JPH07198648A - Gas detecting film and manufacture thereof - Google Patents

Gas detecting film and manufacture thereof

Info

Publication number
JPH07198648A
JPH07198648A JP35370293A JP35370293A JPH07198648A JP H07198648 A JPH07198648 A JP H07198648A JP 35370293 A JP35370293 A JP 35370293A JP 35370293 A JP35370293 A JP 35370293A JP H07198648 A JPH07198648 A JP H07198648A
Authority
JP
Japan
Prior art keywords
film
layer
sno
crystal structure
gas detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35370293A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sato
康弘 佐藤
Wasaburo Ota
和三郎 太田
Tsutomu Ishida
力 石田
Etsuko Fujisawa
悦子 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP35370293A priority Critical patent/JPH07198648A/en
Publication of JPH07198648A publication Critical patent/JPH07198648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To enhance the stability of the electric characteristic of a gas detecting film against aging-effect by using SnO2 mainly having a tetragonal crystal structure and having another crystal structure the content rate of which is less than a specific rate, so as to give a property with which thermal strain can hardly be effected by a heat, to an SnO2 film having a multilayer structure. CONSTITUTION:SnO2 mainly has a tetragonal crystal structure and also has another crystal structure (cubic crystal or orthorhombic crystal structure) having a content rate less than 1/10 (the rate between a first peak measured by an X-ray diffraction process and belonging to the tetragonal crystal structure and a first peak belonging to other crystal structures such as cubic crystal structure or orthorhombic crystal structure is less than 1/10). The first peaks give a highest diffraction intensity. Further, it is preferable that SnO2 in the upper and lower layers of a multilayer structure has not an orientation. However, SnO2 in the lower layer may have a preferential orientation more or less. Having no orientation means such that the intensity ratio of the diffraction line in view of the plane indices of SnO2 is around the strengthening ratio when it is measured in an X-ray diffraction process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、雰囲気中に特定ガスが存在する
ことを検知するガス検知膜とその製法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a gas detection film for detecting the presence of a specific gas in an atmosphere and a method for producing the same.

【0002】[0002]

【従来技術】ガス検知物質として金属酸化物を用い、
(1)その金属酸化物半導体裏面に電極及び絶縁性基板
を介してヒーター膜を設け、あるいは(2)その金属酸
化物半導体内部に電極及び電極を兼ねたヒーターコイル
を設け、それらヒーター膜及び/またはヒーターコイル
によって加熱された金属酸化物半導体の抵抗値が表面で
のガス吸着により変化することを利用したガスセンサは
知られている。
2. Description of the Related Art A metal oxide is used as a gas detection substance,
(1) A heater film is provided on the back surface of the metal oxide semiconductor via an electrode and an insulating substrate, or (2) a heater coil also serving as an electrode and an electrode is provided inside the metal oxide semiconductor, and the heater film and / or Alternatively, a gas sensor is known in which the resistance value of a metal oxide semiconductor heated by a heater coil changes due to gas adsorption on the surface.

【0003】このガスセンサの代表的な一つは薄膜ガス
センサであり、その概略は図1(a)、(b)に示した
ように耐熱性基板1の片側にガス検知膜51とその抵抗
値変化を検出するための電極41、42が形成され、そ
の反対側にヒーター膜20が形成された構造を呈してい
る。なお、(a)は断面図、(b)は斜視図である。ま
た、61、62はヒーターへの電力供給線、71及び7
2はガス検知膜51の信号取り出し線を表している。
A typical one of the gas sensors is a thin film gas sensor. As shown in FIGS. 1 (a) and 1 (b), the gas sensor film 51 and its resistance value change on one side of the heat resistant substrate 1 are schematically shown. The electrodes 41 and 42 for detecting the are formed, and the heater film 20 is formed on the opposite side. Note that (a) is a cross-sectional view and (b) is a perspective view. Also, 61 and 62 are power supply lines to the heaters, 71 and 7.
Reference numeral 2 represents a signal extraction line of the gas detection film 51.

【0004】一方、図2は他のガスセンサの代表的なも
のの概略を示しており、ここでは一対のコイル状電極4
3、44間に2〜3(mm)角の金属酸化物の焼結体
(ガス検知物質52)を保持させており、この間の抵抗
値変化を検出する。なお、このタイプのガスセンサは、
一対の電極の一方(例えば電極43)はヒーターコイル
を兼ねており、これによりガス検知物質52を加熱す
る。図中12はベース、8は電極ピンである。
On the other hand, FIG. 2 shows an outline of a typical gas sensor of another type. Here, a pair of coil electrodes 4 are shown.
A metal oxide sintered body (gas detection substance 52) having a 2 to 3 (mm) angle is held between 3 and 44, and a change in resistance value during this period is detected. In addition, this type of gas sensor
One of the pair of electrodes (for example, the electrode 43) also serves as a heater coil, which heats the gas detection substance 52. In the figure, 12 is a base and 8 is an electrode pin.

【0005】図2に示したタイプのものでは、消費電力
が大きく、また熱容量が大きいために応答性に問題があ
る。これに対して、図1に示したようなタイプのガスセ
ンサは、ガス検知物質が薄膜であるために消費電力、応
答性とも良好であるが経時変化が大きいことが問題とな
っている。この原因としては、結晶構造変化、粒径の増
大、表面の汚染(表面被覆)が挙げられ、ガスセンサの
駆動(加熱)により前記原因による吸着面積の減少ある
いは化学的活性度の減少を起こし、経時変化を招くとい
った欠点を有している。
The type shown in FIG. 2 has a problem in responsiveness because it consumes a large amount of power and has a large heat capacity. On the other hand, the gas sensor of the type as shown in FIG. 1 has good power consumption and responsiveness because the gas detection substance is a thin film, but has a problem of large change over time. Causes of this include changes in crystal structure, increase in particle size, and surface contamination (surface coating). Driving (heating) of the gas sensor causes a decrease in adsorption area or a decrease in chemical activity due to the above causes. It has the drawback of causing changes.

【0006】ところで、ガス検知素子は金属酸化物表面
での吸脱着反応を利用してガス検知を行っているため、
表面物性〔粒径(比表面積)〕が大きく関与するが、該
表面物性を決定する上で安定な結晶構造を有する膜の作
製が重要である。そこで、本発明者の一人は、先に前記
金属酸化物半導体薄膜がその形態を異にする複層構造を
もつ「ガスセンサ」を出願し、特開平4−212048
号として公開されている。
By the way, since the gas detecting element detects gas by utilizing the adsorption / desorption reaction on the surface of the metal oxide,
The surface physical properties [particle size (specific surface area)] play a major role, but it is important to prepare a film having a stable crystal structure in order to determine the surface physical properties. Therefore, one of the inventors of the present invention previously applied for a “gas sensor” having a multi-layer structure in which the metal oxide semiconductor thin film has a different form, and is disclosed in JP-A-4-212048
Published as an issue.

【0007】[0007]

【目的】本発明の目的は、前記形態を異にする複層構造
をもつSnO2薄膜に、熱による歪を受けにくい性質を
付与し、電気特性や経時変化に対する安定性を向上する
点にある。
[Purpose] An object of the present invention is to provide SnO 2 thin films having a multi-layered structure different in the above-described form with a property of being less susceptible to thermal strain, and to improve electrical characteristics and stability with time. .

【0008】[0008]

【構成】本発明の第一は、絶縁性基板上に形成されてお
り、かつその形態を異にする複層構造を有する酸化すず
半導体薄膜の抵抗値変化を利用してガス検知を行なうガ
ス検知膜において、SnO2の結晶構造が主として正方
晶であり、他の結晶構造(立方晶、斜方晶)の含有率が
1/10以下であることを特徴とするガス検知膜に関す
る。
According to a first aspect of the present invention, gas detection is performed by utilizing a resistance change of a tin oxide semiconductor thin film formed on an insulating substrate and having a multi-layer structure having different forms. The gas detection film is characterized in that the crystal structure of SnO 2 is mainly tetragonal and the content of other crystal structures (cubic and orthorhombic) is 1/10 or less.

【0009】本発明の第二は、(イ)上層は微粒子構造
で、下層は柱状構造の二層構造 (ロ)上層は連続膜構造で、下層は微粒子構造の二層構
造 (ハ)上層は連続膜構造で、下層は柱状構造の二層構造 (ニ)連続膜構造をした上層と微粒子構造をした中層と
柱状構造をした下層よりなる三層構造 よりなる群から選らばれた複層構造よりなる酸化すず半
導体薄膜よりなるガス検知膜において、SnO2の結晶
構造が主として正方晶であり、他の結晶構造(立方晶、
斜方晶)の含有率が1/10以下(X線回折法により前
記正方晶に帰属される第一ピークと前記立方晶、斜方晶
に帰属される第一ピークの比率が1/10以下)である
ことを特徴とする前記ガス検知膜に関する。なお、前記
第一ピークとは、JCPDSにおいて、最も回折線強度
が大きいものを示している。
The second aspect of the present invention is: (a) the upper layer has a fine particle structure, the lower layer has a columnar structure having a two-layer structure, and (b) the upper layer has a continuous film structure, and the lower layer has a fine particle structure. It is a continuous film structure and the lower layer is a two-layer structure having a columnar structure. (D) A multi-layer structure selected from the group consisting of a three-layer structure consisting of an upper layer having a continuous film structure, an intermediate layer having a fine particle structure, and a lower layer having a columnar structure. In the gas detecting film made of the tin oxide semiconductor thin film, the crystal structure of SnO 2 is mainly tetragonal, and other crystal structures (cubic,
The content of orthorhombic crystals is 1/10 or less (the ratio of the first peak attributed to the tetragonal crystal to the cubic and the first peak attributed to the orthorhombic crystal by the X-ray diffraction method is 1/10 or less. ) It is related with the said gas detection film characterized by the above. In addition, the said 1st peak has shown the thing with the largest diffraction line intensity in JCPDS.

【0010】前記複層構造における上下層中のSnO2
は配向性を持たないものであることが好ましいが、前記
下層が若干のSnO2(101)の優先配向を有するも
のであってもよい。配向性を有さないとは、X線回折法
によりSnO2の各面指数からの回折線強度比がJCP
DSの強度比(バルク値)に近い値にすることを意味し
ている。
SnO 2 in the upper and lower layers in the multilayer structure
Preferably has no orientation, but the lower layer may have some preferred SnO 2 (101) orientation. Having no orientation means that the diffraction line intensity ratio from each plane index of SnO 2 is JCP by the X-ray diffraction method.
This means that the value is close to the DS intensity ratio (bulk value).

【0011】本発明の第三は、SnO2および/または
SnOを含むアモルファス層を作製し、酸素雰囲気中で
400℃以上のアニールを行い結晶化させることを特徴
とするガス検知膜の製造方法に関する。なお、前記アモ
ルファス層におけるβ−Sn微結晶の含有量が1%以下
であることが好ましい。アモルファス層の形成方法は、
蒸着、スパッタリング、イオンプレーティング、CVD
等の物理的手法や気相化学反応法を利用した公知の薄膜
形成法を使用することができるが、本発明者の一人であ
る太田が発明した「薄膜蒸着装置」(特公平1−533
51号公報)を用いて形成することが好ましい。基板と
してはシリコン、ガラス、石英、アルミナ等のセラミク
ス、Ni,Cu,Al,Cr等が挙げられ、導電性の場
合には金属酸化物半導体薄膜との間に絶縁性膜を介在さ
せる必要がある。ガスセンサにおける電極の材料として
はPt,Au,Pd,Rh,Ir,Ni,Cr,Mo,
W,Ta等が挙げられ、また、ガスセンサにおけるヒー
ター膜の材料としてはPt,SiC,TaN2,NiC
r,PtIr,PtRh等が挙げられる。
A third aspect of the present invention relates to a method for producing a gas detecting film, characterized in that an amorphous layer containing SnO 2 and / or SnO is produced and annealed at 400 ° C. or higher in an oxygen atmosphere for crystallization. . The content of β-Sn microcrystals in the amorphous layer is preferably 1% or less. The method for forming the amorphous layer is
Vapor deposition, sputtering, ion plating, CVD
Although a known thin film forming method utilizing a physical method such as a gas phase chemical reaction method or the like can be used, a “thin film vapor deposition apparatus” invented by Ota, one of the present inventors (Japanese Patent Publication No. 1-533).
51). Examples of the substrate include silicon, glass, quartz, ceramics such as alumina, Ni, Cu, Al, Cr and the like. In the case of conductivity, it is necessary to interpose an insulating film with the metal oxide semiconductor thin film. . Materials for electrodes in the gas sensor include Pt, Au, Pd, Rh, Ir, Ni, Cr, Mo,
Examples of the material of the heater film in the gas sensor include Pt, SiC, TaN 2 , and NiC.
r, PtIr, PtRh, and the like.

【0012】本発明の思想は図1に示されたタイプのも
のに限られるわけではなく、本発明者らがすでに提案し
ているマイクロヒーター構造を有するガスセンサ(特開
平1−167645号公報)のガス検知膜にも適用する
ことができる。
The idea of the present invention is not limited to the type shown in FIG. 1, but the gas sensor having a micro heater structure proposed by the present inventors (Japanese Patent Laid-Open No. 167645/1989) has been proposed. It can also be applied to a gas detection film.

【0013】[0013]

【実施例】次に、実施例を挙げて本発明を更に詳細に説
明する。本実施例における薄膜形成装置は、前記特公平
1−53351号公報のものを使用した。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. As the thin film forming apparatus in this embodiment, the one disclosed in Japanese Patent Publication No. 1-53351 is used.

【0014】実施例1 蒸着材料としては金属スズ(高純度化学社製、4N)を
用い、予め10-4(Pa)台に真空引きした真空槽内に
酸素ガスを導入し、10-1(Pa)台とした状態でフィ
ラメントに70(A)程度の電流を印加し熱電子を発生
させ、グリッドに110(V)程度の電圧を印加しプラ
ズマを発生させる。基板には熱酸化膜〔SiO2(1μ
m)〕付きの高抵抗Siウエハ〔厚さt=0.5(m
m)〕を使用した。前記蒸着材料を蒸発用W(タングス
テン)ボートにのせ、抵抗加熱方式により蒸発させ、成
膜速度は水晶振動子によりモニターし、前記抵抗加熱に
おける印加電圧により制御した。なお、膜厚は3000
Åとした。この成膜方法により作製したSnO2薄膜の
アズデポの組成をメスバウアー効果より分析した結果を
表1に示した。
Example 1 Metallic tin (4N, manufactured by Kojundo Chemical Co., Ltd.) was used as a vapor deposition material, and oxygen gas was introduced into a vacuum chamber which had been evacuated to a level of 10 −4 (Pa) in advance and 10 −1 ( In the state of (Pa) level, a current of about 70 (A) is applied to the filament to generate thermoelectrons, and a voltage of about 110 (V) is applied to the grid to generate plasma. A thermal oxide film [SiO 2 (1μ
m)] with high resistance Si wafer [thickness t = 0.5 (m
m)] was used. The vapor deposition material was placed on a W (tungsten) boat for evaporation and evaporated by a resistance heating method, and the film formation rate was monitored by a crystal oscillator and controlled by an applied voltage in the resistance heating. The film thickness is 3000
Å Table 1 shows the results of analysis of the composition of the as-deposited SnO 2 thin film produced by this film-forming method by the Mossbauer effect.

【0015】[0015]

【表1】 [Table 1]

【0016】そのときのX線回折分析の結果を図3に示
した。アズデポにおける組成は、成膜速度に依存し比較
的遅い成膜速度5Å/sで成膜したSnO2薄膜ではほ
ぼSnO2100%のアモルファスであるが成膜速度を
速くするとSnO2、SnOの二種のアモルファスを含
有するようになり、更に成膜速度を速くすると、β−S
nの微結晶も含有するようになる。これらの試料に酸素
中で700℃のアニールを行い、X線回折法により解析
を行うと図4〜6のようになる。また、SnO2(11
0)の回折線強度を100としたときの各面指数からの
回折線の強度比を表2に示した。
The result of the X-ray diffraction analysis at that time is shown in FIG. Composition in the as-deposited, when it is SnO 2 thin film formed at a relatively slow deposition rate 5 Å / s depending on the deposition rate is approximately SnO 2 100% amorphous to increase the deposition rate SnO 2, SnO two- When the film formation rate is further increased by containing a kind of amorphous, β-S
n crystallites are also contained. When these samples are annealed in oxygen at 700 ° C. and analyzed by the X-ray diffraction method, the results are shown in FIGS. In addition, SnO 2 (11
Table 2 shows the intensity ratio of the diffraction line from each surface index when the diffraction line intensity of 0) is set to 100.

【0017】[0017]

【表2】 [Table 2]

【0018】この結果から、アニールによる結晶成長は
アズデポでの組成に依存し、22Å/s以下の成膜速度
ではSnO2正方晶に帰属されるピークのみが見られ、
また各面指数からの回折線強度比はJCPDSの強度比
(バルク値)とほぼ同等になるが、40Å/sのように
β−Snを含有する試料では若干のSnO2(101)
の優先配向が認められ、他の結晶構造(斜方晶)が生成
するようになる。また、これらの膜のSEM観察の結果
を図7〜9に示した。アズデポの組成がSnO2:Sn
O=32:68のときに700℃の酸素中アニールによ
り二層構造ができる。これらの試料にヒートサイクル試
験(室温⇔450℃、2分周期)を施し、その経時変化
を図10に示した。図中のガス感度Sは、Ra/Rg
(Ra:空気中抵抗値、Rg:ガス中抵抗値)を示して
いる。二層構造以外の試料では約150時間のヒートサ
イクル試験により劣化していることが解る。
From these results, the crystal growth by annealing depends on the composition at the as-depot, and only the peaks attributed to SnO 2 tetragonal crystals are observed at the film forming rate of 22 Å / s or less,
In addition, the diffraction line intensity ratio from each surface index is almost the same as the intensity ratio (bulk value) of JCPDS, but some SnO 2 (101) in the sample containing β-Sn such as 40Å / s.
Is observed, and another crystal structure (orthorhombic) is generated. The results of SEM observation of these films are shown in FIGS. The composition of Azdepo is SnO 2 : Sn
When O = 32: 68, a two-layer structure is formed by annealing in oxygen at 700 ° C. A heat cycle test (room temperature ⇔ 450 ° C., 2 minute cycle) was performed on these samples, and the change over time is shown in FIG. Gas sensitivity S in the figure is Ra / Rg
(Ra: resistance value in air, Rg: resistance value in gas). It can be seen that the samples other than the two-layer structure are deteriorated by the heat cycle test for about 150 hours.

【0019】これらの結果から アズデポでのアモルファス層の組成制御(SnO2
SnO=32:68)により、再現性よく二層構造を作
製することができる、 アズデポの膜中にβ−Snを含むものでは、アニール
後に、正方晶と斜方晶が混在した状態になり、また若干
のSnO2(101)の優先配向が見られることから熱
による歪を受け易い構造になってしまう、ことが解る。
From these results, the composition control of the amorphous layer (SnO 2 :
SnO = 32: 68) makes it possible to fabricate a two-layer structure with good reproducibility. In the case where β-Sn is contained in the as-deposited film, tetragonal crystals and orthorhombic crystals are mixed after annealing, Further, it can be seen that a structure in which the preferential orientation of SnO 2 (101) is slight is likely to be subjected to thermal strain.

【0020】実施例2 実施例1記載の成膜方法において、22Å/sの成膜速
度で成膜し、アニール(酸素中700℃)を行い、二層
構造のSnO2薄膜を作製した。この時、基板の処理方
法Aおよび処理方法Bにおける各基板上の膜の経時特性
と結晶構造の相違について検討を行った。前記処理方法
Aは洗浄(トリクレン、アセトン、エタノール各5分超
音波洗浄)を行なわない処理方法であり、前記処理方法
Bは洗浄(トリクレン、アセトン、エタノール各5分超
音波洗浄)を行なう処理方法である。図11にこれらの
膜の経時特性を示した。基板洗浄を行ったもの、すなわ
ち前記処理方法Bで処理した膜では、約275時間のヒ
ートサイクル試験により劣化するが、基板洗浄を行なわ
ないもの、すなわち前記処理方法Aによる基板の膜は、
良好な経時特性を有している。各試料をX線回折法によ
り分析すると、図12のようになる。基板洗浄を行った
試料、すなわち前記処理方法Bの試料では、2θ=2
9.9(deg.)に斜方晶SnO2(111)及び2
θ=35.8(deg.)に斜方晶SnO2(021)
が見られた。基板洗浄を行った試料では正方晶と斜方晶
が混在した状態になり、すなわち内部応力の異なった層
が存在するために熱による歪を受けやすい構造になって
いることが経時劣化の一つの要因であると考えられる。
Example 2 In the film forming method described in Example 1, the film was formed at a film forming rate of 22 Å / s and annealed (700 ° C. in oxygen) to form a SnO 2 thin film having a two-layer structure. At this time, differences in the time-dependent characteristics and crystal structures of the films on the respective substrates in the substrate processing methods A and B were examined. The treatment method A is a treatment method without washing (sonication of trichlene, acetone, and ethanol for 5 minutes each), and the treatment method B is a treatment method of cleaning (sonication with trichlene, acetone, and ethanol for 5 minutes each). Is. FIG. 11 shows the aging characteristics of these films. The substrate that has been cleaned, that is, the film that has been processed by the processing method B is deteriorated by the heat cycle test for about 275 hours, but the one that has not been cleaned, that is, the film of the substrate that has been processed by the processing method A is
Has good aging characteristics. When each sample is analyzed by the X-ray diffraction method, it becomes as shown in FIG. In the case where the substrate is cleaned, that is, the sample of the processing method B, 2θ = 2
Orthorhombic SnO 2 (111) and 2 at 9.9 (deg.)
Orthorhombic SnO 2 (021) at θ = 35.8 (deg.)
It was observed. One of the causes of deterioration over time is that the sample that has undergone substrate cleaning has a mixture of tetragonal and orthorhombic crystals, that is, a structure that is susceptible to strain due to heat due to the presence of layers with different internal stresses. It is considered to be a factor.

【0021】実施例3 実施例2で作製した基板洗浄を行わないで成膜、アニー
ルを行ったSnO2薄膜(二層構造)について、上下層
を完全に分離してX線回折法により分析を行ったところ
図13のようになった。上層における各面指数からの回
折線強度比は、ほぼバルク値に等しくなることが解った
が、下層では、若干のSnO2(101)の優先配向が
あることが解った。このような若干のSnO2(10
1)優先配向を有する下層の上に、無配向の上層を設け
ることにより経時特性が良好なガス検知膜が得られる。
Example 3 The SnO 2 thin film (two-layer structure) formed and annealed without cleaning the substrate prepared in Example 2 was analyzed by an X-ray diffraction method with the upper and lower layers completely separated. When it went, it became like FIG. It was found that the diffraction line intensity ratio from each plane index in the upper layer was almost equal to the bulk value, but in the lower layer, it was found that there was some preferential orientation of SnO 2 (101). Such SnO 2 (10
1) By providing a non-oriented upper layer on a lower layer having a preferential orientation, a gas detection film having good aging characteristics can be obtained.

【0022】[0022]

【効果】本発明により複層構造を有するSnO2薄膜に
熱による歪を受けにくい性質を付与しこれにより電気特
性の安定化及び経時安定性の向上を図ると同時に前記複
層構造を有するSnO2薄膜の再現性のある安定な製造
方法を提供することができた。
[Effect] According to the present invention, the SnO 2 thin film having a multi-layered structure is provided with the property of being less susceptible to strain due to heat, thereby stabilizing the electric characteristics and improving the stability over time, and at the same time, the SnO 2 having the multi-layered structure. It was possible to provide a reproducible and stable manufacturing method of a thin film.

【図面の簡単な説明】[Brief description of drawings]

【図1】薄膜状ガス感応膜を有するガスセンサを示し、
(a)は、その断面図、(b)は、その斜視図である。
FIG. 1 shows a gas sensor having a thin gas-sensitive film,
(A) is the sectional view, (b) is the perspective view.

【図2】従来のガスセンサを示す斜視図である。FIG. 2 is a perspective view showing a conventional gas sensor.

【図3】アズデポの膜のX線回折チャートを示す。FIG. 3 shows an X-ray diffraction chart of the Azdepo film.

【図4】アニール後の膜のX線回折チャートを示すもの
であり、(a)は5Å/sの成膜速度で、(b)は12
Å/sの成膜速度でそれぞれ成膜し、700℃でアニー
ルして得られたSnO2膜のX線回折チャートである。
FIG. 4 is an X-ray diffraction chart of the annealed film, where (a) is a film formation rate of 5 Å / s and (b) is 12
3 is an X-ray diffraction chart of SnO 2 films obtained by forming films at a film forming rate of Å / s and annealing at 700 ° C.

【図5】アニール後の膜のX線回折チャートを示すもの
であり、(c)は22Å/sの成膜速度で、(d)は3
0Å/sの成膜速度でそれぞれ成膜し、700℃でアニ
ールして得られたSnO2膜のX線回折チャートであ
る。
FIG. 5 shows an X-ray diffraction chart of a film after annealing, (c) shows a film forming rate of 22 Å / s, and (d) shows 3
3 is an X-ray diffraction chart of SnO 2 films obtained by forming films at a film forming rate of 0Å / s and annealing at 700 ° C.

【図6】アニール後の膜のX線回折チャートを示すもの
であり、(e)は40Å/sの成膜速度で成膜し、70
0℃でアニールして得られたSnO2膜のX線回折チャ
ートである。
FIG. 6 is an X-ray diffraction chart of the annealed film, (e) shows a film formed at a film forming rate of 40 Å / s,
4 is an X-ray diffraction chart of a SnO 2 film obtained by annealing at 0 ° C.

【図7】5Å/sの成膜速度で成膜し、アニールして得
られた複層構造をもつSnO2膜のSEM像である。
FIG. 7 is an SEM image of a SnO 2 film having a multilayer structure obtained by forming a film at a film forming rate of 5 Å / s and annealing.

【図8】22Å/sの成膜速度で成膜し、アニールして
得られた複層構造をもつSnO2膜のSEM像である。
FIG. 8 is a SEM image of a SnO 2 film having a multilayer structure obtained by forming a film at a film forming rate of 22 Å / s and annealing.

【図9】40Å/sの成膜速度で成膜し、アニールして
得られた複層構造をもつSnO2膜のSEM像である。
FIG. 9 is a SEM image of a SnO 2 film having a multilayer structure obtained by forming a film at a film forming rate of 40 Å / s and annealing.

【図10】SnO2膜の経時特性(成膜速度依存性)を
示す。
FIG. 10 shows a time-dependent characteristic (deposition rate dependency) of a SnO 2 film.

【図11】基板処理方法Aおよび基板処理方法Bによる
各基板上のSnO2膜の経時特性を示す。
FIG. 11 shows the characteristics over time of the SnO 2 film on each substrate by the substrate processing method A and the substrate processing method B.

【図12】基板洗浄の有無によるアニール後のSnO2
膜のX線回折チャートを示し、(a)は基板処理方法A
の場合、(b)は基板処理方法Bの場合を示す。
FIG. 12 SnO 2 after annealing with and without substrate cleaning
The X-ray diffraction chart of a film | membrane is shown, (a) is the substrate processing method A
In the case of, the case (b) shows the case of the substrate processing method B.

【図13】SnO2二層構造の上下層のX線回折チャー
トであり、(a)が上層の、(b)が下層のX線回折チ
ャートである。
FIG. 13 is an X-ray diffraction chart of upper and lower layers of a SnO 2 bilayer structure, (a) is an upper layer, and (b) is a lower layer.

【符号の説明】[Explanation of symbols]

1 耐熱性基板 2 ヒーター膜 3 絶縁膜 8 電極ピン 12 ベース 41 電極 42 電極 43 電極兼ヒーターコイル 44 電極兼ヒーターコイル 51 ガス感応膜(金属酸化物半導体薄膜) 52 ガス感応物質 61 ヒーター膜への電力供給線 62 ヒーター膜への電力供給線 71 ガス感応膜の信号取り出し線 72 ガス感応膜の信号取り出し線 t 正方晶 o 斜方晶 1 Heat Resistant Substrate 2 Heater Film 3 Insulating Film 8 Electrode Pin 12 Base 41 Electrode 42 Electrode 43 Electrode / Heater Coil 44 Electrode / Heater Coil 51 Gas Sensitive Film (Metal Oxide Semiconductor Thin Film) 52 Gas Sensitive Material 61 Electric Power to Heater Film Supply line 62 Electric power supply line to heater film 71 Signal extraction line of gas sensitive film 72 Signal extraction line of gas sensitive film t Tetragonal o Orthorhombic

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤沢 悦子 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Etsuko Fujisawa 1-3-3 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板上に形成されており、かつそ
の形態を異にする複層構造を有する酸化すず半導体薄膜
の抵抗値変化を利用してガス検知を行なうガス検知膜に
おいて、SnO2の結晶構造が主として正方晶であり、
他の結晶構造(立方晶、斜方晶)の含有率が1/10以
下であることを特徴とするガス検知膜。
1. A is formed on an insulating substrate, and the gas detection film by utilizing a change in resistance tin oxide semiconductor thin film performs gas detection with a multi-layer structure having different form thereof, SnO 2 The crystal structure of is mainly tetragonal,
A gas detection film having a content of another crystal structure (cubic crystal, orthorhombic crystal) of 1/10 or less.
【請求項2】 (イ)上層は微粒子構造で、下層は柱状
構造の二層構造 (ロ)上層は連続膜構造で、下層は微粒子構造の二層構
造 (ハ)上層は連続膜構造で、下層は柱状構造の二層構造 (ニ)連続膜構造をした上層と微粒子構造をした中層と
柱状構造をした下層よりなる三層構造 よりなる群から選らばれた複層構造をもつ酸化すず半導
体薄膜よりなるガス検知膜において、SnO2の結晶構
造が主として正方晶であり、他の結晶構造(立方晶、斜
方晶)の含有率が1/10以下であることを特徴とする
請求項1記載のガス検知膜。
2. (a) The upper layer has a fine particle structure, the lower layer has a two-layer structure having a columnar structure, (b) the upper layer has a continuous film structure, and the lower layer has a fine particle structure, and (c) the upper layer has a continuous film structure. The lower layer is a two-layer structure having a columnar structure. (D) A tin oxide semiconductor thin film having a multi-layer structure selected from the group consisting of an upper layer having a continuous film structure, a middle layer having a fine particle structure, and a lower layer having a columnar structure. 2. The gas detection film made of, wherein the crystal structure of SnO 2 is mainly tetragonal and the content of other crystal structures (cubic or orthorhombic) is 1/10 or less. Gas detection film.
【請求項3】 前記複層構造における上下層中のSnO
2は配向性を持たないものである請求項1または2記載
のガス検知膜。
3. SnO in upper and lower layers in the multilayer structure
2 is having no orientation claim 1 or 2, wherein a gas sensing film.
【請求項4】 前記下層が若干のSnO2(101)の
優先配向を有するものである請求項1、2または3記載
のガス検知膜。
4. The gas detection film according to claim 1, wherein the lower layer has a slight preferential orientation of SnO 2 (101).
【請求項5】 SnO2および/またはSnOを含むア
モルファス層を作製し、酸素雰囲気中で400℃以上の
アニールを行い結晶化させることを特徴とするガス検知
膜の製造方法。
5. A method for producing a gas detection film, which comprises forming an amorphous layer containing SnO 2 and / or SnO, and crystallizing it by annealing at 400 ° C. or higher in an oxygen atmosphere.
【請求項6】 前記アモルファス層におけるβ−Sn微
結晶の含有量が1%以下である請求項5記載のガス検知
膜の製造方法。
6. The method for producing a gas detection film according to claim 5, wherein the content of β-Sn microcrystals in the amorphous layer is 1% or less.
JP35370293A 1993-12-29 1993-12-29 Gas detecting film and manufacture thereof Pending JPH07198648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35370293A JPH07198648A (en) 1993-12-29 1993-12-29 Gas detecting film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35370293A JPH07198648A (en) 1993-12-29 1993-12-29 Gas detecting film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07198648A true JPH07198648A (en) 1995-08-01

Family

ID=18432646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35370293A Pending JPH07198648A (en) 1993-12-29 1993-12-29 Gas detecting film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07198648A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344340A (en) * 2002-05-30 2003-12-03 Glory Ltd Membrane stress variable thin membrane and thin membrane gas sensor using the same
EP2296154A1 (en) * 2008-06-24 2011-03-16 Nippon Soda Co., Ltd. Transparent conductive film having fto/ito multilayer body
EP2296215A1 (en) * 2008-06-24 2011-03-16 Panasonic Electric Works Co., Ltd. Dye-sensitized solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344340A (en) * 2002-05-30 2003-12-03 Glory Ltd Membrane stress variable thin membrane and thin membrane gas sensor using the same
EP2296154A1 (en) * 2008-06-24 2011-03-16 Nippon Soda Co., Ltd. Transparent conductive film having fto/ito multilayer body
EP2296215A1 (en) * 2008-06-24 2011-03-16 Panasonic Electric Works Co., Ltd. Dye-sensitized solar cell
CN102067375A (en) * 2008-06-24 2011-05-18 松下电工株式会社 Dye-sensitized solar cell
EP2296154A4 (en) * 2008-06-24 2011-07-20 Nippon Soda Co Transparent conductive film having fto/ito multilayer body
EP2296215A4 (en) * 2008-06-24 2011-07-20 Panasonic Elec Works Co Ltd Dye-sensitized solar cell
US8557404B2 (en) 2008-06-24 2013-10-15 Nippon Soda Co., Ltd. Transparent conductive film having FTO/ITO laminate
US8962982B2 (en) 2008-06-24 2015-02-24 Nippon Soda Co., Ltd. Dye-sensitized solar cell

Similar Documents

Publication Publication Date Title
JP2002328109A (en) Element for detecting hydrogen gas, and method of manufacturing the same
JPS6351501B2 (en)
JP2000348903A (en) Thin-film thermistor element and manufacture of the same
US5330855A (en) Planar epitaxial films of SnO2
JPH07198648A (en) Gas detecting film and manufacture thereof
JPS61191954A (en) Metal oxide thin film gas sensor element
JP2001291607A (en) Method of manufacturing platinum thin-film resistor
Wisitsoraat et al. Ion-assisted e-beam evaporated gas sensor for environmental monitoring
Baban et al. Oxygen sensor based on Ga2O3 films operating at high temperature
JPH11326257A (en) Thin-film gas sensor
Suzuki et al. Thickness dependence of H 2 gas sensor in amorphous SnQ x films prepared by ion-beam sputtering
JP2622144B2 (en) Method for producing gas-sensitive thin film
JP2996922B2 (en) Tin oxide thin film sensor for sensing hydrogen and method of manufacturing the same
JP3314509B2 (en) NOx gas sensing semiconductor and method of manufacturing the same
JP4461634B2 (en) Thin film gas sensor and manufacturing method thereof
JP2646246B2 (en) Method for producing gas-sensitive membrane element
JPH03123845A (en) Gas sensor
JPH0894560A (en) Thin-film type gas sensor
JPH06213853A (en) Manufacture of gas detecting element
Zanoni et al. Surface composition of alkali-dope TiO2 films for sensors investigated by XPS
JP2939873B2 (en) Manufacturing method of gas detection element
JP3170909B2 (en) Manufacturing method of gas detection element
JPH0650919A (en) Gas sensor
KR100475743B1 (en) In2O3 Thin-film O3 Gas Sensors Using R.F. Magnetron Sputtering and Their Fabrication Method
JPS63211702A (en) Temperature sensor