JPH0771911A - Position detecting device - Google Patents

Position detecting device

Info

Publication number
JPH0771911A
JPH0771911A JP5221007A JP22100793A JPH0771911A JP H0771911 A JPH0771911 A JP H0771911A JP 5221007 A JP5221007 A JP 5221007A JP 22100793 A JP22100793 A JP 22100793A JP H0771911 A JPH0771911 A JP H0771911A
Authority
JP
Japan
Prior art keywords
light
substrate
optical system
objective lens
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5221007A
Other languages
Japanese (ja)
Inventor
Yasuo Yonezawa
康男 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5221007A priority Critical patent/JPH0771911A/en
Publication of JPH0771911A publication Critical patent/JPH0771911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To precisely detect the position of a base plate surface by arranging a light shielding member for shielding a reflected light between conjugate positions to the surface and reverse surface of the base plate in an objective optical system, and removing the reflected light from the reverse surface of the base plate. CONSTITUTION:In the infrared ray from a light source 1, the half of its luminous flux is shielded 4, and the other half luminous flux L1 is converged on the surface of a base plate 7 through a half mirror 5 and an objective lens 6. The luminous flux L3 reflected by the reverse surface of the base plate 7 is passed through the mirror 5, reflected by a dichroic mirror 10, converged at a conjugate position B concerning the lens 6, and then shielded by a light shielding plate 9. Thus, only the luminous flux L2 reflected by the surface of the base plate 7 is similarly converged once at a conjugate position A concerning the lens 6, and converged on the light receiving surface of a photoelectric detector 8 by a relay optical system 20. Two photoelectric signals obtained from detecting areas 8a, 8b of the light receiving surfaces are outputted to an object face detecting part 14, and the position of the base plate 7 surface to the object surface (reference plane) P0 of the lens 6 is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被検物としての基板の
位置を検出する位置検出装置に関するものであり、例え
ば、顕微鏡の焦点検出に好適なものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detecting device for detecting the position of a substrate as an object to be inspected, for example, a device suitable for focus detection of a microscope.

【0002】[0002]

【従来の技術】落射照明型の顕微鏡に用いられる焦点検
出装置は、例えば、米国特許第3,721,827 号において知
られている。そこで、米国特許第3,721,827 号において
開示されている焦点検出装置を図7を用いて具体的に説
明する。
2. Description of the Related Art A focus detecting device used in an epi-illumination type microscope is known, for example, from US Pat. No. 3,721,827. Therefore, the focus detection device disclosed in US Pat. No. 3,721,827 will be specifically described with reference to FIG.

【0003】図7において、(a)は合焦状態、(b)
は前ピン状態、(c)は後ピン状態の様子を示してい
る。まず、図7(a)に示す如く、光源1からの光は集
光レンズ2により集光され、スリット状の開口部を有す
るスリット板3を照明して、スリット状の光源を形成す
る。そして、集光レンズ2の光軸を含む面(図中の紙面
に垂直な面)により2分されるスリット板3を介した光
束の内、一方の光束の半分(下側光束)は、遮光板4に
よって遮光され、他方の光束の半分(上側光束)L
1 は、ハーフミラー5を反射する。その後、ハーフミラ
ー5を反射した光束L1 は、対物レンズ6の左側半分
(対物レンズ5の瞳の左半分)を通過して被検面70
(対物レンズ6の物体面)上で集光される。
In FIG. 7, (a) shows a focused state, (b) shows
Shows the front pinned state, and (c) shows the rear pinned state. First, as shown in FIG. 7A, the light from the light source 1 is condensed by the condenser lens 2 and the slit plate 3 having the slit-shaped opening is illuminated to form a slit-shaped light source. Then, of the light beams passing through the slit plate 3 which is divided into two by the surface including the optical axis of the condenser lens 2 (the surface perpendicular to the paper surface in the figure), half of one light beam (lower light beam) is shielded. The light is shielded by the plate 4, and half of the other light flux (upper light flux) L
1 reflects the half mirror 5. Then, the light flux L 1 reflected by the half mirror 5 passes through the left half of the objective lens 6 (the left half of the pupil of the objective lens 5) and the surface 70 to be inspected.
It is condensed on (the object plane of the objective lens 6).

【0004】この被検面70上には、上記スリット板3
の開口部の像が形成され、被検面70上で反射される光
束L2 は、対物レンズ6の右側半分(対物レンズ5の瞳
の右半分)を通過した後、ハーフミラー5を通過して光
電検出器8の受光面上で集光され、ここには、スリット
板3の開口部の像が形成される。光電検出器8の受光面
は、この対物レンズ6の光軸Axと交わる領域を境に左
右に受光領域8a,8bを有しており、スリット板3の
開口部の像の結像状態を光電的に検出する。
The slit plate 3 is provided on the surface 70 to be inspected.
The image of the opening of the image is formed, and the light flux L 2 reflected on the surface 70 to be inspected passes through the right half of the objective lens 6 (the right half of the pupil of the objective lens 5) and then the half mirror 5. Then, the light is collected on the light receiving surface of the photoelectric detector 8, and an image of the opening of the slit plate 3 is formed here. The light receiving surface of the photoelectric detector 8 has light receiving areas 8a and 8b on the left and right with the area intersecting the optical axis Ax of the objective lens 6 as a boundary, and the image forming state of the image of the opening of the slit plate 3 is photoelectrically converted. To detect.

【0005】また、図7(b)に示す如く、被検面70
が対物レンズ6の物体面(基準面又は予定焦点面)の位
置P0 から下方の位置P1 に位置していると、被検面7
0で反射して対物レンズ6の右側半分を通過する光束L
2 は、光電検出器8の受光面の手前で集光して、この受
光面の左側領域8aに達する。ここで、光電検出器8の
受光面の手前の集光位置Bには、スリット像が形成され
ているために、この光電検出器8は、前ピン状態でのス
リットのディフォーカス像を光電的に検出する。
Further, as shown in FIG. 7B, the surface to be inspected 70
Is located at a position P 1 below the position P 0 of the object plane (reference plane or planned focal plane) of the objective lens 6, the test surface 7
Light flux L that is reflected by 0 and passes through the right half of the objective lens 6
2 is condensed before the light receiving surface of the photoelectric detector 8 and reaches the left side area 8a of this light receiving surface. Here, since the slit image is formed at the condensing position B in front of the light receiving surface of the photoelectric detector 8, the photoelectric detector 8 photoelectrically converts the defocus image of the slit in the front focus state. To detect.

【0006】また、図7(c)に示す如く、被検面70
が対物レンズ6の物体面(基準面)の位置P0 から上方
の位置P2 に位置していると、被検面70で反射して対
物レンズ6の右側半分を通過する光束は、光電検出器8
の受光面の後方で集光されるように、受光面の右側領域
8bに達する。そして、光電検出器8は、後ピン状態で
のスリットのディフォーカス像を光電的に検出する。
Further, as shown in FIG.
There the located position P 2 of the upwardly from the position P 0 of the object plane of the objective lens 6 (reference surface), the light beams passing through the right half of the objective lens 6 is reflected by the test surface 70 is photoelectrically detected Bowl 8
The light reaches the right side region 8b of the light receiving surface so that the light is collected behind the light receiving surface. Then, the photoelectric detector 8 photoelectrically detects the defocus image of the slit in the rear focus state.

【0007】ここで、光電検出器8に基づく焦点検出
は、光電検出器8の左右受光領域8a,8bで各々検出
される2つの光量信号のバランス、即ち2つの光量信号
の差動を取ることで行われる。例えば、図7(a)では
ピントが合っている状態であり、この場合、検出光は光
電検出器8の受光面の中心で検出される。このため、受
光面の左右の側領域8a,8bで各々検出される2つの
光量信号の出力は等しくなり、差動信号は零となる。
Here, the focus detection based on the photoelectric detector 8 is to balance two light amount signals respectively detected in the left and right light receiving regions 8a and 8b of the photoelectric detector 8, that is, to take a differential between the two light amount signals. Done in. For example, in FIG. 7A, the image is in focus, and in this case, the detection light is detected at the center of the light receiving surface of the photoelectric detector 8. Therefore, the outputs of the two light amount signals respectively detected in the left and right side regions 8a and 8b of the light receiving surface become equal, and the differential signal becomes zero.

【0008】図7(b)では前ピン状態であり、この場
合、検出光は光電検出器8の受光面の左側の領域8aで
主に検出される。このため、受光面の左右の側領域8
a,8bで各々検出される2つの光量信号による差動信
号は、例えば正のあるレベルの出力信号が得られる。ま
た、図7(c)では後ピン状態であり、この場合、検出
光は光電検出器8の受光面の右側の領域8bで主に検出
される。このため、受光面の左右の側領域8a,8bで
各々検出される2つの光量信号による差動信号は、例え
ば負のあるレベルの出力信号が得られる。
FIG. 7 (b) shows the front focus state. In this case, the detection light is mainly detected in the area 8a on the left side of the light receiving surface of the photoelectric detector 8. Therefore, the left and right side regions 8 of the light receiving surface
As the differential signal based on the two light amount signals respectively detected by a and 8b, for example, an output signal of a certain positive level is obtained. Further, in FIG. 7C, the rear focus state is set, and in this case, the detection light is mainly detected in the area 8b on the right side of the light receiving surface of the photoelectric detector 8. Therefore, a differential signal based on the two light amount signals respectively detected in the left and right side regions 8a and 8b of the light receiving surface is an output signal of a certain negative level, for example.

【0009】このように、光電検出器8から得られる2
つの信号の差動を取ることにより、差動信号の正・負に
よって焦点ずれの方向が検出でき、差動信号の出力レベ
ルによって焦点ずれ量を検出することができる。
In this way, the two obtained from the photoelectric detector 8
By taking the differential of two signals, the direction of defocus can be detected by the positive / negative of the differential signal, and the defocus amount can be detected by the output level of the differential signal.

【0010】[0010]

【発明が解決しようとする課題】近年においては、ディ
スプレイ等における液晶表示の占める割合が急速に伸び
てきている。このため、液晶表示のもととなる液晶基板
の検査が重要となってきており、この液晶基板は、主に
顕微鏡によって検査されている。しかしながら、前述し
た焦点検出装置を備えた顕微鏡を用いて液晶基板の表面
にピントを合わせようとすると、本来検出すべき液晶基
板の表面からの反射光のみならず、液晶基板の裏面から
の反射光までもが光電検出器に到達して、焦点検出精度
に大きな影響を及ぼす。
In recent years, the proportion of liquid crystal displays in displays and the like has been rapidly increasing. Therefore, inspection of a liquid crystal substrate, which is a source of liquid crystal display, has become important, and this liquid crystal substrate is mainly inspected by a microscope. However, when trying to focus on the surface of the liquid crystal substrate using the microscope equipped with the focus detection device described above, not only the reflected light from the surface of the liquid crystal substrate that should be originally detected, but also the reflected light from the back surface of the liquid crystal substrate. Even the light reaches the photoelectric detector, which has a great influence on the focus detection accuracy.

【0011】従って、液晶基板の表面をピントの合った
状態で正確に検査できないため、不良品を正確に判別で
きない問題がある。そこで、本発明は、上記の問題点に
鑑みてなされたものであり、液晶基板を始めとした基板
の裏面からの反射光が生ずる場合にも、基板の表面の位
置を高精度に検出できる位置検出装置を提供することを
目的としている。
Therefore, since the surface of the liquid crystal substrate cannot be accurately inspected in a focused state, there is a problem that a defective product cannot be accurately discriminated. Therefore, the present invention has been made in view of the above problems, and a position that can detect the position of the front surface of the substrate with high accuracy even when reflected light from the back surface of the substrate including the liquid crystal substrate is generated. The purpose is to provide a detection device.

【0012】[0012]

【課題を解決するための手段】本発明は上記の目的を達
成するために、図1に示す如く、対物光学系6の光軸A
xを含む面を境に2分される一方の第1の領域を介した
光を基板の表面7aへ投射し、その基板の表面7aから
反射される光を対物光学系6の光軸を含む面を境に2分
される他方の第2の領域を介して検出器8にて光電的に
検出することにより、基板7の位置を検出する位置検出
装置において、対物光学系6と検出器8との間に、対物
光学系6によって所定位置に集光された基板の表面7a
からの反射光を検出器8の受光面上に集光するリレー光
学系20を配置すると共に、基板7が基準位置P0 (対
物光学系6の基準の物体面又は予定焦点面)にある場合
において対物光学系6に関し基板の表面7aと共役な第
1の位置Aと基板7が基準位置P0 (対物光学系6の基
準の物体面又は予定焦点面)にある場合において対物光
学系6に関し基板の裏面7bと共役な第2の位置Bとの
間に、第2領域を介する基板の裏面7bからの反射光を
遮光する遮光部材9を配置し、第1の位置Aから前記第
2の位置Bまでの対物光学系の光軸に沿った距離L、第
1の位置Aから遮光部材9までの対物光学系の光軸に沿
った距離dとするとき、 0<d<L の関係を満足するように構成したものである。
In order to achieve the above object, the present invention provides an optical axis A of an objective optical system 6 as shown in FIG.
Light that has passed through one of the first regions, which is divided into two parts with the surface including x as a boundary, is projected onto the surface 7a of the substrate, and the light reflected from the surface 7a of the substrate includes the optical axis of the objective optical system 6. In the position detecting device for detecting the position of the substrate 7 by photoelectrically detecting with the detector 8 through the other second region divided into two with the surface as a boundary, the objective optical system 6 and the detector 8 , And the surface 7a of the substrate condensed by the objective optical system 6 at a predetermined position.
In the case where the relay optical system 20 for condensing the reflected light from the detector 8 on the light receiving surface of the detector 8 is arranged and the substrate 7 is at the reference position P 0 (the reference object plane of the objective optical system 6 or the planned focal plane). In relation to the objective optical system 6, the first position A conjugate with the surface 7a of the substrate and the substrate 7 are at the reference position P 0 (reference object plane or planned focal plane of the objective optical system 6). A light blocking member 9 for blocking the reflected light from the back surface 7b of the substrate through the second region is arranged between the back surface 7b of the substrate and the second position B which is conjugate with the second position B from the first position A. Assuming that the distance L along the optical axis of the objective optical system to the position B and the distance d along the optical axis of the objective optical system from the first position A to the light shielding member 9 are 0 <d <L It is configured to be satisfied.

【0013】そして、以上の基本構成に基づいて、その
遮光部材9は、基板7の厚さに応じて対物光学系6の光
軸方向に移動可能に設けることが好ましい。また、上記
対物光学系は、基板からの反射光を結像する対物レンズ
と、その対物レンズによって結像された反射光を上記所
定位置に再結像する再結像レンズとを有する構成として
も良い。
Based on the above basic structure, the light shielding member 9 is preferably provided so as to be movable in the optical axis direction of the objective optical system 6 according to the thickness of the substrate 7. Further, the objective optical system may be configured to include an objective lens that forms an image of reflected light from the substrate and a re-imaging lens that re-images the reflected light formed by the objective lens at the predetermined position. good.

【0014】[0014]

【作 用】ここで、図5及び図6を参照しながら本発明
の原理について説明する。図6は従来の焦点検出装置が
基板表面で合焦している場合に基板の裏面からの反射光
が検出される様子を示す図である。図6に示す如く、光
源1,集光レンズ2及びスリット板3によって形成され
るスリット状の光束の上側半分L1 は、対物レンズ6の
左側半分を通過して基板7上で集光される。この基板7
の表面7a(被検面)にて反射されて対物レンズ6の右
側半分を通過する光束L2 は、対物レンズ6の集光作用
により位置Aにて一旦集光されて空間像が形成された
後、リレー光学系20によって光電検出器8の受光面
A’上で再び集光される。
[Operation] Here, the principle of the present invention will be described with reference to FIGS. FIG. 6 is a diagram showing how reflected light from the back surface of the substrate is detected when the conventional focus detection device is focused on the front surface of the substrate. As shown in FIG. 6, the upper half L 1 of the slit-shaped light flux formed by the light source 1, the condenser lens 2 and the slit plate 3 passes through the left half of the objective lens 6 and is condensed on the substrate 7. . This board 7
The light beam L 2 reflected by the surface 7a (surface to be inspected) of the objective lens 6 and passing through the right half of the objective lens 6 is once condensed by the objective lens 6 at the position A to form an aerial image. After that, the light is condensed again on the light receiving surface A ′ of the photoelectric detector 8 by the relay optical system 20.

【0015】ここで、対物レンズ6の左側半分を通過し
て基板7上で集光するスリット状の光束の1部は、基板
の表面7aを透過して基板の裏面7bで反射する。そし
て、この裏面7bにて反射されて対物レンズ6の右側半
分を通過する反射光L3 は、対物レンズ6の集光作用に
より位置Aの手前の位置Bで一旦集光された後、リレー
光学系20によって光電検出器8の受光面8aの手前の
位置B’で集光して光電検出器8の受光面の右側領域8
bで受光される。
Here, a part of the slit-shaped light flux which passes through the left half of the objective lens 6 and is condensed on the substrate 7 is transmitted through the front surface 7a of the substrate and reflected by the back surface 7b of the substrate. The reflected light L 3 reflected by the back surface 7b and passing through the right half of the objective lens 6 is once condensed by the objective lens 6 at a position B before the position A, and then relay optics. The system 20 collects light at a position B ′ in front of the light receiving surface 8a of the photoelectric detector 8 and collects it on the right side region 8 of the light receiving surface of the photoelectric detector 8.
The light is received at b.

【0016】この場合において、光電検出器8にて得ら
れる光電信号について見る。図6に示す如く、基板の表
面7aは合焦状態(基板の表面7aが基準位置P0の位
置にある状態)であるため、基板表面7aからの反射光
によって、対物レンズ6の光軸Axを挟んで光電検出器
の左右の受光領域で得られる光量信号は等しいものの、
基板の裏面7bからの反射光が光電検出器の右側の受光
領域8bに入射するため、この入射光量に対応する分だ
けディフォーカス(基板の表面7aが合焦位置よりも下
方にある)しているのもとして検出される。
In this case, the photoelectric signal obtained by the photoelectric detector 8 will be examined. As shown in FIG. 6, since the front surface 7a of the substrate is in focus (the front surface 7a of the substrate is at the reference position P 0 ), the optical axis Ax of the objective lens 6 is generated by the reflected light from the front surface 7a of the substrate. Although the light amount signals obtained in the left and right light receiving regions of the photoelectric detector with the same sandwiching the
Since the reflected light from the back surface 7b of the substrate is incident on the light receiving region 8b on the right side of the photoelectric detector, defocusing is performed (the front surface 7a of the substrate is below the in-focus position) by an amount corresponding to this incident light amount. It is also detected as being present.

【0017】そこで、本発明では、図5に示す如く、基
板7の表面7aが基準位置P0 (合焦状態)にある場合
において、対物レンズ6に関して基板の表面7aと共役
な第1の位置Aと対物レンズ6に関して基板の裏面7b
と共役な第2の位置Bとの間に、基板の裏面7bからの
反射光を遮光する遮光部材9を光軸Axを境に一方の左
側の領域に設けている。
Therefore, in the present invention, as shown in FIG. 5, when the surface 7a of the substrate 7 is at the reference position P 0 (in focus), the first position conjugate with the surface 7a of the substrate with respect to the objective lens 6. The back surface 7b of the substrate with respect to A and the objective lens 6
A light blocking member 9 for blocking the reflected light from the back surface 7b of the substrate is provided between the second position B and the second position B, which is conjugate with the second position B, on the left side of the optical axis Ax.

【0018】これにより、基板の表面7aからの反射光
のみを効率良く抽出できるため、基板の表面7aの位置
を格段に精度良く検出することができる。ここで、遮光
部材9は、前述の如く、基板の表面7aが合焦状態(基
板の表面7aが基準位置にある状態)である時におい
て、基板の裏面7aからの反射光が対物レンズ6により
集光される位置Aと、基板の裏面7bからの反射光が対
物レンズ6により集光される位置Bとの間に配置される
ことが好ましい。
By this, only the reflected light from the front surface 7a of the substrate can be efficiently extracted, so that the position of the front surface 7a of the substrate can be detected with extremely high accuracy. Here, as described above, in the light shielding member 9, when the front surface 7a of the substrate is in focus (the front surface 7a of the substrate is at the reference position), the reflected light from the back surface 7a of the substrate is reflected by the objective lens 6. It is preferably arranged between a position A where light is condensed and a position B where light reflected from the back surface 7b of the substrate is condensed by the objective lens 6.

【0019】以上においては、基板の厚さtが一定の基
板表面の位置を検出することについて述べたが、異なる
厚さを持つ基板表面の位置を検出するには、遮光部材9
を光軸Ax方向へ移動可能に設けることが良い。
In the above, the detection of the position of the substrate surface where the thickness t of the substrate is constant has been described. However, in order to detect the position of the substrate surface having a different thickness, the light shielding member 9 is used.
Is preferably provided so as to be movable in the optical axis Ax direction.

【0020】[0020]

【実施例】図1は本発明を顕微鏡の焦点検出装置として
応用した例を示すものである。図1に示す如く、落射照
明系12からの可視域の光束はハーフミラー11によっ
て反射され、可視光を透過し赤外光を反射するダイクロ
イックミラー10,ハーフミラー5及び対物光学系とし
ての対物レンズ6を介して基板7を照明する。この基板
7は、ステージ16上に載置されており、このステージ
16は、内部に設けられた不図示の駆動部によって、X
Y方向に2次元的に移動すると共に、Z方向(上下方
向)に移動可能に設けられている。
1 shows an example in which the present invention is applied as a focus detecting device for a microscope. As shown in FIG. 1, the light flux in the visible region from the epi-illumination system 12 is reflected by the half mirror 11, transmits the visible light and reflects the infrared light, the half mirror 5, and the objective lens as the objective optical system. The substrate 7 is illuminated via 6. The substrate 7 is placed on a stage 16, and the stage 16 is driven by an X-axis driving unit (not shown) provided inside.
It is provided so as to move two-dimensionally in the Y direction and move in the Z direction (vertical direction).

【0021】さて、基板7が可視光のもとで照明される
ことにより、この基板の表面7aから反射する光は、対
物レンズ6,ハーフミラー5,ダイクロイックミラー1
0及びハーフミラー11を介して結像した後、接眼レン
ズ13を通過する。ここで、対物レンズ6によって結像
される位置には、基板の表面7aの空間像Iが形成され
ており、接眼レンズ13を通して観察すると、基板表面
7aの空間像Iが拡大観察される。なお、対物レンズ6
と接眼レンズ13とで観察光学系が構成される。
By illuminating the substrate 7 under visible light, the light reflected from the surface 7a of the substrate is the objective lens 6, the half mirror 5, and the dichroic mirror 1.
After forming an image through 0 and the half mirror 11, it passes through the eyepiece lens 13. Here, a spatial image I of the surface 7a of the substrate is formed at the position where the image is formed by the objective lens 6, and when observed through the eyepiece lens 13, the spatial image I of the substrate surface 7a is enlarged and observed. The objective lens 6
And the eyepiece lens 13 constitute an observation optical system.

【0022】一方、位置検出用の光源1からの赤外光
は、集光レンズ2によって集光作用を受けた後、スリッ
ト状の開口部を有するスリット板3を照明し、このスリ
ット板3上にはスリット状の光束が形成される。集光レ
ンズ2の光軸Axを含む面(図中の紙面に垂直な面)に
より2分されるスリット板3を介した光束の内、一方の
光束の半分(下側光束)は、遮光板4によって遮光さ
れ、他方の光束の半分(上側光束)L1 は、ハーフミラ
ー5を反射する。そして、ハーフミラー5を反射した光
束は、対物レンズ6の左側半分(対物レンズ5の瞳の左
半分)を通過して基板の表面7a上、厳密には対物レン
ズ6の物体面(基準面又は対物レンズ6の予定焦点面)
0 上に集光される。
On the other hand, the infrared light from the light source 1 for position detection is condensed by the condenser lens 2 and then illuminates the slit plate 3 having a slit-shaped opening. A slit-shaped light beam is formed on the. Half of one light beam (lower light beam) of the light beams passing through the slit plate 3 which is divided into two by the surface including the optical axis Ax of the condenser lens 2 (the surface perpendicular to the paper surface in the drawing) is the light shielding plate. Half of the other light flux (upper light flux) L 1 is shielded by 4, and is reflected by the half mirror 5. Then, the light flux reflected by the half mirror 5 passes through the left half of the objective lens 6 (the left half of the pupil of the objective lens 5), and on the surface 7a of the substrate, strictly speaking, the object plane of the objective lens 6 (reference plane or Planned focal plane of objective lens 6)
It is focused on P 0 .

【0023】ここで、スリット板3は、対物レンズ6に
関して、この対物レンズ6の物体面(基準面又は対物レ
ンズ6の予定焦点面)P0 と共役な位置に設けられてお
り、この対物レンズ6の物体面上には、スリット板3の
開口部の像が形成される。従って、被検面としての基板
表面7a上には、実質的にスリット状の光が投射され、
これにより基板表面7a上で反射される光束L2 は、対
物レンズ6の右側半分(対物レンズ5の瞳の右半分)及
びハーフミラー5を通過した後、ダイクロイックミラー
10を反射して、位置Aにて一旦集光する。その後、位
置Aからの光束は、リレー光学系20によってラインセ
ンサー等の光電検出器8の受光面上で集光される。な
お、位置Aと光電検出器8の受光面とは、リレー光学系
20に関し共役となっている。
Here, the slit plate 3 is provided with respect to the objective lens 6 at a position conjugate with the object plane (reference plane or planned focal plane of the objective lens 6) P 0 of the objective lens 6 and the objective lens 6. An image of the opening of the slit plate 3 is formed on the object plane of 6. Therefore, substantially slit-shaped light is projected on the substrate surface 7a as the test surface,
As a result, the light flux L 2 reflected on the substrate surface 7a passes through the right half of the objective lens 6 (right half of the pupil of the objective lens 5) and the half mirror 5, and then is reflected by the dichroic mirror 10 to move to the position A At once to collect light. After that, the light flux from the position A is condensed by the relay optical system 20 on the light receiving surface of the photoelectric detector 8 such as a line sensor. The position A and the light receiving surface of the photoelectric detector 8 are conjugated with respect to the relay optical system 20.

【0024】光電検出器8の受光面は、対物レンズ6及
びリレー光学系20に関して、物体面(基準面又は対物
レンズ6の予定焦点面)P0 と共役な位置に設けられて
おり、光軸Axを含む紙面と垂直な面と受光面とが交差
する位置を境界として上下方向に第1の検出領域8aと
第2の検出領域8bとを有している。本実施例では、ダ
イクロイックミラー10とリレー光学系20との間に、
対物レンズ6の光軸Axを含む面を境に2分される領域
の一方の側を遮光し、光軸Axを境に下側を通過する基
板の裏面7bからの不要な反射光L3 を除去する遮光板
9が配置されている。
The light receiving surface of the photoelectric detector 8 is provided at a position conjugate with the object plane (reference plane or planned focal plane of the objective lens 6) P 0 with respect to the objective lens 6 and the relay optical system 20, and the optical axis. A first detection area 8a and a second detection area 8b are provided in the up-down direction with a position where a light receiving surface intersects with a surface perpendicular to the paper including Ax as a boundary. In this embodiment, between the dichroic mirror 10 and the relay optical system 20,
One side of the area that is divided into two parts with the surface including the optical axis Ax of the objective lens 6 as a boundary is shielded, and unnecessary reflected light L 3 from the back surface 7b of the substrate that passes under the optical axis Ax as a boundary. A light shielding plate 9 to be removed is arranged.

【0025】ここで、遮光板9の光軸方向における最適
な配置としては、基板7が基準位置P0 (対物レンズ6
の基準の物体面又は対物レンズ6の予定焦点面)にある
場合において、対物レンズ6に関して基板の表面と共役
な位置A(基板の表面7aを反射する反射光L2 が対物
レンズ6により集光される位置)と対物レンズ6に関し
て基板の表面と共役な位置B(基板の裏面7bを反射す
る反射光L3 が対物レンズ6により集光される位置)と
の間に遮光板9が設けられている。換言すれば、位置A
から位置Bまでの対物レンズ6の光軸に沿った距離L、
位置Aから遮光板9までの対物レンズ6の光軸に沿った
距離dとするとき、遮光板9は以下の数式の関係を満足
するように配置されている。
Here, as the optimum arrangement of the light shielding plate 9 in the optical axis direction, the substrate 7 is the reference position P 0 (the objective lens 6).
Of the reference object plane or the planned focal plane of the objective lens 6, the position A (the reflected light L 2 that reflects the surface 7a of the substrate) conjugate with the surface of the substrate with respect to the objective lens 6 is condensed by the objective lens 6. (A position where the objective lens 6 collects the reflected light L 3 that reflects the rear surface 7b of the substrate) and a position B that is conjugate with the front surface of the substrate with respect to the objective lens 6). ing. In other words, position A
From the position B to the position B along the optical axis of the objective lens 6,
When the distance d from the position A to the light shielding plate 9 is along the optical axis of the objective lens 6, the light shielding plate 9 is arranged so as to satisfy the relationship of the following mathematical formula.

【0026】[0026]

【数1】 0<d<L これにより、基板表面7aからの反射光L2 のみが効率
良く抽出され、この抽出された光L2 が光電検出器8の
受光面に達する。なお、遮光板9の代わりとして透過部
と遮光部とを有する部分遮光板を用いて必要な領域のみ
を遮光しても良い。
0 <d <L As a result, only the reflected light L 2 from the substrate surface 7a is efficiently extracted, and the extracted light L 2 reaches the light receiving surface of the photoelectric detector 8. Instead of the light blocking plate 9, a partial light blocking plate having a transmissive portion and a light blocking portion may be used to block light only in a necessary area.

【0027】さて、光電検出器8の受光面における第1
の検出領域8aと第2の検出領域8bとの双方から得ら
れる2つの光電信号は、物体面検出部(焦点位置検出
部)14へ出力される。この物体面検出部14は、2つ
の光電信号の差動信号を得るための差動信号処理回路を
含んでおり、基板表面7aに対物レンズ6のピントが合
えば差動信号は零となり、ディフォーカスしていればデ
ィフォーカス量に対応したある差動信号が得られる。従
って、物体面検出部14にて、対物レンズ6の物体面
(基準面)に対する基板表面7aの位置が検出される。
Now, the first on the light receiving surface of the photoelectric detector 8
The two photoelectric signals obtained from both the detection area 8a and the second detection area 8b are output to the object plane detection unit (focus position detection unit) 14. The object plane detection unit 14 includes a differential signal processing circuit for obtaining a differential signal of two photoelectric signals, and if the objective lens 6 is focused on the substrate surface 7a, the differential signal becomes zero, and the differential signal becomes zero. When in focus, a certain differential signal corresponding to the defocus amount can be obtained. Therefore, the object surface detection unit 14 detects the position of the substrate surface 7a with respect to the object surface (reference surface) of the objective lens 6.

【0028】その後、物体面検出部14からの焦点検出
情報は制御部15へ入力され、この入力情報に基づいて
ステージ16を上下方向(Z方向)へ所定量だけ移動さ
れて合焦が行われる。次に、遮光板9の最適な位置につ
いて検討すると、基板の裏面7bからの反射光(不要な
赤外光)L3 を除去する機能を遮光板9に持たせるに
は、合焦時において、基板の表面7aからの反射光L2
が対物レンズ6によって集光される位置Aと基板の裏面
7bを反射する反射光L3 が対物レンズ6により集光さ
れる位置Bとの間に配置することが好ましいことが分か
る。
Thereafter, the focus detection information from the object plane detection unit 14 is input to the control unit 15, and based on this input information, the stage 16 is moved in the vertical direction (Z direction) by a predetermined amount for focusing. . Next, considering the optimum position of the light shield plate 9, in order to give the light shield plate 9 a function of removing the reflected light (unnecessary infrared light) L 3 from the back surface 7b of the substrate, at the time of focusing, Light reflected from the front surface 7a of the substrate L 2
It is understood that it is preferable to dispose between the position A where the light is condensed by the objective lens 6 and the position B where the reflected light L 3 that reflects the back surface 7b of the substrate is condensed by the objective lens 6.

【0029】そこで、遮光板9の配置条件についてより
具体的に数式化して表現すれば、基板表面7aが基準位
置P0 にある場合(基板表面7aが合焦されている時)
において対物レンズ6に関し基板の表面と共役な位置A
から遮光板9までの光軸方向での距離をd、焦点検出光
の波長に対する基板7の屈折率をn、基板の厚さをt、
基板表面7aが対物レンズ6の物体面(基準位置)P0
にある時(基板表面7aが合焦されている時)における
対物レンズ6の横倍率をβ1 、対物レンズ6の被検面側
(物側)の焦点距離をf11、対物レンズ6の検出側(像
側)の焦点距離をf12とするとき、上記の数式1は、以
下の数式2の如くなる。
Therefore, if the arrangement conditions of the light shielding plate 9 are more specifically expressed as a mathematical expression, when the substrate surface 7a is at the reference position P 0 (when the substrate surface 7a is in focus).
At the position A conjugate with the surface of the substrate with respect to the objective lens 6.
From the light-shielding plate 9 in the direction of the optical axis, the refractive index of the substrate 7 with respect to the wavelength of the focus detection light is n, the thickness of the substrate is t,
The substrate surface 7a is the object plane (reference position) P 0 of the objective lens 6.
(When the substrate surface 7a is in focus), the lateral magnification of the objective lens 6 is β 1 , the focal length of the objective lens 6 on the test surface side (object side) is f 11 , and the detection of the objective lens 6 is performed. When the focal length on the side (image side) is f 12 , the above formula 1 becomes like the following formula 2.

【0030】[0030]

【数2】 [Equation 2]

【0031】従って、上記の数式2を満足するように遮
光部材9を配置することがより望ましい。また、基板の
裏面7bから反射する不要な反射光L3 を除去しつつ、
前ピンと後ピンとの検出範囲を等しくするには、以下の
数式3を満足することが好ましい。
Therefore, it is more desirable to dispose the light shielding member 9 so as to satisfy the above-mentioned formula 2. While removing unnecessary reflected light L 3 reflected from the back surface 7b of the substrate,
In order to make the detection ranges of the front pin and the rear pin equal, it is preferable to satisfy the following Expression 3.

【0032】[0032]

【数3】 [Equation 3]

【0033】以上の如く、本実施例では、基板の裏面7
bからの不要な反射光L3 を遮光板9によって遮光でき
るため、対物レンズ6の物体面に対する基板表面7aの
位置を常に高い精度のもとで検出できる。このため、観
察光学系(6,13)によって基板表面7aを高精度で
検査することができる。次に、図2を参照しながら本発
明による第2実施例を説明する。図2において、図1に
示した部材と同じ機能を持つものには同じ符号を付して
ある。
As described above, in this embodiment, the back surface 7 of the substrate is
Since the unnecessary reflected light L 3 from b can be blocked by the light blocking plate 9, the position of the substrate surface 7a with respect to the object plane of the objective lens 6 can always be detected with high accuracy. Therefore, the substrate surface 7a can be inspected with high accuracy by the observation optical system (6, 13). Next, a second embodiment according to the present invention will be described with reference to FIG. In FIG. 2, members having the same functions as the members shown in FIG. 1 are designated by the same reference numerals.

【0034】前述の第1実施例では、厚さが常に一定の
基板7の表面7aの位置を精度良く検出する例を説明し
たが、第2実施例では、厚さが異なる基板7の表面の位
置を精度良く検出する例を説明する。今、厚さが異なる
基板表面7aを検出しようとすると、対物光学系として
の対物レンズ6による基板の裏面7bからの反射光L3
の集光位置Aが光軸Ax方向に沿って移動する。このた
め、この裏面7aからの不要な反射光L3 を除去するに
は、基板7の厚みの変化に伴い遮光板9を光軸Ax方向
に沿って移動させて調整することが必要となる。
In the above-described first embodiment, an example in which the position of the surface 7a of the substrate 7 having a constant thickness is accurately detected has been described, but in the second embodiment, the surface 7a of the substrate 7 having a different thickness is detected. An example of accurately detecting the position will be described. Now, when trying to detect the substrate front surface 7a having a different thickness, the reflected light L 3 from the back surface 7b of the substrate by the objective lens 6 as the objective optical system is detected.
The condensing position A of moves along the optical axis Ax direction. Therefore, in order to remove the unnecessary reflected light L 3 from the back surface 7a, it is necessary to move and adjust the light shielding plate 9 along the optical axis Ax direction as the thickness of the substrate 7 changes.

【0035】そこで、本実施例では、図2に示す如く、
遮光板9はAx方向(矢印方向a)に沿って駆動部18
によって移動可能に設けられている。そこで、本実施例
における遮光板9の位置の設定の動作について説明する
と、まず、基板表面の端にはマーク、例えばバーコード
BCが設けられており、このマークには、基板7の厚さ
t及び基板7の屈折率n等の情報が盛り込まれている。
そして、このバーコードBCを読み込むマーク検出手段
としてのバーコードリーダ17がステージ16の端に設
けられている。バーコードリーダ17は、基板7上のバ
ーコードBCを読み込むと、この情報を演算部18へ出
力し、ここで所定の演算がなされる。
Therefore, in this embodiment, as shown in FIG.
The light shielding plate 9 is driven by the drive unit 18 along the Ax direction (arrow direction a).
It is provided so that it can be moved. Therefore, the operation of setting the position of the light shielding plate 9 in this embodiment will be described. First, a mark, for example, a bar code BC is provided at the end of the substrate surface, and the thickness t of the substrate 7 is provided at this mark. Also, information such as the refractive index n of the substrate 7 is included.
A bar code reader 17 as mark detecting means for reading the bar code BC is provided at the end of the stage 16. When the bar code reader 17 reads the bar code BC on the board 7, the bar code reader 17 outputs this information to the calculation unit 18, where a predetermined calculation is performed.

【0036】この演算部18は、上記数式2または数式
3の演算式が予め記憶されており、バーコードリーダ1
7から出力される情報に基づいて演算が行われ、この演
算結果を駆動部19へ出力する。この演算結果に基づい
て駆動部19は、遮光板9を光軸Ax方向(矢印方向
a)へ移動させて、基板7の厚さに応じた最適な位置に
遮光板9を設定する。
The calculation unit 18 has the calculation formulas of the above-mentioned formulas 2 or 3 stored in advance, and the bar code reader 1
The calculation is performed based on the information output from 7 and the calculation result is output to the drive unit 19. Based on the calculation result, the drive unit 19 moves the light shield 9 in the optical axis Ax direction (arrow direction a) and sets the light shield 9 at an optimum position according to the thickness of the substrate 7.

【0037】以上の構成により、被検物としての基板の
厚みtが変化した際にも、遮光板9を最適な位置に設定
できるため、対物レンズ6の物体面に対する基板表面7
aの位置を常に高い精度のもとで検出できる。このた
め、観察光学系(6,13)によって基板表面7aをよ
り高精度で検査することができる。次に、図3を参照し
ながら本発明による装置を顕微鏡に応用した第3実施例
を説明する。図3において、図1に示した部材と同じ機
能を持つものには同じ符号を付してある。
With the above configuration, the light-shielding plate 9 can be set at the optimum position even when the thickness t of the substrate as the object to be inspected changes, so that the substrate surface 7 with respect to the object plane of the objective lens 6 can be set.
The position of a can always be detected with high accuracy. Therefore, the observation optical system (6, 13) can inspect the substrate surface 7a with higher accuracy. Next, a third embodiment in which the apparatus according to the present invention is applied to a microscope will be described with reference to FIG. In FIG. 3, members having the same functions as the members shown in FIG. 1 are designated by the same reference numerals.

【0038】第3実施例が先に説明した第1実施例に対
して特に異なる所は、焦点検出光学系中の対物光学系と
しての対物レンズ6を2つの対物レンズ61,63とで
構成し、その2つの対物レンズ61,63の間を平行系
となる構成とした点である。本実施例を具体的に説明す
ると、基板表面7a(被検面)からの光を平行光にする
第1対物レンズ61と、この第1対物レンズ61からの
平行光を集光して被検面7aの空間像Iを形成する第2
対物レンズ62とで対物光学系が構成されている。そし
て、この双方の対物レンズ61,62によって被検面の
空間像Iが形成され、接眼レンズ13を通して空間像I
が拡大観察される。
The third embodiment is different from the above-described first embodiment in that the objective lens 6 as an objective optical system in the focus detection optical system is composed of two objective lenses 61 and 63. The point is that a parallel system is formed between the two objective lenses 61 and 63. The present embodiment will be described in detail. A first objective lens 61 that collimates light from the substrate surface 7a (test surface) and parallel light from the first objective lens 61 is collected and tested. Second forming an aerial image I of surface 7a
An objective optical system is configured with the objective lens 62. An aerial image I of the surface to be inspected is formed by both of the objective lenses 61 and 62, and the aerial image I is passed through the eyepiece lens 13.
Is magnified and observed.

【0039】一方、第1対物レンズ61と第2対物レン
ズ62との間には、可視光を透過させ赤外光を反射させ
る機能を持つダイクロイックミラー10が斜設されてお
り、このダイクロイックミラー10の反射方向には、焦
点検出用の第3対物レンズ63が設けられている。ここ
で、第1対物レンズ61と第3対物レンズ63とで焦点
検出用(位置検出用)の対物光学系が構成される。
On the other hand, a dichroic mirror 10 having a function of transmitting visible light and reflecting infrared light is obliquely provided between the first objective lens 61 and the second objective lens 62, and this dichroic mirror 10 is provided. A third objective lens 63 for focus detection is provided in the reflection direction of. Here, the first objective lens 61 and the third objective lens 63 form an objective optical system for focus detection (position detection).

【0040】集光レンズ2を介した光源1からの赤外光
は、スリット板3を介し遮光板4によって光軸Axより
も右側の光束が遮光され、光軸Axよりも左側の光束L
1 のみがハーフミラー21を反射する。そして、この反
射光は、第3対物レンズ63の下側半分(第3対物レン
ズ63の瞳の下半分),ダイクロイックミラー10及び
第1対物レンズの左側半分(第1対物レンズ63の瞳の
左半分)を介して基板表面7a上で集光される。ここ
で、スリット板3は、第1及び第3対物レンズに関し
て、第1及び第2対物レンズによる物体面(基準面)P
0 と共役な位置に設けられており、被検面としての基板
表面7a上には、実質的にスリット板3の開口部の像が
形成される。
With respect to the infrared light from the light source 1 that has passed through the condenser lens 2, the light flux on the right side of the optical axis Ax is blocked by the light blocking plate 4 via the slit plate 3, and the light flux L on the left side of the optical axis Ax.
Only 1 reflects off the half mirror 21. The reflected light is reflected by the lower half of the third objective lens 63 (the lower half of the pupil of the third objective lens 63), the dichroic mirror 10 and the left half of the first objective lens (the left side of the pupil of the first objective lens 63). Light is focused on the substrate surface 7a via the (half). Here, the slit plate 3 is an object plane (reference plane) P formed by the first and second objective lenses with respect to the first and third objective lenses.
An image of the opening of the slit plate 3 is substantially formed on the substrate surface 7a as a surface to be inspected, which is provided at a position conjugate with 0 .

【0041】このため、被検面としての基板表面7a上
には、実質的にスリット状の赤外光が投射され、これに
より基板表面7a上で反射される赤外光L2 は、第1対
物レンズの右側半分(第1対物レンズ63の瞳の右半
分)、ダイクロイックミラー10及び第3対物レンズ6
3の上側半分(第3対物レンズ63の瞳の上半分)を介
した後、ハーフミラー21を通過して一旦集光する。但
し、基板表面7aが第1対物レンズ61の焦点面と一致
している時には、ハーフミラー21を通過した光L2
位置Aにて集光する。そして、ハーフミラー21を通過
して一旦集光した赤外光L2 は、リレー光学系20の下
側半分を通過して、光電検出器8の受光面上で集光され
る。
Therefore, substantially slit-shaped infrared light is projected onto the substrate surface 7a as the surface to be inspected, and the infrared light L 2 reflected on the substrate surface 7a by this is the first infrared light L2. Right half of the objective lens (right half of the pupil of the first objective lens 63), dichroic mirror 10 and third objective lens 6
After passing through the upper half of 3 (the upper half of the pupil of the third objective lens 63), the light passes through the half mirror 21 and is once focused. However, when the substrate surface 7a coincides with the focal plane of the first objective lens 61, the light L 2 that has passed through the half mirror 21 is condensed at the position A. Then, the infrared light L 2 which has passed through the half mirror 21 and is once focused passes through the lower half of the relay optical system 20 and is focused on the light receiving surface of the photoelectric detector 8.

【0042】この光電検出器8の受光面は、対物光学系
(61,63)の物体面(基準面)P0 、即ち対物レン
ズ61の焦点面と共役な位置に設けられており、光電検
出器8は、スリット板3の開口部の像の結像状態を光電
的に検出する。物体面検出部14は、光電検出器8にて
出力される信号に基づいて、合焦状態を検出し、この検
出結果に基づいてステージ16の上下方向の位置が制御
部15によって制御される。
The light receiving surface of the photoelectric detector 8 is provided at a position conjugate with the object plane (reference plane) P 0 of the objective optical system (61, 63), that is, the focal plane of the objective lens 61, and photoelectric detection is performed. The device 8 photoelectrically detects the image formation state of the image of the opening of the slit plate 3. The object plane detection unit 14 detects the in-focus state based on the signal output from the photoelectric detector 8, and the control unit 15 controls the vertical position of the stage 16 based on the detection result.

【0043】本実施例においても、先に述べた実施例と
同様に、基板の裏面7bから反射する不要な赤外光を除
去する遮光板9は、上記数式1を満足するように、合焦
時において対物レンズ61及び63により、基板の表面
7aからの反射光L2 が集光される位置Aと,基板の裏
面7bからの反射光L3 が集光される位置Bとの間に配
置されている。
Also in this embodiment, similarly to the above-mentioned embodiments, the light-shielding plate 9 for removing unnecessary infrared light reflected from the back surface 7b of the substrate is focused so as to satisfy the above mathematical expression 1. The objective lenses 61 and 63 are arranged between the position A where the reflected light L 2 from the front surface 7a of the substrate is focused and the position B where the reflected light L 3 from the back surface 7b of the substrate is focused. Has been done.

【0044】以上の如く、本実施例でも、基板の裏面7
bからの不要な反射光を遮光板9によって遮光できるた
め、対物レンズ61及び63の物体面(または対物レン
ズ61の焦点面)に対する基板表面7aの位置を常に高
い精度のもとで検出できる。これにより、基板表面7a
をより高精度で検査することができる。なお、本実施例
においても、図2に示した第2実施例の如く、基板表面
7aの端にバーコード等のマークを設け、このマークの
検出情報に基づいて上記数式2または数式3の演算を行
い、この演算結果に基づいて遮光板9を光軸方向へ移動
させて最適な位置に設定するようにしても良い。
As described above, the back surface 7 of the substrate is also used in this embodiment.
Since the unnecessary reflected light from b can be blocked by the light blocking plate 9, the position of the substrate surface 7a with respect to the object planes of the objective lenses 61 and 63 (or the focal plane of the objective lens 61) can always be detected with high accuracy. As a result, the substrate surface 7a
Can be inspected with higher accuracy. In this embodiment as well, as in the second embodiment shown in FIG. 2, a mark such as a bar code is provided at the end of the substrate surface 7a, and the calculation of the above formula 2 or formula 3 is performed based on the detection information of this mark. The light shielding plate 9 may be moved in the direction of the optical axis based on the result of this calculation to set it at the optimum position.

【0045】また、以上にて述べた各実施例では対物光
学系(61,63)の物体面に対する被検面(基板表
面)のずれを補正するためにステージ16をZ方向へ移
動可能に設けているが、図3に示した如く、被検面から
の光を平行にする第1対物レンズ61を光軸Ax方向へ
移動させて合焦を行っても良い。この場合、被検面とし
ての基板を移動させることなく、第1対物レンズ61の
みの移動だけて合焦を行うことができる。
Further, in each of the embodiments described above, the stage 16 is provided so as to be movable in the Z direction in order to correct the deviation of the surface to be inspected (substrate surface) from the object plane of the objective optical system (61, 63). However, as shown in FIG. 3, focusing may be performed by moving the first objective lens 61 for collimating the light from the surface to be inspected in the optical axis Ax direction. In this case, focusing can be performed by moving only the first objective lens 61 without moving the substrate as the surface to be inspected.

【0046】さて、最後に、図4を参照しながら本発明
による装置を顕微鏡に応用した第4実施例を説明する。
図4において、図3に示した部材と同じ機能を持つもの
には同じ符号を付してある。本実施例が先に説明した第
3実施例に対して特に異なる所は、対物光学系が、基板
表面7aからの反射光を結像する対物レンズ(61,63)
と、その対物レンズ(61,63) によって結像された反射光
を所定位置に再結像する再結像レンズ64とを有する構成
とし、再結像レンズ64とリレー光学系20との間に基板の
裏面7bから反射する不要な赤外光を除去する遮光板9
を配置した点である。
Finally, a fourth embodiment in which the apparatus according to the present invention is applied to a microscope will be described with reference to FIG.
4, members having the same functions as those of the members shown in FIG. 3 are designated by the same reference numerals. The difference between this embodiment and the third embodiment described above is that the objective optical system focuses the reflected light from the substrate surface 7a on the objective lens (61, 63).
And a re-imaging lens 64 for re-imaging the reflected light imaged by the objective lens (61, 63) at a predetermined position, and between the re-imaging lens 64 and the relay optical system 20. Light shield 9 for removing unnecessary infrared light reflected from the back surface 7b of the substrate
Is the point.

【0047】ここで、遮光板9は、上記数式1を満足す
るように、合焦時において対物光学系(対物レンズ(61,
63) 及び再結像レンズ64)により基板の表面7aからの
反射光L2 が集光される第1の位置A’と,同じく合焦
時において対物光学系(対物レンズ(61,63) 及び再結像
レンズ64)により基板の裏面7bからの反射光L3 が集
光される第2の位置B’との間に,配置されている。
Here, the light-shielding plate 9 is designed so that the objective optical system (the objective lens (61, 61,
63) and the re-imaging lens 64) collects the reflected light L 2 from the surface 7a of the substrate at the first position A ′, and the objective optical system (objective lenses (61, 63) and It is arranged between the second position B ′ where the reflected light L 3 from the back surface 7b of the substrate is condensed by the re-imaging lens 64).

【0048】この遮光板9の最適な配置条件について数
式化して表現すると、基板表面7aが基準位置P0 にあ
る場合(基板表面7aが合焦されている時)において対
物光学系(対物レンズ(61,63) 及び再結像レンズ64)に
関し基板の表面と共役な位置A’からの遮光板9までの
光軸方向での距離をd、焦点検出用の光の波長に対する
基板7の屈折率をn、基板7の厚さをt、基板表面7a
が対物レンズ(61,63)の物体面(基準位置)P0 にある
時(基板表面7aが合焦されている時)における対物レ
ンズ(61,63)の横倍率をβ1 、対物レンズ(61,63)の被
検面側(物側)の焦点距離をf11、対物レンズ(61,63)
の検出側(像側)の焦点距離をf12、基板表面7aが対
物レンズ(61,63)の物体面(基準位置)P0 にある時
(基板表面7aが合焦されている時)における再結像レ
ンズ64の横倍率をβ2 、再結像レンズ64の被検面側(物
側)の焦点距離をf21、再結像レンズ64の検出側(像
側)の焦点距離をf22とするとき、以下の数式4の如く
なる。
When the optimum arrangement condition of the light shielding plate 9 is expressed by a mathematical expression, the objective optical system (objective lens (objective lens (objective lens (objective lens ()) is obtained when the substrate surface 7a is at the reference position P 0 (when the substrate surface 7a is focused). 61, 63) and the reimaging lens 64), the distance in the optical axis direction from the position A ′ conjugate with the surface of the substrate to the light shielding plate 9 is d, and the refractive index of the substrate 7 with respect to the wavelength of the light for focus detection. N, the thickness of the substrate 7 is t, the substrate surface 7a
Is on the object plane (reference position) P 0 of the objective lens (61, 63) (when the substrate surface 7a is in focus), the lateral magnification of the objective lens (61, 63) is β 1 , and the objective lens ( 61, 63) the focal length of the surface to be inspected (object side) is f 11 , the objective lens (61, 63)
When the focal length on the detection side (image side) is f 12 , and the substrate surface 7a is at the object plane (reference position) P 0 of the objective lens (61, 63) (when the substrate surface 7a is in focus). The lateral magnification of the re-imaging lens 64 is β 2 , the focal length of the re-imaging lens 64 on the test surface side (object side) is f 21 , and the focal length of the re-imaging lens 64 on the detection side (image side) is f 2. When it is set to 22 , the following Expression 4 is obtained.

【0049】[0049]

【数4】 [Equation 4]

【0050】また、本実施例において前ピンと後ピンと
の検出範囲を等しくするためには、以下の数式5を満足
することが望ましい。
Further, in order to make the detection ranges of the front pin and the rear pin equal in this embodiment, it is desirable to satisfy the following expression 5.

【0051】[0051]

【数5】 [Equation 5]

【0052】以上の如く、本実施例でも、基板の裏面7
bからの不要な反射光を遮光板9によって遮光できるた
め、対物レンズ61及び63の物体面(または対物レン
ズ61の焦点面)に対する基板表面7aの位置を常に高
い精度のもとで検出できる。これにより、基板表面7a
をより高精度で検査することができる。なお、本実施例
においても、図2に示した第2実施例の如く、基板表面
7aの端にバーコード等のマークを設け、このマークの
検出情報に基づいて上記数式4または数式5の演算を行
い、この演算結果に基づいて遮光板9を光軸方向へ移動
させて最適な位置に設定するようにしても良い。
As described above, also in this embodiment, the back surface 7 of the substrate is
Since the unnecessary reflected light from b can be blocked by the light blocking plate 9, the position of the substrate surface 7a with respect to the object planes of the objective lenses 61 and 63 (or the focal plane of the objective lens 61) can always be detected with high accuracy. As a result, the substrate surface 7a
Can be inspected with higher accuracy. Also in this embodiment, as in the second embodiment shown in FIG. 2, a mark such as a bar code is provided at the end of the substrate surface 7a, and the calculation of the above formula 4 or formula 5 is performed based on the detection information of this mark. The light shielding plate 9 may be moved in the direction of the optical axis based on the result of this calculation to set it at the optimum position.

【0053】さらに、以上にて述べた各実施例では本発
明を顕微鏡の焦点検出に応用した例を示したが、これに
限ることなく、その他の装置の焦点検出あるいは位置に
おいて適用できることは言うまでもない。
Furthermore, in each of the above-described embodiments, an example in which the present invention is applied to focus detection of a microscope is shown, but it is needless to say that the present invention is not limited to this and can be applied to focus detection or position of other devices. .

【0054】[0054]

【発明の効果】以上の如く、本発明によれば、基板の表
面からの反射光のみを効率良く抽出することが可能とな
るため、基板の表面の位置をより高精度に検出できる位
置検出装置が達成できる。しかも、従来の装置において
僅かなる改良を加えるだけで大きな効果が期待できる。
As described above, according to the present invention, since only the reflected light from the surface of the substrate can be efficiently extracted, the position detecting device capable of detecting the position of the surface of the substrate with higher accuracy. Can be achieved. Moreover, a great effect can be expected by adding a slight improvement to the conventional device.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明を顕微鏡に応用した第1実施例の
概略的な構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a first embodiment in which the present invention is applied to a microscope.

【図2】図2は本発明を顕微鏡に応用した第2実施例の
概略的な構成を示す図である。
FIG. 2 is a diagram showing a schematic configuration of a second embodiment in which the present invention is applied to a microscope.

【図3】図3は本発明を顕微鏡に応用した第3実施例の
概略的な構成を示す図である。
FIG. 3 is a diagram showing a schematic configuration of a third embodiment in which the present invention is applied to a microscope.

【図4】図3は本発明を顕微鏡に応用した第4実施例の
概略的な構成を示す図である。
FIG. 4 is a diagram showing a schematic configuration of a fourth embodiment in which the present invention is applied to a microscope.

【図5】図5は本発明の原理を示す原理図である。FIG. 5 is a principle diagram showing the principle of the present invention.

【図6】図6は従来の焦点検出装置において基板裏面か
らの反射光が検出される様子を示す図である。
FIG. 6 is a diagram showing how reflected light from the back surface of a substrate is detected in a conventional focus detection device.

【図7】従来の焦点検出装置の概略的な構成を示す図で
ある。
FIG. 7 is a diagram showing a schematic configuration of a conventional focus detection device.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1・・・ 光源、2・・・ 集光レンズ、3・・・ スリット板、
4,9・・・ 遮光板 5,11・・・ ハーフミラー、6・・・ 対物レンズ、7・・・
基板、8・・・ 光源検出器 10・・・ ダイクロイックミラー、12・・・ 落射照明系、
13・・・ 接眼レンズ、14・・・ 焦点検出部、15・・・ 制
御部、16・・・ ステージ
1 ... Light source, 2 ... Condensing lens, 3 ... Slit plate,
4, 9 ... Light-shielding plate 5, 11 ... Half mirror, 6 ... Objective lens, 7 ...
Substrate, 8 ... Light source detector 10 ... Dichroic mirror, 12 ... Epi-illumination system,
13 ... Eyepiece, 14 ... Focus detection unit, 15 ... Control unit, 16 ... Stage

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】対物光学系の光軸を含む面を境に2分され
る一方の第1の領域を介した光を前記基板の表面へ投射
し、前記基板の表面から反射される光を前記対物光学系
の光軸を含む面を境に2分される他方の第2の領域を介
して検出器にて光電的に検出することにより、前記基板
の位置を検出する位置検出装置において、 前記対物光学系と前記検出器との間に、前記対物光学系
によって所定位置に集光された前記反射光を前記検出器
の受光面上に集光するリレー光学系を配置すると共に、
前記基板が基準位置にある場合において前記対物光学系
に関し前記基板の表面と共役な第1の位置と前記基板が
基準位置にある場合において前記対物光学系に関し前記
基板の裏面と共役な第2の位置との間に、前記第2領域
を介する前記基板の裏面からの反射光を遮光する遮光部
材を配置し、 前記第1の位置から前記第2の位置までの前記対物光学
系の光軸に沿った距離L、前記第1の位置から前記遮光
部材までの前記対物光学系の光軸に沿った距離dとする
とき、 0<d<L の関係を満足することを特徴とする位置検出装置。
Claim: What is claimed is: 1. Light projected through a first region, which is bisected by a plane including an optical axis of an objective optical system, onto a surface of the substrate, and light reflected from the surface of the substrate is projected. In a position detection device that detects the position of the substrate by photoelectrically detecting with a detector through the other second region that is divided into two with a surface including the optical axis of the objective optical system as a boundary, Between the objective optical system and the detector, while arranging a relay optical system for condensing the reflected light condensed at a predetermined position by the objective optical system on the light receiving surface of the detector,
A first position conjugate with the front surface of the substrate with respect to the objective optical system when the substrate is at the reference position, and a second conjugate position with the back surface of the substrate with respect to the objective optical system when the substrate is at the reference position. A light blocking member that blocks the reflected light from the back surface of the substrate through the second region is disposed between the position and the position, and is provided on the optical axis of the objective optical system from the first position to the second position. A position detection device characterized by satisfying the following relationship: 0 <d <L, where L is a distance along the optical axis of the objective optical system from the first position to the light blocking member. .
【請求項2】前記遮光部材は、前記基板の厚さに応じて
前記対物光学系の光軸方向に移動可能に設けられること
を特徴とする請求項1記載の位置検出装置。
2. The position detecting device according to claim 1, wherein the light shielding member is provided so as to be movable in the optical axis direction of the objective optical system according to the thickness of the substrate.
【請求項3】前記対物光学系は、前記基板からの反射光
を結像する対物レンズと、該対物レンズによって結像さ
れた反射光を前記所定位置に再結像する再結像レンズと
を有することを特徴とする請求項1または請求項2記載
の位置検出装置。
3. The objective optical system includes an objective lens for forming an image of reflected light from the substrate, and a re-imaging lens for re-forming an image of the reflected light imaged by the objective lens at the predetermined position. The position detecting device according to claim 1 or 2, further comprising:
JP5221007A 1993-09-06 1993-09-06 Position detecting device Pending JPH0771911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5221007A JPH0771911A (en) 1993-09-06 1993-09-06 Position detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5221007A JPH0771911A (en) 1993-09-06 1993-09-06 Position detecting device

Publications (1)

Publication Number Publication Date
JPH0771911A true JPH0771911A (en) 1995-03-17

Family

ID=16760019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5221007A Pending JPH0771911A (en) 1993-09-06 1993-09-06 Position detecting device

Country Status (1)

Country Link
JP (1) JPH0771911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194123A (en) * 2000-01-11 2001-07-19 Nikon Corp Stepped shape measuring apparatus
JP2008261829A (en) * 2007-04-12 2008-10-30 V Technology Co Ltd Surface measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194123A (en) * 2000-01-11 2001-07-19 Nikon Corp Stepped shape measuring apparatus
JP2008261829A (en) * 2007-04-12 2008-10-30 V Technology Co Ltd Surface measuring device

Similar Documents

Publication Publication Date Title
US6124924A (en) Focus error correction method and apparatus
JP2002164266A (en) Apparatus and method for adjusting optical position deviation measuring apparatus
KR19980033101A (en) High precision pattern inspection method and device
JPH05142462A (en) Focusing device
US20070081153A1 (en) Focusing system and method
JPH10223517A (en) Focusing unit, viewer equipped with focusing unit, and aligner equipped with viewer
JP2006184777A (en) Focus detector
JP3237023B2 (en) Position detection device
JPS6026311A (en) Focus detector for dark field microscope
JPH0771911A (en) Position detecting device
JPH10142515A (en) Focus detection unit and microscope provided with the same
US7580121B2 (en) Focal point detection apparatus
JP4604651B2 (en) Focus detection device
JP2000035540A (en) Differential interference microscope
JPH10133117A (en) Microscope equipped with focus detecting device
JP2003148939A (en) Autocollimator provided with microscope, and instrument for measuring shape using the same
JPH07199075A (en) Scanning type laser microscopic device
JPH09281401A (en) Object inspecting instrument
JP4269378B2 (en) Observation method and observation apparatus
JPH10232352A (en) Laser scan microscope
JPH0118370B2 (en)
JPH07198622A (en) Optical inspection system having optical telecentric scanning system combined with telecentric condenser lens
JP3061758B2 (en) Automatic focusing device for microscope
JP3163803B2 (en) Focus position detector
JPH1123953A (en) Microscope equipped with focus detector and displacement measuring device