JP3237023B2 - Position detection device - Google Patents
Position detection deviceInfo
- Publication number
- JP3237023B2 JP3237023B2 JP11593192A JP11593192A JP3237023B2 JP 3237023 B2 JP3237023 B2 JP 3237023B2 JP 11593192 A JP11593192 A JP 11593192A JP 11593192 A JP11593192 A JP 11593192A JP 3237023 B2 JP3237023 B2 JP 3237023B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- objective lens
- substrate
- optical axis
- reflected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Microscoopes, Condenser (AREA)
- Automatic Focus Adjustment (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、被検物としての基板の
位置を検出する位置検出装置に関するものであり、例え
ば、顕微鏡の焦点検出に好適なものに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detecting device for detecting the position of a substrate as a test object, and more particularly to a position detecting device suitable for detecting the focus of a microscope.
【0002】[0002]
【従来の技術】落射照明型の顕微鏡に用いられる焦点検
出装置は、例えば、米国特許第3,721,827 号公報におい
て知られている。そこで、米国特許第3,721,827 号公報
において開示されている焦点検出装置を図6を用いて具
体的に説明する。2. Description of the Related Art A focus detecting device used in an epi-illumination type microscope is known, for example, from U.S. Pat. No. 3,721,827. Therefore, a focus detection device disclosed in U.S. Pat. No. 3,721,827 will be specifically described with reference to FIG.
【0003】図6において、(a)は合焦状態、(b)
は前ピン状態、(c)は後ピン状態の様子を示してい
る。まず、図6(a)に示す如く、光源1からの光は集
光レンズ2により集光され、スリット状の開口部を有す
るスリット板3を照明して、スリット状の光源を形成す
る。そして、集光レンズ2の光軸を含む面(図中の紙面
に垂直な面)により2分されるスリット板3を介した光
束の内、一方の光束の半分(下側光束)は、遮光板4に
よって遮光され、他方の光束の半分(上側光束)L
1 は、ハーフミラー5を反射する。その後、ハーフミラ
ー5を反射した光束L1 は、対物レンズ6の左側半分
(対物レンズ5の瞳の左半分)を通過して被検面70
(対物レンズ6の物体面)上で集光される。In FIG. 6, (a) is a focused state, (b)
Indicates a front focus state, and (c) indicates a rear focus state. First, as shown in FIG. 6A, light from a light source 1 is condensed by a condenser lens 2, and a slit plate 3 having a slit-shaped opening is illuminated to form a slit-shaped light source. One half (lower light beam) of one of the light beams passing through the slit plate 3 divided by a surface including the optical axis of the condenser lens 2 (a surface perpendicular to the paper surface in the figure) is blocked. Half of the other light beam (upper light beam) L
1 reflects the half mirror 5. Thereafter, the light beam L 1 reflected by the half mirror 5 passes through the left half of the objective lens 6 (the left half of the pupil of the objective lens 5) and
(Object surface of the objective lens 6).
【0004】この被検面70上には、上記スリット板3
の開口部の像が形成され、被検面70上で反射される光
束L2 は、対物レンズ6の右側半分(対物レンズ5の瞳
の右半分)を通過した後、ハーフミラー5を通過して光
電検出器8の受光面上で集光され、ここには、スリット
板3の開口部の像が形成される。光電検出器8の受光面
は、この対物レンズ6の光軸Axと交わる領域を境に左
右に受光領域8a,8bを有しており、スリット板3の
開口部の像の結像状態を光電的に検出する。[0004] On the test surface 70, the slit plate 3
The light flux L 2 formed on the surface to be inspected 70 after the image of the opening is formed passes through the right half of the objective lens 6 (the right half of the pupil of the objective lens 5) and then passes through the half mirror 5. The light is condensed on the light receiving surface of the photoelectric detector 8, where an image of the opening of the slit plate 3 is formed. The light receiving surface of the photoelectric detector 8 has light receiving regions 8a and 8b on the left and right sides of a region intersecting the optical axis Ax of the objective lens 6, and the image forming state of the opening of the slit plate 3 is indicated by the photoelectric. Detection.
【0005】また、図6(b)に示す如く、被検面70
が対物レンズ6の物体面(基準面)の位置P0 から下方
の位置P1 に位置していると、被検面70で反射して対
物レンズ6の右側半分を通過する光束L2 は、光電検出
器8の受光面の手前で集光して、この受光面の左側領域
8aに達する。ここで、光電検出器8の受光面の手前の
集光位置Aには、スリット像が形成されているために、
この光電検出器8は、前ピン状態でのスリットのディフ
ォーカス像を光電的に検出する。Further, as shown in FIG.
Is located at a position P 1 below the position P 0 of the object plane (reference plane) of the objective lens 6, the light flux L 2 reflected by the test surface 70 and passing through the right half of the objective lens 6 is The light is condensed just before the light receiving surface of the photoelectric detector 8 and reaches the left area 8a of the light receiving surface. Here, since a slit image is formed at the condensing position A in front of the light receiving surface of the photoelectric detector 8,
The photoelectric detector 8 photoelectrically detects a defocused image of the slit in the front focus state.
【0006】また、図6(c)に示す如く、被検面70
が対物レンズ6の物体面(基準面)の位置P0 から上方
の位置P2 に位置していると、被検面70で反射して対
物レンズ6の右側半分を通過する光束は、光電検出器8
の受光面の後方で集光されるように、受光面の右側領域
8bに達する。そして、光電検出器8は、後ピン状態で
のスリットのディフォーカス像を光電的に検出する。Further, as shown in FIG.
Is located at a position P 2 above the position P 0 of the object plane (reference plane) of the objective lens 6, the light beam reflected by the test surface 70 and passing through the right half of the objective lens 6 is photoelectrically detected. Table 8
To the right side area 8b of the light receiving surface so as to be focused behind the light receiving surface of the light receiving surface. Then, the photoelectric detector 8 photoelectrically detects the defocus image of the slit in the back focus state.
【0007】ここで、光電検出器8に基づく焦点検出
は、光電検出器8の左右受光領域8a,8bで各々検出
される2つの光量信号のバランス、即ち2つの光量信号
の差動を取ることで行われる。例えば、図6(a)では
ピントが合っている状態であり、この場合、検出光は光
電検出器8の受光面の中心で検出される。このため、受
光面の左右の側領域8a,8bで各々検出される2つの
光量信号の出力は等しくなり、差動信号は零となる。Here, the focus detection based on the photoelectric detector 8 is to balance two light quantity signals detected in the left and right light receiving areas 8a and 8b of the photoelectric detector 8, ie, to take a difference between the two light quantity signals. Done in For example, FIG. 6A shows a state in which the subject is in focus. In this case, the detection light is detected at the center of the light receiving surface of the photoelectric detector 8. For this reason, the outputs of the two light amount signals detected in the left and right side regions 8a and 8b of the light receiving surface become equal, and the differential signal becomes zero.
【0008】図6(b)では前ピン状態であり、この場
合、検出光は光電検出器8の受光面の左側の領域8aで
主に検出される。このため、受光面の左右の側領域8
a,8bで各々検出される2つの光量信号による差動信
号は、例えば正のあるレベルの出力信号が得られる。ま
た、図6(c)では後ピン状態であり、この場合、検出
光は光電検出器8の受光面の右側の領域8bで主に検出
される。このため、受光面の左右の側領域8a,8bで
各々検出される2つの光量信号による差動信号は、例え
ば負のあるレベルの出力信号が得られる。FIG. 6B shows the front focus state. In this case, the detection light is mainly detected in the left area 8 a of the light receiving surface of the photoelectric detector 8. For this reason, the left and right side regions 8 of the light receiving surface
As the differential signal based on the two light quantity signals detected at a and 8b, for example, an output signal having a certain positive level is obtained. FIG. 6C shows a rear focus state. In this case, the detection light is mainly detected in an area 8 b on the right side of the light receiving surface of the photoelectric detector 8. Therefore, as a differential signal based on the two light amount signals detected in the left and right side regions 8a and 8b of the light receiving surface, for example, an output signal having a certain negative level is obtained.
【0009】このように、光電検出器8から得られる2
つの信号の差動を取ることにより、差動信号の正・負に
よって焦点ずれの方向が検出でき、差動信号の出力レベ
ルによって焦点ずれ量を検出することができる。As described above, 2 obtained from the photoelectric detector 8
By taking the difference between the two signals, the direction of defocus can be detected by the positive / negative of the differential signal, and the amount of defocus can be detected by the output level of the differential signal.
【0010】[0010]
【発明が解決しようとする課題】近年においては、ディ
スプレイ等における液晶表示の占める割合が急速に伸び
てきている。このため、液晶表示のもととなる液晶基板
の検査が重要となってきており、この液晶基板は、主に
顕微鏡によって検査されている。しかしながら、前述し
た焦点検出装置を備えた顕微鏡を用いて液晶基板の表面
にピントを合わせようとすると、本来検出すべき液晶基
板の表面からの反射光のみならず、液晶基板の裏面から
の反射光までもが光電検出器に到達して、焦点検出精度
に大きな影響を及ぼす。In recent years, the ratio of liquid crystal displays in displays and the like has been rapidly increasing. For this reason, inspection of a liquid crystal substrate, which is a source of liquid crystal display, is becoming important, and this liquid crystal substrate is mainly inspected by a microscope. However, when trying to focus on the surface of the liquid crystal substrate using the microscope equipped with the focus detection device described above, not only the reflected light from the surface of the liquid crystal substrate to be detected but also the reflected light from the back surface of the liquid crystal substrate Even the light reaches the photoelectric detector, which greatly affects the focus detection accuracy.
【0011】従って、液晶基板の表面をピントの合った
状態で正確に検査できないため、不良品を正確に判別で
きない問題がある。そこで、本発明は、上記の問題点に
鑑みてなされたものであり、液晶基板を始めとした基板
の裏面からの反射光が生ずる場合にも、基板の表面の位
置を高精度に検出できる位置検出装置を提供することを
目的としている。Therefore, since the surface of the liquid crystal substrate cannot be inspected accurately in a focused state, there is a problem that a defective product cannot be accurately determined. Therefore, the present invention has been made in view of the above-described problems, and a position where the position of the front surface of the substrate can be detected with high accuracy even when reflected light from the back surface of the substrate such as a liquid crystal substrate occurs. It is intended to provide a detection device.
【0012】[0012]
【課題を解決するための手段】本発明は上記の目的を達
成するために、図1に示す如く、対物レンズ6の光軸A
xを含む面を境に2分される一方の第1の領域を介して
所定のパターンの光を基板の表面7aへ投射し、その基
板の表面7aから反射される上記投射パターン光の像を
対物レンズ6の光軸を含む面を境に2分される他方の第
2の領域を介して検出器8にて光電的に検出することに
より、基板7の位置を検出する位置検出装置において、
その第2の領域を介して検出器8の受光面へ向かう基板
の裏面7bからの反射光を遮光する遮光部材9をその受
光領域から所定の距離だけ離れた位置に配置したもので
ある。According to the present invention, an optical axis A of an objective lens 6 is provided as shown in FIG.
A predetermined pattern of light is projected onto the surface 7a of the substrate through one of the first regions divided by the surface including x, and an image of the projected pattern light reflected from the surface 7a of the substrate is projected. In a position detection device that detects the position of the substrate 7 by photoelectrically detecting with the detector 8 via the other second region divided into two by the surface including the optical axis of the objective lens 6,
A light-blocking member 9 that blocks light reflected from the back surface 7b of the substrate toward the light-receiving surface of the detector 8 via the second region is disposed at a position separated by a predetermined distance from the light-receiving region.
【0013】そして、以上の基本構成に基づいて、その
遮光部材9は、基板7の厚さに応じて対物レンズ6の光
軸方向に移動可能に設けることが好ましい。Based on the above basic configuration, the light shielding member 9 is preferably provided so as to be movable in the optical axis direction of the objective lens 6 according to the thickness of the substrate 7.
【0014】[0014]
【作 用】ここで、図4及び図5を参照しながら本発明
の原理について説明する。図5は従来の焦点検出装置が
基板表面で合焦している場合に基板の裏面からの反射光
が検出される様子を示す図である。図5に示す如く、光
源1,集光レンズ2及びスリット板3によって形成され
るスリット状の光束の上側半分L1 は、対物レンズ6の
左側半分を通過して基板7上で集光され、この基板7の
表面7a(被検面)にて反射されて対物レンズ6の右側
半分を通過する光束L2 は、光電検出器8上で集光され
る。The principle of the present invention will now be described with reference to FIGS. FIG. 5 is a diagram illustrating a state in which reflected light from the back surface of the substrate is detected when the conventional focus detection device is focused on the substrate surface. As shown in FIG. 5, the light source 1, the upper half L 1 of the slit-shaped light fluxes formed by the condenser lens 2 and the slit plate 3 is condensed on the substrate 7 through the left half of the objective lens 6, The light beam L 2 reflected by the surface 7 a (test surface) of the substrate 7 and passing through the right half of the objective lens 6 is collected on the photoelectric detector 8.
【0015】一方、対物レンズ6の左側半分を通過して
基板7上で集光するスリット状の光束は、基板の表面7
aを透過して基板の裏面7bで反射する。そして、この
裏面7bからの反射光L3 は、対物レンズ6の右側半分
を通過した後、光電検出器8の受光面8aの手前で集光
して光電検出器8の受光面の左側領域8aで受光され
る。On the other hand, a slit-like light beam which passes through the left half of the objective lens 6 and is condensed on the substrate 7 is applied to the surface 7 of the substrate.
a and is reflected by the back surface 7b of the substrate. Then, the reflected light L 3 from the back surface 7 b passes through the right half of the objective lens 6 and is condensed in front of the light receiving surface 8 a of the photoelectric detector 8 to be collected on the left side region 8 a of the light receiving surface of the photoelectric detector 8. Is received at.
【0016】この場合において、光電検出器8にて得ら
れる光電信号について見る。図5に示す如く、基板の表
面7aは合焦状態であるため、基板表面7aからの反射
光によって、対物レンズ6の光軸Axを挟んで光電検出
器の左右の受光領域で得られる光量信号は等しいもの
の、基板の裏面7bからの反射光が光電検出器の左側の
受光領域に入射するため、この入射光量に対応する分だ
けディフォーカス(基板の表面7aが合焦位置よりも下
方にある)しているのもとして検出される。In this case, the photoelectric signal obtained by the photoelectric detector 8 will be described. As shown in FIG. 5, since the surface 7a of the substrate is in a focused state, the light amount signal obtained by the reflected light from the substrate surface 7a in the left and right light receiving areas of the photoelectric detector with the optical axis Ax of the objective lens 6 interposed therebetween. However, since the reflected light from the back surface 7b of the substrate is incident on the light receiving region on the left side of the photoelectric detector, the defocus (the front surface 7a of the substrate is lower than the in-focus position) by an amount corresponding to the amount of incident light. ) Is also detected.
【0017】そこで、本発明では、図4に示す如く、基
板の裏面7bからの反射光を遮光する遮光部材9を光電
検出器の受光面8aから所定の距離だけ離れた光軸Ax
を境に左側の位置に設けている。これにより、基板の表
面7aからの反射光のみを抽出できるため、基板の表面
7aを格段に精度良く検出することができる。Therefore, in the present invention, as shown in FIG. 4, the light shielding member 9 for shielding the light reflected from the back surface 7b of the substrate is separated from the light receiving surface 8a of the photoelectric detector by a predetermined distance from the optical axis Ax.
It is provided on the left side of the border. Thus, only the reflected light from the surface 7a of the substrate can be extracted, so that the surface 7a of the substrate can be detected with extremely high accuracy.
【0018】ここで、遮光部材9は、基板の表面7aが
合焦状態である時において、基板の裏面7bからの反射
光が対物レンズ6により集光される位置Aと光電検出器
8の受光面との間に配置されることが好ましい。以上に
おいては、基板の厚さtが一定の基板表面の位置を検出
することについて述べたが、異なる厚さを持つ基板表面
の位置を検出するには、遮光部材9を光軸Ax方向へ移
動可能に設けることが良い。Here, when the front surface 7a of the substrate is in focus, the light-shielding member 9 is positioned between the position A where the reflected light from the rear surface 7b of the substrate is condensed by the objective lens 6 and the light receiving position of the photoelectric detector 8. Preferably, it is arranged between the surface and the surface. In the above description, the detection of the position of the substrate surface having a constant thickness t of the substrate has been described. However, in order to detect the position of the substrate surface having a different thickness, the light shielding member 9 is moved in the optical axis Ax direction. It is good to provide as possible.
【0019】[0019]
【実施例】図1は本発明を顕微鏡の焦点検出装置として
応用した例を示すものである。図1に示す如く、落射照
明系12からの可視域の光束はハーフミラー11によっ
て反射され、可視光を透過し赤外光を反射するダイクロ
イックミラー10,ハーフミラー5及び対物レンズ6を
介して基板7を照明する。この基板7は、ステージ16
上に載置されており、このステージ16は、内部に設け
られた不図示の駆動部によって、XY方向に2次元的に
移動すると共に、Z方向(上下方向)に移動可能に設け
られている。FIG. 1 shows an example in which the present invention is applied to a focus detection device for a microscope. As shown in FIG. 1, a light beam in the visible range from the epi-illumination system 12 is reflected by a half mirror 11 and passes through a dichroic mirror 10, a half mirror 5, and an objective lens 6 that transmit visible light and reflect infrared light. Illuminate 7. The substrate 7 is mounted on a stage 16
The stage 16 is mounted on the top, and is provided so as to be two-dimensionally movable in the X and Y directions and movable in the Z direction (up and down directions) by a driving unit (not shown) provided therein. .
【0020】さて、基板7が可視光のもとで照明される
ことにより、この基板の表面7aから反射する光は、対
物レンズ6,ハーフミラー5,ダイクロイックミラー1
0及びハーフミラー11を介して結像した後、接眼レン
ズ13を通過する。ここで、対物レンズ6によって結像
される位置には、基板の表面7aの空間像Iが形成され
ており、接眼レンズ13を通して観察すると、基板表面
7aの空間像Iが拡大観察される。なお、対物レンズ6
と接眼レンズ13とで観察光学系が構成される。When the substrate 7 is illuminated with visible light, the light reflected from the surface 7a of the substrate 7 is reflected by the objective lens 6, half mirror 5, and dichroic mirror 1.
After forming an image via the 0 and the half mirror 11, the light passes through the eyepiece 13. Here, a spatial image I of the surface 7a of the substrate is formed at a position where the image is formed by the objective lens 6, and when observed through the eyepiece 13, the spatial image I of the substrate surface 7a is enlarged and observed. The objective lens 6
And the eyepiece 13 constitute an observation optical system.
【0021】一方、光源1からの赤外光は、集光レンズ
2によって集光作用を受けた後、所定のスリット状の開
口部を有するスリット板3を照明し、このスリット板3
上にはスリット状の光束が形成される。集光レンズ2の
光軸Axを含む面(図中の紙面に垂直な面)により2分
されるスリット板3を介した光束の内、一方の光束の半
分(下側光束)は、遮光板4によって遮光され、他方の
光束の半分(上側光束)L1 は、ハーフミラー5を反射
する。そして、ハーフミラー5を反射した光束は、対物
レンズ6の左側半分(対物レンズ6の瞳の左半分)を通
過して基板の表面7a上、厳密には対物レンズ6の物体
面(基準面)P0 上に集光される。On the other hand, the infrared light from the light source 1 is condensed by a condenser lens 2 and then illuminates a slit plate 3 having a predetermined slit-shaped opening.
A slit-shaped light beam is formed on the upper side. Half of one light beam (lower light beam) of the light beam passing through the slit plate 3 divided by a surface including the optical axis Ax of the condenser lens 2 (a surface perpendicular to the paper surface in the drawing) is a light shielding plate. The half (upper light beam) L 1 of the other light beam is reflected by the half mirror 5. The light beam reflected by the half mirror 5 passes through the left half of the objective lens 6 (the left half of the pupil of the objective lens 6 ), and on the surface 7a of the substrate, more precisely, the object plane (reference plane) of the objective lens 6 It is focused on P 0 .
【0022】ここで、スリット板3は、対物レンズ6に
関して、この対物レンズ6の物体面(基準面)P0 と共
役な位置に設けられており、この対物レンズ6の物体面
上には、スリット板3の開口部の像が形成される。従っ
て、被検面としての基板表面7a上には、実質的にスリ
ット状の光が投射され、これにより基板表面7a上で反
射される光束L2 は、対物レンズ6の右側半分(対物レ
ンズ6の瞳の右半分)及びハーフミラー5を通過した
後、ダイクロイックミラー10を反射してラインセンサ
ー等の光電検出器8の受光面上で集光される。Here, the slit plate 3 is provided at a position conjugate with the object plane (reference plane) P 0 of the objective lens 6 with respect to the objective lens 6. An image of the opening of the slit plate 3 is formed. Therefore, on the substrate surface 7a of the test surface, substantially slit-like light is projected, thereby the light beam L 2 reflected on the substrate surface 7a is the right half of the objective lens 6 (the objective lens 6 After passing through the right half of the pupil of the pupil and the half mirror 5, the light is reflected by the dichroic mirror 10 and condensed on the light receiving surface of a photoelectric detector 8 such as a line sensor.
【0023】光電検出器8の受光面は、対物レンズ6に
関して、対物レンズ6の物体面(基準面)P0 と共役な
位置に設けられており、光軸Axと受光面とが交差する
位置を境界として上下方向に第1の検出領域8aと第2
の検出領域8bとを有している。そして、この第2の検
出領域8bに対応する側から所定の距離だけ離れた位置
には、光軸Axを境に下側を通過する基板の裏面7bか
らの不要な反射光を遮光する遮光板9が設けられてい
る。これにより、遮光板9が配置されていない第1の検
出領域8a側を通過する基板表面7aからの反射光L2
のみが抽出できる。なお、遮光板9の代わりとして透過
部と遮光部とを有する部分遮光板を用いて必要な領域の
みを遮光しても良い。The light receiving surface of the photoelectric detector 8 is provided at a position conjugate with the object plane (reference plane) P 0 of the objective lens 6 with respect to the objective lens 6 , and a position where the optical axis Ax intersects with the light receiving surface. The first detection area 8a and the second detection area
And a detection area 8b. A light-shielding plate that shields unnecessary reflected light from the back surface 7b of the substrate that passes below the optical axis Ax at a position separated by a predetermined distance from the side corresponding to the second detection area 8b. 9 are provided. Thus, the reflected light L 2 from the substrate surface 7a passing through the first detection area 8a side where the light shielding plate 9 is not disposed
Only can be extracted. Instead of the light-shielding plate 9, a partial light-shielding plate having a transmission part and a light-shielding part may be used to shield only a necessary region from light.
【0024】さて、光電検出器8の受光面における第1
の検出領域8aと第2の検出領域8bとの双方から得ら
れる2つの光電信号は、物体面検出部(焦点位置検出
部)14へ出力される。この物体面検出部14は、2つ
の光電信号の差動信号を得るための差動信号処理回路を
含んでおり、基板表面7aに対物レンズ6のピントが合
えば差動信号は零となり、ディフォーカスしていればデ
ィフォーカス量に対応したある差動信号が得られる。従
って、物体面検出部14にて、対物レンズ6の物体面
(基準面)に対する基板表面7aの位置が検出される。The first light-receiving surface of the photoelectric detector 8 will now be described.
The two photoelectric signals obtained from both the detection area 8a and the second detection area 8b are output to the object plane detection unit (focus position detection unit) 14. The object surface detection unit 14 includes a differential signal processing circuit for obtaining a differential signal between two photoelectric signals. When the objective lens 6 is focused on the substrate surface 7a, the differential signal becomes zero, and If the focus is achieved, a certain differential signal corresponding to the defocus amount can be obtained. Therefore, the position of the substrate surface 7a with respect to the object plane (reference plane) of the objective lens 6 is detected by the object plane detection unit 14.
【0025】その後、物体面検出部14からの焦点検出
情報は制御部15へ入力され、この入力情報に基づいて
ステージ16を上下方向(Z方向)へ所定量だけ移動さ
れて合焦が行われる。次に、遮光板9の最適な位置につ
いて検討すると、基板の裏面7bからの反射光(不要な
赤外光)L3 を除去する機能を遮光板9に持たせるに
は、合焦時において基板の裏面7bからの反射光L3 が
対物レンズ6によって集光される位置Aと光電検出器8
との間に配置することが好ましいことが分かる。Thereafter, the focus detection information from the object plane detection unit 14 is input to the control unit 15, and the stage 16 is moved in the vertical direction (Z direction) by a predetermined amount based on the input information to perform focusing. . Substrate now to consider the optimum position of the light shielding plate 9, in order to have a function of removing the reflected light (unnecessary infrared light) L 3 of the substrate of the back surface 7b in the light shielding plate 9, the in-focus state position a and the photoelectric detector 8 which is reflected light L 3 from the back surface 7b is condensed by the objective lens 6 of
It can be seen that it is preferable to dispose it between.
【0026】そこで、遮光板9の配置条件について数式
化して表現すれば、光電検出器8から遮光板9までの光
軸方向での距離をd、焦点検出光の波長に対する基板7
の屈折率をn、基板表面が対物レンズ6の物体面(基準
位置)P0 にある時の対物レンズ6の横倍率をβ1 、対
物レンズ6の被検面側(物側)の焦点距離をf11、対物
レンズ6の検出側(像側)の焦点距離をf12とすると
き、以下の数式1の如くなる。Therefore, if the arrangement condition of the light shielding plate 9 is expressed by a mathematical expression, the distance between the photoelectric detector 8 and the light shielding plate 9 in the optical axis direction is d, and the substrate 7 with respect to the wavelength of the focus detection light.
Is n, the lateral magnification of the objective lens 6 when the substrate surface is at the object plane (reference position) P 0 of the objective lens 6 is β 1 , and the focal length of the objective lens 6 on the test surface side (object side) Where f 11 is a focal length on the detection side (image side) of the objective lens 6 and f 12 is as follows.
【0027】[0027]
【数1】 (Equation 1)
【0028】また、基板の裏面7bから反射する不要な
反射光L3 を除去しつつ、前ピンと後ピンとの検出範囲
を等しくするには、以下の数式2を満足することが好ま
しい。Further, while removing unnecessary reflected light L 3 reflected from the substrate backside 7b, to equalize the detection range of the front focus and the rear focus, it is preferable to satisfy Equation 2 below.
【0029】[0029]
【数2】 (Equation 2)
【0030】以上の如く、本実施例では、基板の裏面7
bからの不要な反射光L3 を遮光板9によって遮光でき
るため、対物レンズ6の物体面に対する基板表面7aの
位置を常に高い精度のもとで検出できる。このため、観
察光学系(6,13)によって基板表面7aを高精度で
検査することができる。次に、図2を参照しながら本発
明による第2実施例を説明する。図2において、図1に
示した部材と同じ機能を持つものには同じ符号を付して
ある。As described above, in this embodiment, the back surface 7 of the substrate
for unnecessary reflection light L 3 from the b can be shielded by the light shielding plate 9 can detect the position of the substrate surface 7a with respect to the object plane of the objective lens 6 in very high accuracy original. Therefore, the substrate surface 7a can be inspected with high accuracy by the observation optical system (6, 13). Next, a second embodiment according to the present invention will be described with reference to FIG. In FIG. 2, components having the same functions as those shown in FIG. 1 are denoted by the same reference numerals.
【0031】前述の第1実施例では、厚さが常に一定の
基板7の表面7aの位置を精度良く検出する例を説明し
たが、第2実施例では、厚さが異なる基板7の表面の位
置を精度良く検出する例を説明する。今、厚さが異なる
基板表面7aを検出しようとすると、対物レンズ6によ
る基板の裏面7bからの反射光L3 の集光位置Aが光軸
Ax方向に沿って移動する。このため、この裏面7aか
らの不要な反射光L3 を除去するには、基板7の厚みの
変化に伴い遮光板9を光軸Ax方向に沿って移動させて
調整することが必要となる。In the above-described first embodiment, an example has been described in which the position of the surface 7a of the substrate 7 having a constant thickness is accurately detected. However, in the second embodiment, the position of the surface 7a of the substrate 7 having a different thickness is described. An example of detecting the position with high accuracy will be described. Now, when the thickness is to be detected different substrate surface 7a, focusing position A of the reflected light L 3 from the back surface 7b of the substrate by the objective lens 6 is moved along the optical axis Ax direction. Therefore, to remove unwanted reflected light L 3 from the rear surface 7a, it is necessary to adjust the light shielding plate 9 with a change in thickness of the substrate 7 is moved along the optical axis Ax direction.
【0032】そこで、本実施例では、図2に示す如く、
遮光板9はAx方向(矢印方向a)に沿って駆動部18
によって移動可能に設けられている。そこで、本実施例
における遮光板9の位置の設定について具体的に説明す
ると、まず、基板表面の端にはマーク、例えばバーコー
ドBCが設けられており、このマークには、基板7の厚
さt及び基板7の屈折率n等の情報が盛り込まれてい
る。そして、このバーコードBCを読み込むマーク検出
手段としてのバーコードリーダ17がステージ16の端
に設けられている。バーコードリーダ17は、基板7上
のバーコードBCを読み込むと、この情報を演算部18
へ出力し、ここで所定の演算がなされる。Therefore, in this embodiment, as shown in FIG.
The light shielding plate 9 is driven by the driving unit 18 along the Ax direction (arrow direction a).
Is provided so as to be movable. The setting of the position of the light-shielding plate 9 in the present embodiment will be specifically described. First, a mark, for example, a bar code BC is provided at an end of the substrate surface, and the mark has a thickness of the substrate 7. Information such as t and the refractive index n of the substrate 7 is included. A bar code reader 17 is provided at the end of the stage 16 as mark detection means for reading the bar code BC. When the barcode reader 17 reads the barcode BC on the substrate 7, the barcode reader 17
, Where a predetermined operation is performed.
【0033】この演算部18は、上記数式1または数式
2の演算式が予め記憶されており、バーコードリーダ1
7から出力される情報に基づいて演算が行われ、この演
算結果を駆動部19へ出力する。この演算結果に基づい
て駆動部19は、遮光板9を光軸Ax方向(矢印方向
a)へ移動させて、基板7の厚さに応じた最適な位置に
遮光板9を設定する。The calculation unit 18 stores the calculation formula of the above formula 1 or 2 in advance and stores the bar code reader 1
The calculation is performed based on the information output from the control unit 7, and the calculation result is output to the driving unit 19. Based on the calculation result, the drive unit 19 moves the light-shielding plate 9 in the direction of the optical axis Ax (arrow direction a), and sets the light-shielding plate 9 at an optimum position according to the thickness of the substrate 7.
【0034】以上の構成により、被検物としての基板の
厚みtが変化した際にも、遮光板9を最適な位置に設定
できるため、対物レンズ6の物体面に対する基板表面7
aの位置を常に高い精度のもとで検出できる。このた
め、観察光学系(6,13)によって基板表面7aをよ
り高精度で検査することができる。次に、図3を参照し
ながら本発明による装置を顕微鏡に応用した第3実施例
を説明する。図3において、図1に示した部材と同じ機
能を持つものには同じ符号を付してある。With the above arrangement, even when the thickness t of the substrate as the test object changes, the light-shielding plate 9 can be set at an optimum position.
The position a can always be detected with high accuracy. Therefore, the substrate surface 7a can be inspected with higher accuracy by the observation optical system (6, 13). Next, a third embodiment in which the apparatus according to the present invention is applied to a microscope will be described with reference to FIG. 3, components having the same functions as those shown in FIG. 1 are denoted by the same reference numerals.
【0035】第3実施例が先に説明した第1実施例に対
して特に異なる所は、焦点検出光学系中に被検面の空間
像I’を一旦形成し、リレー光学系20によって再結像
される空間像I’を光電検出器8で検出するようにした
点である。本実施例を具体的に説明すると、基板表面7
a(被検面)からの光を平行光にする第1対物レンズ6
1と、この第1対物レンズ61からの平行光を集光して
被検面7aの空間像Iを形成する第2対物レンズ62と
で対物光学系が構成されている。そして、この双方の対
物レンズ61,62によって被検面の空間像Iが形成さ
れ、接眼レンズ13を通して空間像Iが拡大観察され
る。The third embodiment is particularly different from the above-described first embodiment in that a spatial image I 'of a surface to be inspected is formed once in a focus detection optical system, and reconstructed by a relay optical system 20. The point is that the aerial image I ′ to be formed is detected by the photoelectric detector 8. The present embodiment will be described specifically.
a (first object lens) 6 for converting light from (a surface to be inspected) into parallel light
1 and a second objective lens 62 that collects the parallel light from the first objective lens 61 to form a spatial image I of the surface 7a to be inspected, constitutes an objective optical system. Then, the aerial image I of the surface to be inspected is formed by the two objective lenses 61 and 62, and the aerial image I is magnified and observed through the eyepiece 13.
【0036】一方、第1対物レンズ61と第2対物レン
ズ62との間には、可視光を透過させ赤外光を反射させ
る機能を持つダイクロイックミラー10が斜設されてお
り、このダイクロイックミラー10の反射方向には、焦
点検出用の第3対物レンズ63が設けられている。ここ
で、第1対物レンズ61と第3対物レンズ63とで焦点
検出用(位置検出用)の対物光学系が構成される。On the other hand, a dichroic mirror 10 having a function of transmitting visible light and reflecting infrared light is provided obliquely between the first objective lens 61 and the second objective lens 62. In the reflection direction, a third objective lens 63 for focus detection is provided. Here, the first objective lens 61 and the third objective lens 63 constitute an objective optical system for focus detection (for position detection).
【0037】集光レンズ2を介した光源1からの赤外光
は、スリット板3を介し遮光板4によって光軸Axより
も右側の光束が遮光され、光軸Axよりも左側の光束L
1 のみがハーフミラー21を反射する。そして、この反
射光は、第3対物レンズ63の下側半分(第3対物レン
ズ63の瞳の下半分),ダイクロイックミラー10及び
第1対物レンズの左側半分(第1対物レンズ63の瞳の
左半分)を介して基板表面7a上で集光される。ここ
で、スリット板3は、第1及び第3対物レンズに関し
て、第1及び第2対物レンズによる物体面(基準面)P
0 と共役な位置に設けられており、被検面としての基板
表面7a上には、実質的にスリット板3の開口部の像が
形成される。With respect to the infrared light from the light source 1 through the condenser lens 2, the light beam on the right side of the optical axis Ax is shielded by the light shielding plate 4 through the slit plate 3, and the light beam L on the left side of the optical axis Ax.
Only 1 reflects the half mirror 21. The reflected light is transmitted to the lower half of the third objective lens 63 (the lower half of the pupil of the third objective lens 63), the dichroic mirror 10 and the left half of the first objective lens (the left half of the pupil of the first objective lens 63). (Half) on the substrate surface 7a. Here, with respect to the first and third objective lenses, the slit plate 3 has an object plane (reference plane) P by the first and second objective lenses.
It is provided at a position conjugate with 0, and an image of the opening of the slit plate 3 is formed substantially on the substrate surface 7a as the surface to be inspected.
【0038】このため、被検面としての基板表面7a上
には、実質的にスリット状の赤外光が投射され、これに
より基板表面7a上で反射される赤外光L2 は、第1対
物レンズの右側半分(第1対物レンズ63の瞳の右半
分)、ダイクロイックミラー10及び第3対物レンズ6
3の上側半分(第3対物レンズ63の瞳の上半分)を介
した後、ハーフミラー21を通過して集光し、空間像
I’を形成する。本実施例では、この空間像I’をリレ
ーするリレー光学系20が設けられており、このリレー
光学系20の下側半分を通過する基板表面7aからの反
射光L2 が光電検出器8の受光面上で集光される。[0038] Therefore, on the substrate surface 7a of the test surface is substantially slit-like infrared light is projected, thereby the infrared light L 2 reflected on the substrate surface 7a is first The right half of the objective lens (the right half of the pupil of the first objective lens 63), the dichroic mirror 10, and the third objective lens 6
After passing through the upper half of 3 (the upper half of the pupil of the third objective lens 63), the light passes through the half mirror 21 and is condensed to form an aerial image I '. In this embodiment, a relay optical system 20 for relaying the aerial image I ′ is provided, and the reflected light L 2 from the substrate surface 7 a passing through the lower half of the relay optical system 20 is applied to the photoelectric detector 8. The light is focused on the light receiving surface.
【0039】この光電検出器8の受光面は、対物光学系
(61,63)の物体面(基準面)P0 、即ち対物レン
ズ61の焦点面と共役な位置に設けられており、光電検
出器8は、スリット板3の開口部の像の結像状態を光電
的に検出する。物体面検出部14は、光電検出器8にて
出力される信号に基づいて、合焦状態を検出し、この検
出結果に基づいてステージ16の上下方向の位置が制御
部15によって制御される。The light receiving surface of the photoelectric detector 8 is provided at a position conjugate with the object plane (reference plane) P 0 of the objective optical system (61, 63), that is, the focal plane of the objective lens 61. The device 8 photoelectrically detects the image forming state of the image of the opening of the slit plate 3. The object plane detection unit 14 detects the in-focus state based on the signal output from the photoelectric detector 8, and the control unit 15 controls the vertical position of the stage 16 based on the detection result.
【0040】本実施例においても、先に述べた実施例と
同様に、基板の裏面7bから反射する不要な赤外光を除
去する遮光板9は、合焦時において対物レンズ61及び
63により基板の裏面7bからの反射光L3 が集光され
る位置Aと光電検出器8との間に配置されている。ここ
で、この遮光板9の配置条件について数式化して表現す
ると、光電検出器の受光面8aからの遮光板9までの光
軸方向での距離をd、焦点検出用の光の波長に対する基
板7の屈折率をn、基板表面が対物光学系(61,6
3)の物体面(基準位置)P0 にある時の対物光学系
(61,63)の横倍率をβ1 、対物光学系(61,6
3)の被検面側(物側)の焦点距離をf11、対物光学系
(61,63)の検出側(像側)の焦点距離をf12、基
板表面が対物光学系(61,63)の物体面(基準位
置)P0 にある時のリレー光学系20の横倍率をβ2 、
リレー光学系20の被検面側(物側)の焦点距離を
f21、リレー光学系20の検出側(像側)の焦点距離を
f22とするとき、以下の数式3の如くなる。In this embodiment, as in the previous embodiment, the light-shielding plate 9 for removing unnecessary infrared light reflected from the back surface 7b of the substrate is provided by the objective lenses 61 and 63 during focusing. the reflected light L 3 from the back surface 7b is disposed between the position a and the photoelectric detector 8 which is condensed in. Here, when the arrangement condition of the light-shielding plate 9 is expressed by a mathematical expression, the distance in the optical axis direction from the light receiving surface 8a of the photoelectric detector to the light-shielding plate 9 is d, and the substrate 7 with respect to the wavelength of the light for focus detection. Is n, and the substrate surface is an objective optical system (61, 6).
The lateral magnification of the objective optical system (61, 63) at the object plane (reference position) P 0 of 3) is β 1 , and the objective optical system (61, 6)
3) The focal length on the surface to be inspected (object side) is f 11 , the focal length on the detection side (image side) of the objective optical system (61, 63) is f 12 , and the substrate surface is the objective optical system (61, 63). ) Is the object plane (reference position) P 0 , the lateral magnification of the relay optical system 20 is β 2 ,
Assuming that the focal length of the relay optical system 20 on the surface to be inspected (object side) is f 21 and the focal length of the relay optical system 20 on the detection side (image side) is f 22 , Equation 3 below is obtained.
【0041】[0041]
【数3】 (Equation 3)
【0042】また、本実施例において前ピンと後ピンと
の検出範囲を等しくするためには、以下の数式4を満足
することが望ましい。In order to make the detection ranges of the front focus and the rear focus equal in this embodiment, it is desirable to satisfy the following expression (4).
【0043】[0043]
【数4】 (Equation 4)
【0044】以上の如く、本実施例でも、基板の裏面7
bからの不要な反射光を遮光板9によって遮光できるた
め、対物レンズ61及び63の物体面(または対物レン
ズ61の焦点面)に対する基板表面7aの位置を常に高
い精度のもとで検出できる。これにより、基板表面7a
をより高精度で検査することができる。なお、本実施例
においても、図2に示した第2実施例の如く、基板表面
7aの端にバーコード等のマークを設け、このマークの
検出情報に基づいて上記数式3または数式4の演算を行
い、この演算結果に基づいて遮光板9を光軸方向へ移動
させて最適な位置に設定するようにしても良い。As described above, also in this embodiment, the back surface 7 of the substrate
Since unnecessary reflected light from b can be shielded by the light shielding plate 9, the position of the substrate surface 7a with respect to the object plane of the objective lenses 61 and 63 (or the focal plane of the objective lens 61) can always be detected with high accuracy. Thereby, the substrate surface 7a
Can be inspected with higher accuracy. In this embodiment, as in the second embodiment shown in FIG. 2, a mark such as a barcode is provided at the end of the substrate surface 7a, and the calculation of the above formula 3 or 4 is performed based on the detection information of this mark. And the light shielding plate 9 may be moved in the optical axis direction based on the calculation result to set the light shielding plate 9 at an optimum position.
【0045】また、以上にて述べた各実施例では対物光
学系(61,63)の物体面に対する被検面(基板表
面)のずれを補正するためにステージ16をZ方向へ移
動可能に設けているが、図3に示した如く、被検面から
の光を平行にする第1対物レンズ61を光軸Ax方向へ
移動させて合焦を行っても良い。この場合、被検面とし
ての基板を移動させることなく、第1対物レンズ61の
みの移動だけて合焦を行うことができる。In each of the embodiments described above, the stage 16 is provided so as to be movable in the Z direction in order to correct the displacement of the test surface (substrate surface) from the object surface of the objective optical system (61, 63). However, as shown in FIG. 3, the focusing may be performed by moving the first objective lens 61 for making the light from the surface to be measured parallel in the direction of the optical axis Ax. In this case, focusing can be performed only by moving the first objective lens 61 without moving the substrate as the test surface.
【0046】さらに、以上にて述べた各実施例では本発
明を顕微鏡の焦点検出に応用した例を示したが、これに
限ることなく、その他の装置の焦点検出あるいは位置に
おいて適用できることは言うまでもない。Further, in each of the embodiments described above, examples in which the present invention is applied to focus detection of a microscope are shown. However, it is needless to say that the present invention can be applied to focus detection or a position of another device. .
【0047】[0047]
【発明の効果】以上の如く、本発明によれば、基板の表
面をより高精度に検出できる位置検出装置が達成でき
る。しかも、従来の装置において僅かなる改良を加える
だけで大きな効果が期待できる。As described above, according to the present invention, a position detecting device capable of detecting the surface of a substrate with higher accuracy can be achieved. Moreover, a great effect can be expected with only a slight improvement in the conventional device.
【図1】図1は本発明を顕微鏡に応用した第1実施例の
概略的な構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a first embodiment in which the present invention is applied to a microscope.
【図2】図2は本発明を顕微鏡に応用した第2実施例の
概略的な構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of a second embodiment in which the present invention is applied to a microscope.
【図3】図3は本発明を顕微鏡に応用した第3実施例の
概略的な構成を示す図である。FIG. 3 is a diagram showing a schematic configuration of a third embodiment in which the present invention is applied to a microscope.
【図4】図4は本発明の原理を示す原理図である。FIG. 4 is a principle view showing the principle of the present invention.
【図5】図5は従来の焦点検出装置において基板裏面か
らの反射光が検出される様子を示す図である。FIG. 5 is a diagram illustrating a state where reflected light from the back surface of a substrate is detected by a conventional focus detection device.
【図6】従来の焦点検出装置の概略的な構成を示す図で
ある。FIG. 6 is a diagram showing a schematic configuration of a conventional focus detection device.
1・・・ 光源、2・・・ 集光レンズ、3・・・ スリット板、
4,9・・・ 遮光板 5,11・・・ ハーフミラー、6・・・ 対物レンズ、7・・・
基板、8・・・ 光源検出器 10・・・ ダイクロイックミラー、12・・・ 落射照明系、
13・・・ 接眼レンズ、14・・・ 焦点検出部、15・・・ 制
御部、16・・・ ステージDESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Condensing lens, 3 ... Slit plate,
4, 9 ... light shielding plate 5, 11 ... half mirror, 6 ... objective lens, 7 ...
Substrate, 8 ... Light source detector 10 ... Dichroic mirror, 12 ... Epi-illumination system,
13 eyepiece lens, 14 focus detection unit, 15 control unit, 16 stage
Claims (4)
る一方の第1の領域を介して所定のパターンの光を基板
の表面へ投射し、前記基板の表面から反射される前記投
射パターン光の像を前記対物レンズの光軸を含む面を境
に2分される他方の第2の領域を介して検出器にて光電
的に検出することにより、前記基板の位置を検出する位
置検出装置において、 前記第2の領域を介して前記検出器の受光面へ向かう前
記基板の裏面からの反射光を遮光する遮光部材を、前記
裏面からの反射光が前記対物レンズによって集光される
位置と前記受光面との間で、かつ、前記対物レンズの光
軸を境に前記裏面からの反射光が通過する側に配置し、
以下の条件を満足する、 前記検出器の受光面から前記遮光部材までの光軸方向で
の距離をd、焦点検出光の波長に対する前記基板の屈折
率をn、前記基板表面が前記対物レンズの物体面(基準
位置)にある時の前記対物レンズの横倍率をβ1 、前記
対物レンズの被検面側(物側)の焦点距離をf11、前記
対物レンズの検出側(像側)の焦点距離をf12、前記基
板の厚さをtとするとき、以下の数式1 【数1】 を満足することを特徴とする位置検出装置。1. A predetermined pattern of light is projected onto a surface of a substrate via one first region divided by a surface including an optical axis of an objective lens, and is reflected from the surface of the substrate. Detecting the position of the substrate by photoelectrically detecting the image of the projection pattern light with a detector via the other second area divided into two parts by the plane including the optical axis of the objective lens A light-shielding member that shields light reflected from the back surface of the substrate via the second region toward the light-receiving surface of the detector, wherein the reflected light from the back surface is condensed by the objective lens. Between the position and the light receiving surface, and disposed on the side where the reflected light from the back surface passes with the optical axis of the objective lens as a boundary,
The following conditions are satisfied: The distance in the optical axis direction from the light receiving surface of the detector to the light blocking member is d, the refractive index of the substrate with respect to the wavelength of the focus detection light is n, and the substrate surface is the objective lens. When the objective lens is at the object plane (reference position), the lateral magnification of the objective lens is β1, the focal length of the objective lens on the test surface side (object side) is f11, and the focal length of the objective lens on the detection side (image side). To f12 ,
When the thickness of the plate is t , the following formula 1 A position detection device characterized by satisfying the following.
形成し、リレー光学系によって再結像される空間像を検
出器で検出するようにしたことを特徴とする請求項1に
記載の位置検出装置。2. The method according to claim 1, wherein a spatial image of the surface to be detected is once formed in the position detecting optical system, and the spatial image re-imaged by the relay optical system is detected by a detector. 3. The position detecting device according to claim 1.
前記対物レンズの光軸方向に移動可能に設けられること
を特徴とする請求項1及び請求項2に記載の位置検出装
置。3. The position detecting device according to claim 1, wherein the light shielding member is provided so as to be movable in an optical axis direction of the objective lens according to a thickness of the substrate.
る一方の第1の領域を介して所定のパターンの光を基板
の表面へ投射し、前記基板の表面から反射される前記投
射パターン光の像を前記対物レンズの光軸を含む面を境
に2分される他方の第2の領域を介して検出器にて光電
的に検出することにより、前記基板の位置を検出する位
置検出装置において、 前記第2の領域を介して前記検出器の受光面へ向かう前
記基板の裏面からの反射光を遮光する遮光部材を、前記
対物レンズの光軸方向に移動可能に設け、更に前記遮光
部材を、前記裏面からの反射光が前記対物レンズによっ
て集光される位置と前記受光面との間で、かつ、前記対
物レンズの光軸を境に前記裏面からの反射光が通過する
側に配置し、以下の条件を満足する、 前記検出器の受光面から前記遮光部材までの光軸方向で
の距離をd、焦点検出光の波長に対する前記基板の屈折
率をn、前記基板表面が前記対物レンズの物体面(基準
位置)にある時の前記対物レンズの横倍率をβ1 、前記
対物レンズの被検面側(物側)の焦点距離をf11、前記
対物レンズの検出側(像側)の焦点距離をf12、前記基
板の厚さをtとするとき、以下の数式1 【数1】 を満足することを特徴とするを特徴とする位置検出装
置。4. A predetermined pattern of light is projected onto the surface of the substrate through one of the first regions divided by the surface including the optical axis of the objective lens, and is reflected from the surface of the substrate. Detecting the position of the substrate by photoelectrically detecting the image of the projection pattern light with a detector via the other second area divided into two parts by the plane including the optical axis of the objective lens In the position detecting device, a light-shielding member that shields reflected light from the back surface of the substrate toward the light-receiving surface of the detector via the second region is provided so as to be movable in the optical axis direction of the objective lens . Further light shielding
The member reflects light from the back surface by the objective lens.
Between the light-collecting position and the light-receiving surface, and
Reflected light from the back surface passes through the optical axis of the object lens
Side, satisfying the following conditions, in the optical axis direction from the light receiving surface of the detector to the light shielding member
Is the distance of d, the refraction of the substrate with respect to the wavelength of the focus detection light.
Rate is n and the substrate surface is the object plane of the objective lens (reference
Position), the lateral magnification of the objective lens is β1,
The focal length of the objective lens on the object side (object side) is f11,
The focal length on the detection side (image side) of the objective lens is f12,
When the thickness of the plate is t, equation 1 Equation 1] below A position detection device characterized by satisfying the following .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11593192A JP3237023B2 (en) | 1992-05-08 | 1992-05-08 | Position detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11593192A JP3237023B2 (en) | 1992-05-08 | 1992-05-08 | Position detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05312510A JPH05312510A (en) | 1993-11-22 |
JP3237023B2 true JP3237023B2 (en) | 2001-12-10 |
Family
ID=14674734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11593192A Expired - Fee Related JP3237023B2 (en) | 1992-05-08 | 1992-05-08 | Position detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3237023B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3019835B2 (en) * | 1998-04-22 | 2000-03-13 | 日本電気株式会社 | Focus detection device |
JP3414689B2 (en) | 2000-03-02 | 2003-06-09 | 日本電気株式会社 | Focusing method and focus detection device |
JP2008164572A (en) * | 2007-01-05 | 2008-07-17 | Nikon Corp | Measurement device and measurement method |
JP5400499B2 (en) * | 2009-06-29 | 2014-01-29 | オリンパス株式会社 | Focus detection device |
JP2016038408A (en) * | 2014-08-05 | 2016-03-22 | オリンパス株式会社 | Autofocus device and sample observation device |
-
1992
- 1992-05-08 JP JP11593192A patent/JP3237023B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05312510A (en) | 1993-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3721827A (en) | Arrangement for automatically focussing an optical instrument | |
US4262208A (en) | Photo-electrical detecting apparatus | |
JPH08211282A (en) | Autofocus microscope | |
US5483079A (en) | Apparatus for detecting an in-focus position of a substrate surface having a movable light intercepting member and a thickness detector | |
JPH05142462A (en) | Focusing device | |
JP3237023B2 (en) | Position detection device | |
JPH10223517A (en) | Focusing unit, viewer equipped with focusing unit, and aligner equipped with viewer | |
US4733062A (en) | Focus detecting device | |
JP2006184777A (en) | Focus detector | |
JPS6026311A (en) | Focus detector for dark field microscope | |
US7580121B2 (en) | Focal point detection apparatus | |
JPH0771911A (en) | Position detecting device | |
JP2000056232A (en) | Microscope | |
JP4604651B2 (en) | Focus detection device | |
JP2000035540A (en) | Differential interference microscope | |
JPH10133117A (en) | Microscope equipped with focus detecting device | |
JP3163803B2 (en) | Focus position detector | |
JP4269378B2 (en) | Observation method and observation apparatus | |
JPH0226205B2 (en) | ||
JP3061758B2 (en) | Automatic focusing device for microscope | |
JPH0784187A (en) | Pupil projection optical system | |
JP2757541B2 (en) | Focus detection device and observation device having the same | |
JPH0934134A (en) | Alignment device | |
JPH05232370A (en) | Focusing detection device of microscope | |
JP3279815B2 (en) | Displacement / tilt detection method and automatic focusing device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |