速度を高
くして合成する。その為、α型窒化珪素粉末より反応時
間が1/2〜1/3と短くなり、反応コストは若干安く
なる。しかし生成した窒化珪素粒子の粒成長、焼結が生
じ、β型窒化珪素はα窒化珪素生成物よりは粉砕されに
くくなるものであり、焼結用の微粉を得るに依然として
高コストとならざるを得なかった。 【0005】 【発明が解決しようとする課題】本発明は上記状況に鑑
みてなされたもので、焼結性に優れ、なおかつ易粉砕性
の安価なβ型窒化珪素質粉末を得ることを目的とする。
更に述べれば安価な原料を用い、窒化珪素質材料を短時
間で合成可能であり、得られた生成物が粉砕容易である
材料を提供することを目的とする。 【0006】 【課題を解決するための手段】本発明者等は、金属シリ
コンにシリカ(SiO)質粉末及びアルカリ金属のハ
ロゲン化又はアルカリ土類金属のハロゲン化物を適宜混
合して窒素中で急速加熱することにより、粉砕性の容易
な窒化珪素質生成物を得られることを見出し、本発明を
完成するに至った。 【0007】すなわち、本発明は、金属シリコン又は金
属シリコンと窒化珪素からなる粉末に、金属シリコン1
00重量部に対してシリカ分をシリカ質原料として4
量部以上、18重量部以下及びアルカリ金属のハロゲン
化物及び/又はアルカリ土類金属のハロゲン化物の少な
くとも1種以上を0.1重量部以上、10重量部以下添
加した粉末組成物の成形体を、窒素含有雰囲気中、所定
温度まで高めて窒化する方法において、上記粉末組成物
の成形体を、1000℃から1300℃の間の昇温速度
を100℃/分以上に急速加熱し、反応窒化前/反応窒
化後の嵩比重比が1 . 5以上となるように膨張させなが
ら窒化させた後、粉砕することを特徴とする、窒化珪素
と酸窒化珪素からなる平均粒径が5.1μm以下の粉末
であって、窒化珪素のβ率が50%以上、酸窒化珪素を
8%以上、37%以下含有してなる、窒化珪素質粉末の
製造方法である。 【0008】 【0009】以下本発明について詳しく説明する。本発
明による酸窒化珪素を含んだ窒化珪素粉末を原料に用い
た焼結体の常温曲げ強さは、酸窒化珪素を含まない従来
のβ窒化珪素粉末を用いた焼結体よりも、高い結果が得
られた。この曲げ強さが増大した機構についての詳細は
不明であるが、特開平8−2908等に言われるよう
に、粒界ガラス相中に酸窒化珪素が固溶することでガラ
ス相の硬度が高くなる等、結合材の役割を果たすため高
強度が発現したと推定される。 【0010】次いで本発明の製造方法について説明す
る。原料シリコン粉末に酸素を付加して急速加熱するこ
とにより、得られた反応生成物が原料粉末の仮成形体の
状態に比べて膨張した状態となり、低嵩比重となる。結
果として易粉砕性の酸窒化珪素を含むβ型窒化珪素が生
成する。この反応・膨張のプロセスは以下の順序で行わ
れているものと推定される。 【0011】 Si(g) +SiO2(s)→2SiO(g) 式1 【0012】原料粉末仮成形体中に金属シリコンと同時
に存在するシリカが高温で、式1に示す反応により、成
形体内部でSiOガスを発生し膨張することにより、構
成する粒子は微細粒子に破裂し、その位置を変えること
により、成形体は全体が膨張する。また同時に原料粉末
の高温窒素にさらされる表面積が増加するので、窒化反
応も促進される。さらに成形体が膨張することで、粒子
同士の接触面積は小さくなるので、生成した粒子の焼結
は起こりにくくなり、容易に粉砕可能な状態で回収する
ことができる。シリカの一部は、式1の反応により消費
されると同時に式2の反応により酸窒化珪素を生成す
る。 【0013】 Si3 4(S)+SiO2(S)→Si2 ON2(S) 式2 【0014】 【発明の実施の形態】窒化珪素は、β率が50%未満す
なわちα窒化珪素が多くなると、平均粒径を1μm以下
の超微粉にしないと焼結が進まず不適当である。酸窒化
珪素は7%以上、37%以下含有していることが必要で
ある。7%より少ない場合は焼結密度は十分であるが、
焼結後の強度が低いものとなる。また37%を越えて存
在すると焼結密度が低いものしか得られず結果強度が不
十分である。平均粒径が5.1μmを越えると焼結後の
強度が低いものとなる。 【0015】ここで酸窒化珪素の量は粉末X線回折法に
より得られる特定ピークの比より算出される値である。
すなわちα窒化珪素の(210)面、β窒化珪素の(2
10)面、及び酸窒化珪素の(200)面の反射により
生じるピーク高さをそれぞれ求め。その合計量に対する
酸窒化珪素によるピーク高さの割合を云う。 【0016】酸素分析による酸素量から、酸窒化珪素の
量を推定するのは好ましくない方法である。なぜなら粉
末中の酸素は、酸窒化珪素以外にも、シリカ分、窒化珪
素の表面酸素、内部酸素、更には不純物の酸化物、付着
水分があり、これらを区別するのは困難だからである。 【0017】次いで、製法の形態について説明する。金
属シリコン粉末としては、純度、粒度特に制限されるも
のではないが、反応性の点から粒度は比表面積はBET
法で0. 5〜5m2/gに調製されていることが好まし
い。また、原料中に含まれるシリカの量は、金属シリコ
ン100重量部に対して4以上、18重量部以下が必要
である。更には6〜16重量部の範囲であることが好ま
しい。シリカの量が18重量部を越えると、反応生成物
中にファイバー状の生成物の割合が多くなり、粉砕後に
も一部残留し、焼結体の強度低下を招いてしまう。また
4重量部より少ないと、反応中の嵩比重比の変化が乏し
く、反応生成物は強固に結合した状態で得られ、粉砕性
が乏しくなるからである。 【0018】原料粉末中にシリカ分を含有させる方法に
ついては、シリコンを大気中で加熱し、表面を酸化させ
る方法が好適であるが、石英ガラス粉末やアエロジル又
は珪石、陶石、ろー石、等のシリカ質鉱物の粉末を添加
・混合してもかまわない。さらに上記に述べた方法を単
独あるいは併用しても、合計のシリカ分の占める割合
が、金属シリコン100重量部に対して、4以上18重
量部以下の範囲内にあればかまわない。シリカ質鉱物
は、比表面積が4m2/g以上となるまで粉砕して用い
る。比表面積が4m2/g以下では、式1に示す反応はゆ
っくりとしか進まず、成形体の膨張が少ないからであ
る。さらにシリカ質鉱物の純度は、シリカ成分が80%
以上であることが好ましい。シリカ成分が80%以下で
あれば、不純物成分が窒化時に液相を形成し、シリコン
を液化して窒化反応を妨げる恐れがあり、また、焼結体
の強度低下の原因となる可能性がある。 【0019】窒化時にアルカリ金属及びアルカリ土類金
属のハロゲン化物からなる1種以上を、原料に添加する
ことにより、本発明に拘わるSiOガスの生成及び窒化
反応を促進することができる。添加量を金属シリコン1
00重量部に対し0.1重量部以上、10重量部以下に
することが必要である。添加量を10重量部を越えて多
く添加すると、窒化後の反応生成物の塊又は粉末中に残
留し、これを用いた焼結体強度の低下を招く。また0.
1重量部より少ないと反応促進効果が乏しいからであ
る。 【0020】上記金属シリコンに対するシリカ分又はア
ルカリ金属及びアルカリ金属のハロゲン化物の算出に於
いて、金属シリコン量は金属シリコン表面を酸化して用
いる場合は、酸素分析等により、表面に生成したシリカ
分を算出し、金属シリコン分の正味の量を把握しておく
ことが必要である。 【0021】金属シリコンと共に添加する窒化珪素は、
反応時の反応熱を希釈するためのものであり、粒度は特
に限定されない。また結晶系もα型、β型いずれでも良
い。添加量は金属シリコンの0〜60wt.%の間で適
宜決めればよい。原料粉末の仮成形後の密度について
は、成形体の嵩密度は1.3g/cm3以下にすることが好
ましい。 成形体の嵩密度が1.3g/cm3を超えると、
窒化中の金属シリコン同士の焼結が生じ、未窒化の金属
シリコンが残留する可能性がある。また、原料粉末のみ
での成形が困難な場合は、成形バインダーを添加しても
かまわない。 【0022】次いで原料粉末を反応炉に投じて合成を行
うが、反応雰囲気としては、窒素ガス雰囲気、または窒
素及び/又はアンモニアガスにアルゴン、ヘリウム等の
ガスを混合した非酸化性の窒素含有ガス雰囲気とする必
要がある。反応炉は、原料を急速加熱できるものであれ
ば特に限定されるものではないが、バッチ式、連続式の
反応炉を用いることが出来る。 【0023】ここで重要なことは、原料粉末を室温から
或いは1000℃より低い所定の温度に予熱しておき、
その後1300℃以上の高温雰囲気に移動させ、急加熱
する事にある。急加熱により、原料仮成形体は膨張しつ
つ反応が行われる、この時原料仮成形体の嵩比重が1.
8倍以上となるように、好ましくは2倍以上となるよう
に加熱することが必要である。昇温速度として、100
0℃から1300℃の間を100℃/分以上とすれば膨
張はスムースに行われる。従って高温側の炉の設定温度
は1300℃以上好ましくは1400〜1600℃にす
る。昇温速度が100℃/分より低いとSiOガスの生
成が徐々に行われるため、膨張が不十分となる。昇温速
度としては、特に上限は無いが1000℃/分のような
超急速加熱を実施するためには、炉に投入する電気エネ
ルギーを大きくするか、また、原料投入量を極端に少な
くする等経済的に問題がある。急加熱後の原料粉末は既
に相当部分が反応した状態であるが、更に完全に反応を
終了させるため、1400℃〜1600℃の温度で数時
間保持する。 【0024】 【実施例】市販の高純度金属シリコン粉末(平均粒子径
25μm )を窒化珪素製ボールを用いたボールミルで平
均粒径21μmまで粉砕し、210μm の篩いで篩った
後、大気中で1000℃で2時間加熱して酸化を行い酸
化シリカ作製した。混合粉末中の金属シリコン100重
量部に対してシリカが10.4重量部となるように調製
した。次いで窒化珪素粉末(電気化学工業社製SN-
7)50部、さらに金属シリコン粉末100重量部に対
してフッ化マグネシウムが1.0重量部となるように加
え、ボールミルで乾式混合して混合粉末を得た。 【0025】混合粉末100g に、4%PVAバインダ
ー水溶液を30g添加・混練した後、金型成形を行い、
縦幅50mm、横幅50mm、厚み50mmの立方体を1
5個成形した。乾燥後の成形体の嵩密度は1.0g/cm3
であった。 窒素雰囲気とし、1500℃に温度調整した
窒化炉内に上記成形体を室温から炉に投入し、4時間保
持し窒化した。このときの成形体の昇温速度を測定した
ところ280℃/ 分であった。 窒化反応した成形体を回
収し、窒素雰囲気中で900℃まで冷却し、その後空気
中で放冷した。冷却した成形体は、投入前に比べ膨張し
ており、指で強く摘むと崩壊するほど弱いものであっ
た。この成形体を窒化珪素製乳鉢で粗砕して篩い分け、
粒度範囲が0. 1〜1mmの試料を用いて比表面積を測定
し、0. 1mm以下の試料を用いて酸素量及び窒素量を測
定した。更に粗粉砕後の粉末100gを15φ窒化珪素
製ボールを充填した振動ミルで粉砕した後、比表面積及
び粒子径分布の測定を行った。比表面積の測定は、湯浅
アイオニクス社製のカンタソーブで、ヘリウム−窒素の
混合ガスを標準ガスとして流通式の1点法により求め
た。また、粒子径分布は日機装社製マイクロトラックに
よりレーザー回折光散乱法により測定した。酸窒化珪素
の量は前記X線回折法で求めた値である。 【0026】振動ミル粉砕で得られた窒化珪素質粉末の
焼結性を以下のようにして評価した。窒化珪素質粉末の
100重量部に対して、5重量部のY2 3 粉末と3重
量部のAl2 3 粉末を混合し、粉末の全量の5%の有
機バインダーと水を加えて混合し、粉末が30重量%と
なるスラリーを調合した。それをスプレードライヤーで
造粒・乾燥し、金型プレス成形後、3t/cm2のCIP成
形を行った。これを1750℃、10h の条件で焼結
し、得られた焼結体について、JIS−R1601に準
拠して室温における4点曲げ強さを測定した。 【0027】実施例2〜6、比較例1〜9についても、
表1に示す原料、反応条件で実施した以外は実施例1と
同様に行った。表1に示すシリカ質原料の内容を表2に
示す。 【0028】 【表1】 【0029】 【表2】【0030】参考例1はβ型窒化珪素粉末(電気化学工
業社製SN−B)を、 振動ミルで粉砕し比表面積を4
/gに調整したもの及び純度99%、比表面積3.
4m/gの酸窒化珪素粉を混合し、窒化珪素質粉末と
した。この混合窒化珪素質粉末を実施例1と同様に助剤
を混合し焼結した。 【0031】比較例10は市販のβ型窒化珪素粉末(電
気化学工業社製SN−B)を、 振動ミルで粉砕し比表面
積を4m2 /gに調整したものを用いた以外は実施例1
と同条件で焼結体を作製・ 評価を行った。 各実施例及び
比較例で得られた粉末の特性及び該粉末を用いた焼結体
の物性を表3に示す。 【0032】 【表3】 【0033】表3から明らかなように、本発明に拘わる
酸窒化珪素を含むβ窒化珪素質粉末は焼結性に優れ、ま
た本発明の製造方法で得られた窒化珪素質粉末は、短時
間で合成可能であり、易粉砕性で、焼結性に優れたもの
である事が分かる。 【0034】 【発明の効果】本発明によれば、焼結性に優れ、易粉砕
性の安価なβ型窒化珪素質粉末を製造することができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride-based powder which is easily crushable and excellent in sinterability. More specifically, silicon nitride powder suitable for sintering structural parts such as automobile engine parts, cutting tools, molten aluminum jigs, and heat-resistant parts.
The final manufacturing method . [0002] Silicon nitride (Si 3 N 4 ) includes α type, β type
The existence of crystalline systems of the type is known. Conventionally, α-type silicon nitride powder has been mainly used as a raw material powder for producing a sintered body. This is because when β-type silicon nitride powder is used as a starting material, columnar particles do not develop and the resulting sintered body has low fracture toughness, so its application to structural materials is limited except for some refractories. I was [0003] In the method of synthesizing silicon nitride powder, the direct nitridation method of metallic silicon (Si) is the most general method currently industrialized. That is, when the nitriding furnace is filled with the raw material and undergoes a process of replacing with nitrogen gas, raising the temperature, nitriding, and cooling, it takes time to raise and lower the temperature, so that it is difficult to significantly reduce the cost. In addition, a method of synthesizing silicon nitride using a continuous furnace is known, but requires a post-process of pulverization and purification. In particular, in order to obtain a high α-type silicon nitride powder, it is necessary to control the use of a catalyst, a reaction rate, an atmosphere gas composition, and a nitriding temperature, and it takes a long time to complete the reaction. Further, in order to pulverize the obtained product to obtain a fine powder suitable for sintering, a long-term pulverization or a post-process such as classification is required. Furthermore, if a hard material to be ground such as silicon nitride is ground for a long period of time, the grinding media is severely worn, and the running cost is increased, and a purification process for removing mixed media and increased surface oxygen is indispensable. Processing is expensive. On the other hand, since β-type silicon nitride is a high-temperature stable type, it is synthesized by reacting at a high temperature or by increasing the reaction rate. For this reason, the reaction time is shorter than α to 1 / of the α-type silicon nitride powder, and the reaction cost is slightly lower. However, the resulting silicon nitride particles undergo grain growth and sintering, and β-type silicon nitride is less liable to be crushed than α-silicon nitride product, so that obtaining fine powder for sintering is still expensive. I didn't get it. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to obtain an inexpensive β-type silicon nitride powder excellent in sinterability and easy to grind. I do.
Furthermore, it is an object of the present invention to provide a material which can synthesize a silicon nitride material in a short time by using an inexpensive raw material and can easily pulverize the obtained product. SUMMARY OF THE INVENTION The present inventors have made a study to properly mix silica (SiO 2 ) powder and alkali metal halide or alkaline earth metal halide with metallic silicon in nitrogen. The inventors have found that a silicon nitride-based product with easy pulverizability can be obtained by rapid heating, and have completed the present invention. That is, according to the present invention, a metal silicon or a powder comprising metal silicon and silicon nitride
Quadruple silica content as the silica-containing material relative to 00 parts by weight
The amount unit above, 18 parts by weight or less and an alkali metal halide and / or alkaline earth metal halide of at least one or more of 0.1 or more parts by weight of the molded body of the powder composition was added 10 parts by weight or less of , Specified in nitrogen-containing atmosphere
The method for nitriding by raising the temperature to a temperature
The rate of temperature rise of the green body between 1000 ° C and 1300 ° C
Is rapidly heated to 100 ° C./min or more,
While expanding so that the bulk specific gravity ratio after the conversion becomes 1.5 or more .
Silicon nitride characterized by pulverizing after nitriding
Powder composed of silicon and silicon oxynitride having an average particle size of 5.1 μm or less
Wherein the β ratio of silicon nitride is 50% or more and silicon oxynitride is
8% or more and 37% or less of silicon nitride-based powder
It is a manufacturing method. Hereinafter, the present invention will be described in detail. The room temperature bending strength of the sintered body using the silicon nitride powder containing silicon oxynitride according to the present invention as a raw material is higher than that of the sintered body using the conventional β silicon nitride powder containing no silicon oxynitride. was gotten. Although the details of the mechanism of the increase in bending strength are unknown, as described in JP-A-8-2908, the hardness of the glass phase increases due to the solid solution of silicon oxynitride in the grain boundary glass phase. It is presumed that high strength was developed because of the role of the binder. Next, the production method of the present invention will be described. By adding oxygen to the raw silicon powder and rapidly heating it, the obtained reaction product is in an expanded state as compared with the state of the temporary formed body of the raw powder, and has a low bulk specific gravity. As a result, β-type silicon nitride containing easily crushable silicon oxynitride is generated. It is presumed that this reaction / expansion process is performed in the following order. Si (g) + SiO 2 (s) → 2SiO (g) Formula 1 At a high temperature, the silica present simultaneously with the metallic silicon in the raw material powder preform is subjected to a reaction shown in formula 1 to form the inside of the preform. By generating a SiO gas and expanding the particles, the constituent particles are ruptured into fine particles, and by changing the position, the entire molded body expands. At the same time, the surface area of the raw material powder exposed to high-temperature nitrogen increases, so that the nitriding reaction is promoted. Further, since the contact area between the particles is reduced by expanding the molded body, sintering of the generated particles is less likely to occur, and the particles can be collected in a pulverizable state. A portion of the silica is consumed by the reaction of Formula 1 and at the same time produces silicon oxynitride by the reaction of Formula 2. Si 3 N 4 (S) + SiO 2 (S) → Si 2 ON 2 (S) Formula 2 BEST MODE FOR CARRYING OUT THE INVENTION Silicon nitride has a β ratio of less than 50%, ie, α silicon nitride If the average particle size increases, sintering will not proceed unless the average particle size is reduced to ultrafine powder of 1 μm or less, which is inappropriate. It is necessary that silicon oxynitride be contained at 7% or more and 37% or less. If less than 7%, the sintering density is sufficient,
The strength after sintering is low. On the other hand, if it exceeds 37%, only a sintered material having a low sintering density is obtained, resulting in insufficient strength. If the average particle size exceeds 5.1 μm,
The strength is low. Here, the amount of silicon oxynitride is a value calculated from a ratio of specific peaks obtained by a powder X-ray diffraction method.
That is, the (210) plane of α silicon nitride and the (2) plane of β silicon nitride
10) The peak heights caused by the reflection of the plane and the (200) plane of silicon oxynitride were determined. It refers to the ratio of the peak height due to silicon oxynitride to the total amount. It is not preferable to estimate the amount of silicon oxynitride from the amount of oxygen obtained by oxygen analysis. This is because oxygen in the powder includes silica, surface oxygen and internal oxygen of silicon nitride, oxides of impurities, and attached moisture in addition to silicon oxynitride, and it is difficult to distinguish these. Next, the form of the manufacturing method will be described. The purity and particle size of the metal silicon powder are not particularly limited, but the specific surface area is BET from the viewpoint of reactivity.
It is preferably adjusted to 0.5 to 5 m 2 / g by the method. Further, the amount of silica contained in the raw material must be 4 or more and 18 parts by weight or less based on 100 parts by weight of metallic silicon. More preferably, it is in the range of 6 to 16 parts by weight. If the amount of silica exceeds 18 parts by weight, the proportion of the fibrous product in the reaction product increases, and part of the product remains even after pulverization, resulting in a reduction in the strength of the sintered body. On the other hand, if the amount is less than 4 parts by weight, the change in the bulk specific gravity ratio during the reaction is poor, the reaction product is obtained in a tightly bound state, and the pulverizability is poor. Regarding the method of incorporating silica in the raw material powder, a method of heating silicon in the air to oxidize the surface is preferable. However, quartz glass powder, aerosil or quartzite, porcelain stone, rockite, , Etc., may be added and mixed. Further, even if the above-mentioned methods are used alone or in combination, the proportion of the total silica content may be within the range of 4 to 18 parts by weight with respect to 100 parts by weight of metallic silicon. The siliceous mineral is pulverized and used until the specific surface area becomes 4 m 2 / g or more. When the specific surface area is 4 m 2 / g or less, the reaction represented by the formula 1 proceeds only slowly, and the expansion of the molded body is small. Further, the purity of the siliceous mineral is 80% for the silica component.
It is preferable that it is above. If the silica component is 80% or less, the impurity component may form a liquid phase at the time of nitriding, liquify silicon and hinder the nitriding reaction, and may cause a reduction in the strength of the sintered body. . By adding one or more kinds of alkali metal and alkaline earth metal halides to the raw material during nitriding, the generation of SiO gas and the nitriding reaction according to the present invention can be promoted. Addition amount of metal silicon 1
It is necessary that the content be 0.1 to 10 parts by weight based on 00 parts by weight. If the added amount is more than 10 parts by weight, the reaction product after nitriding remains in a lump or powder, and the strength of the sintered body using the same is reduced. 0.
If the amount is less than 1 part by weight, the effect of promoting the reaction is poor. In the calculation of the silica content of the metal silicon or the alkali metal and the alkali metal halide, when the metal silicon surface is oxidized and used, the silica content formed on the surface by oxygen analysis or the like is used. Is calculated, and the net amount of metallic silicon needs to be grasped. The silicon nitride added together with the metallic silicon is
This is for diluting the heat of reaction during the reaction, and the particle size is not particularly limited. The crystal system may be either α-type or β-type. The addition amount is 0 to 60 wt. % May be appropriately determined. Regarding the density of the raw material powder after the preliminary molding, the bulk density of the molded body is preferably 1.3 g / cm 3 or less. When the bulk density of the molded body exceeds 1.3 g / cm 3 ,
Sintering of the metallic silicon during nitriding occurs, and there is a possibility that unnitrided metallic silicon remains. If it is difficult to mold only with the raw material powder, a molding binder may be added. Next, the raw material powder is thrown into a reaction furnace for synthesis. The reaction atmosphere is a nitrogen gas atmosphere or a non-oxidizing nitrogen-containing gas obtained by mixing a gas such as argon and helium with nitrogen and / or ammonia gas. The atmosphere needs to be. The reactor is not particularly limited as long as it can rapidly heat the raw materials, but a batch-type or continuous-type reactor can be used. What is important here is that the raw material powder is preheated from room temperature or a predetermined temperature lower than 1000 ° C.
After that, it is moved to a high-temperature atmosphere of 1300 ° C. or more and rapidly heated. The rapid heating causes the reaction while the raw material temporary molded body expands, and at this time, the bulk specific gravity of the raw material temporary molded body is 1.
It is necessary to heat so that it becomes 8 times or more, preferably 2 times or more. The heating rate is 100
If the temperature between 0 ° C. and 1300 ° C. is 100 ° C./min or more, the expansion is performed smoothly. Therefore, the set temperature of the furnace on the high temperature side is 1300 ° C. or higher, preferably 1400 to 1600 ° C. If the rate of temperature rise is lower than 100 ° C./min, the generation of SiO gas is performed gradually, and the expansion becomes insufficient. There is no particular upper limit on the heating rate, but in order to perform ultra-rapid heating such as 1000 ° C./min, the electric energy to be charged into the furnace is increased, or the amount of raw material charged is extremely reduced. There are financial problems. Although a substantial portion of the raw material powder after the rapid heating has already reacted, the raw material powder is kept at a temperature of 1400 ° C. to 1600 ° C. for several hours to complete the reaction more completely. EXAMPLE A commercially available high-purity metallic silicon powder (average particle diameter: 25 μm) was pulverized by a ball mill using silicon nitride balls to an average particle diameter of 21 μm, sieved with a 210 μm sieve, and then dried in air. Oxidation was performed by heating at 1000 ° C. for 2 hours to produce oxidized silica. The silica was adjusted so as to be 10.4 parts by weight with respect to 100 parts by weight of metallic silicon in the mixed powder. Next, silicon nitride powder (SN-
7) Magnesium fluoride was added in an amount of 1.0 part by weight based on 50 parts by weight and further 100 parts by weight of the metal silicon powder, and dry-mixed with a ball mill to obtain a mixed powder. After adding and kneading 30 g of a 4% PVA binder aqueous solution to 100 g of the mixed powder, a mold is formed.
1 cube of 50mm in width, 50mm in width and 50mm in thickness
Five were molded. The bulk density of the dried molded article is 1.0 g / cm 3
Met. The molded body was put in a nitriding furnace adjusted to a temperature of 1500 ° C. in a nitrogen atmosphere from a room temperature, and kept for 4 hours to be nitrided. The rate of temperature rise of the compact at this time was measured and found to be 280 ° C./min. The compact after the nitriding reaction was recovered, cooled to 900 ° C. in a nitrogen atmosphere, and then allowed to cool in air. The cooled molded body was expanded as compared to before the injection, and was weak enough to collapse when strongly picked with a finger. This molded body is crushed and sieved in a silicon nitride mortar,
The specific surface area was measured using a sample having a particle size range of 0.1 to 1 mm, and the oxygen content and the nitrogen content were measured using a sample having a particle size range of 0.1 mm or less. Further, 100 g of the powder after the coarse pulverization was pulverized by a vibration mill filled with 15φ silicon nitride balls, and then the specific surface area and the particle size distribution were measured. The specific surface area was measured by a flow-through one-point method using a helium-nitrogen mixed gas as a standard gas with a cantasorb manufactured by Yuasa Ionics. The particle size distribution was measured by a laser diffraction light scattering method using a micro track manufactured by Nikkiso Co., Ltd. The amount of silicon oxynitride is a value determined by the X-ray diffraction method. The sinterability of the silicon nitride powder obtained by the vibration mill pulverization was evaluated as follows. 5 parts by weight of Y 2 O 3 powder and 3 parts by weight of Al 2 O 3 powder are mixed with 100 parts by weight of the silicon nitride powder, and 5% of the total amount of the powder is mixed with an organic binder and water. Then, a slurry having a powder content of 30% by weight was prepared. It was granulated and dried with a spray drier, press-molded in a mold, and then CIP-molded at 3 t / cm 2 . This was sintered at 1750 ° C. for 10 hours, and the obtained sintered body was measured for the four-point bending strength at room temperature in accordance with JIS-R1601. In Examples 2 to 6 and Comparative Examples 1 to 9,
The procedure was performed in the same manner as in Example 1 except that the reaction was performed under the starting materials and reaction conditions shown in Table 1. Table 2 shows the contents of the siliceous raw materials shown in Table 1. [Table 1] [Table 2] In Reference Example 1, β-type silicon nitride powder (SN-B manufactured by Denki Kagaku Kogyo Co., Ltd.) was pulverized with a vibration mill to obtain a specific surface area of 4%.
2. Adjusted to m 2 / g, purity 99%, specific surface area 3.
4 m 2 / g of silicon oxynitride powder was mixed to obtain a silicon nitride powder. This mixed silicon nitride powder was mixed with an auxiliary in the same manner as in Example 1 and sintered. Comparative Example 10 was conducted in the same manner as in Example 1 except that commercially available β-type silicon nitride powder (SN-B manufactured by Denki Kagaku Kogyo Co., Ltd.) was pulverized with a vibration mill and the specific surface area was adjusted to 4 m 2 / g.
A sintered body was fabricated and evaluated under the same conditions. Table 3 shows the properties of the powders obtained in each of the examples and comparative examples and the physical properties of the sintered bodies using the powders. [Table 3] As is apparent from Table 3, the β silicon nitride-based powder containing silicon oxynitride according to the present invention has excellent sinterability, and the silicon nitride-based powder obtained by the production method of the present invention has a short duration. It can be understood that the composition can be synthesized, is easily crushable, and has excellent sinterability. According to the present invention, excellent sinterability and easy pulverization are obtained.
Inexpensive β-type silicon nitride powder
You.

フロントページの続き (56)参考文献 特開 昭62−59599(JP,A) 特開 平2−248309(JP,A) 特開 昭63−69759(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 21/068 C04B 35/591 Continuation of the front page (56) References JP-A-62-5599 (JP, A) JP-A-2-248309 (JP, A) JP-A-63-69759 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) C01B 21/068 C04B 35/591

Claims (1)

(57)【特許請求の範囲】【請求項1】 金属シリコン又は金属シリコンと窒化珪
素からなる粉末に、金属シリコン100重量部に対して
シリカ分をシリカ質原料として4重量部以上、18重量
部以下及びアルカリ金属のハロゲン化物及び/又はアル
カリ土類金属のハロゲン化物の少なくとも1種以上を
0.1重量部以上、10重量部以下添加した粉末組成物
の成形体を、窒素含有雰囲気中、所定温度まで高めて窒
化する方法において、 上記粉末組成物の成形体を、1000℃から1300℃
の間の昇温速度を100℃/分以上に急速加熱し、反応
窒化前/反応窒化後の嵩比重比が1 . 5以上となるよう
に膨張させながら窒化させた後、粉砕する ことを特徴と
する、窒化珪素と酸窒化珪素からなる平均粒径が5.1μm以
下の粉末であって、窒化珪素のβ率が50%以上、酸窒
化珪素を8%以上、37%以下含有してなる、窒化珪素
質粉末の製造方法。
(57) [Claim 1] In a powder comprising metallic silicon or metallic silicon and silicon nitride, a silica content is used as a siliceous raw material in an amount of 4 to 18 parts by weight based on 100 parts by weight of metallic silicon. below and an alkali metal halide and / or alkaline earth metal halide, at least one or more of 0.1 or more parts by weight of the powder composition was added 10 parts by weight or less
The molded body of
In the method, the compact of the powder composition is heated from 1000 ° C. to 1300 ° C.
The temperature is rapidly increased to 100 ° C / min or more during
As the bulk density ratio after nitriding before / reaction nitride is one. 5 or more
Pulverizing after nitriding while expanding to an average particle size of 5.1 μm or less, comprising silicon nitride and silicon oxynitride.
The powder below, wherein the β ratio of silicon nitride is 50% or more,
Silicon nitride containing 8% or more and 37% or less of silicon nitride
Method for producing porous powder.
JP34719696A 1996-12-26 1996-12-26 Method for producing silicon nitride powder Expired - Fee Related JP3496795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34719696A JP3496795B2 (en) 1996-12-26 1996-12-26 Method for producing silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34719696A JP3496795B2 (en) 1996-12-26 1996-12-26 Method for producing silicon nitride powder

Publications (2)

Publication Number Publication Date
JPH10182115A JPH10182115A (en) 1998-07-07
JP3496795B2 true JP3496795B2 (en) 2004-02-16

Family

ID=18388577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34719696A Expired - Fee Related JP3496795B2 (en) 1996-12-26 1996-12-26 Method for producing silicon nitride powder

Country Status (1)

Country Link
JP (1) JP3496795B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518584B2 (en) * 2010-06-16 2014-06-11 電気化学工業株式会社 Silicon nitride powder for release agent.
WO2024195299A1 (en) * 2023-03-22 2024-09-26 デンカ株式会社 Method for producing silicon nitride powder, and method for producing silicon nitride sintered body

Also Published As

Publication number Publication date
JPH10182115A (en) 1998-07-07

Similar Documents

Publication Publication Date Title
JP7241247B2 (en) Method for producing hexagonal boron nitride powder and sintered boron nitride
JP4153080B2 (en) Method for producing boron nitride-containing composite ceramic sintered body and sintered body
JP3496795B2 (en) Method for producing silicon nitride powder
JPH0733249B2 (en) Amorphous silica fine powder manufacturing method and concrete product containing amorphous silica fine powder
JPH0647447B2 (en) Method for producing aluminum nitride powder
JP3698664B2 (en) Method for producing high purity silicon nitride powder
JP2525432B2 (en) Normal pressure sintered boron nitride compact
JPH0324429B2 (en)
JPS6357383B2 (en)
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JP3801252B2 (en) Method for producing silicon nitride
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JP3390059B2 (en) Method for producing silicon nitride
JP3838691B2 (en) Silicon nitride grinding aid and its use
JPH11514623A (en) Manufacturing method of ceramic material
JPH0283265A (en) Production of silicon nitride
JP3348797B2 (en) Silicon nitride grinding aid and silicon nitride powder
JPS6227004B2 (en)
JPS6340709A (en) Production of easy-to-sinter high-purity silicon nitride fine powder
JPH0781909A (en) Production of silicon nitride
JPH0624728A (en) Production of cristobalite
JPH04295005A (en) Production of silicon nitride
JP2000128511A (en) Silicon nitride powder and slurry and filler using the silicon nitride powder
JPH0532405A (en) Silicon nitride powder, its production and sintered compact therefrom
JP3342756B2 (en) Silicon nitride powder and method for producing the same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees